Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic
- Авторы: Schumacher M.1
-
Учреждения:
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California
- Выпуск: Том 22, № 1 (2024)
- Страницы: 6-14
- Раздел: Neurology
- URL: https://rjsocmed.com/1570-159X/article/view/644188
- DOI: https://doi.org/10.2174/1570159X21666230808111908
- ID: 644188
Цитировать
Полный текст
Аннотация
The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.
Ключевые слова
Об авторах
Mark Schumacher
Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press (US): Washington (DC), 2011.
- Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet, 2006, 367(9522), 1618-1625. doi: 10.1016/S0140-6736(06)68700-X PMID: 16698416
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284. doi: 10.1016/j.cell.2009.09.028 PMID: 19837031
- Reichling, D.B.; Green, P.G.; Levine, J.D. The fundamental unit of pain is the cell. Pain, 2013, 154(Suppl. 1), S2-S9. doi: 10.1016/j.pain.2013.05.037
- Guan, Z.; Hellman, J.; Schumacher, M. Contemporary views on inflammatory pain mechanisms: Trping over innate and microglial pathways. F1000 Res., 2016, 5, 2425. doi: 10.12688/f1000research.8710.1 PMID: 27781082
- Apkarian, A.V.; Bushnell, M.C.; Treede, R.D.; Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain, 2005, 9(4), 463-484. doi: 10.1016/j.ejpain.2004.11.001 PMID: 15979027
- Dworkin, R.H.; Turk, D.C.; Basch, E.; Berger, A.; Cleeland, C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Kerns, R.D.; Markman, J.; Porter, L.; Raja, S.N.; Ross, E.; Todd, K.; Wallace, M.; Woolf, C.J. Considerations for extrapolating evidence of acute and chronic pain analgesic efficacy. Pain, 2011, 152(8), 1705-1708. doi: 10.1016/j.pain.2011.02.026 PMID: 21396781
- De Felice, M.; Sanoja, R.; Wang, R.; Vera-Portocarrero, L.; Oyarzo, J.; King, T.; Ossipov, M.H.; Vanderah, T.W.; Lai, J.; Dussor, G.O.; Fields, H.L.; Price, T.J.; Porreca, F. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain, 2011, 152(12), 2701-2709. doi: 10.1016/j.pain.2011.06.008 PMID: 21745713
- Piomelli, D.; Sasso, O. Peripheral gating of pain signals by endogenous lipid mediators. Nat. Neurosci., 2014, 17(2), 164-174. doi: 10.1038/nn.3612 PMID: 24473264
- Sexton, J.E.; Vernon, J.; Wood, J.N. TRPs and Pain. Handb. Exp. Pharmacol., 2014, 223, 873-897. doi: 10.1007/978-3-319-05161-1_6 PMID: 24961972
- Amaya, F.; Oh-hashi, K.; Naruse, Y.; Iijima, N.; Ueda, M.; Shimosato, G.; Tominaga, M.; Tanaka, Y.; Tanaka, M. Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res., 2003, 963(1-2), 190-196. doi: 10.1016/S0006-8993(02)03972-0 PMID: 12560124
- Amaya, F.; Shimosato, G.; Nagano, M.; Ueda, M.; Hashimoto, S.; Tanaka, Y.; Suzuki, H.; Tanaka, M. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur. J. Neurosci., 2004, 20(9), 2303-2310. doi: 10.1111/j.1460-9568.2004.03701.x PMID: 15525272
- Petruska, J.C.; Mendell, L.M. The many functions of nerve growth factor: Multiple actions on nociceptors. Neurosci. Lett., 2004, 361(1-3), 168-171. doi: 10.1016/j.neulet.2003.12.012 PMID: 15135920
- Anand, U.; Otto, W.R.; Facer, P.; Zebda, N.; Selmer, I.; Gunthorpe, M.J.; Chessell, I.P.; Sinisi, M.; Birch, R.; Anand, P. TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci. Lett., 2008, 438(2), 221-227. doi: 10.1016/j.neulet.2008.04.007 PMID: 18456404
- Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci., 2008, 28(10), 2485-2494. doi: 10.1523/JNEUROSCI.5369-07.2008 PMID: 18322093
- Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience, 2015, 310, 206-215. doi: 10.1016/j.neuroscience.2015.09.042 PMID: 26393428
- Bandell, M.; Story, G.M.; Hwang, S.W.; Viswanath, V.; Eid, S.R.; Petrus, M.J.; Earley, T.J.; Patapoutian, A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 2004, 41(6), 849-857. doi: 10.1016/S0896-6273(04)00150-3 PMID: 15046718
- Bautista, D.M.; Jordt, S.E.; Nikai, T.; Tsuruda, P.R.; Read, A.J.; Poblete, J.; Yamoah, E.N.; Basbaum, A.I.; Julius, D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 2006, 124(6), 1269-1282. doi: 10.1016/j.cell.2006.02.023 PMID: 16564016
- Bautista, D.M.; Pellegrino, M.; Tsunozaki, M. TRPA1: A gatekeeper for inflammation. Annu. Rev. Physiol., 2013, 75(1), 181-200. doi: 10.1146/annurev-physiol-030212-183811 PMID: 23020579
- Bell, J.T.; Loomis, A.K.; Butcher, L.M.; Gao, F.; Zhang, B.; Hyde, C.L.; Sun, J.; Wu, H.; Ward, K.; Harris, J.; Scollen, S.; Davies, M.N.; Schalkwyk, L.C.; Mill, J.; Ahmadi, K.R.; Ainali, C.; Barrett, A.; Bataille, V.; Bell, J.T.; Buil, A.; Deloukas, P.; Dermitzakis, E.T.; Dimas, A.S.; Durbin, R.; Glass, D.; Grundberg, E.; Hassanali, N.; Hedman, A.K.; Ingle, C.; Knowles, D.; Krestyaninova, M.; Lindgren, C.M.; Lowe, C.E.; McCarthy, M.I.; Meduri, E.; di Meglio, P.; Min, J.L.; Montgomery, S.B.; Nestle, F.O.; Nica, A.C.; Nisbet, J.; ORahilly, S.; Parts, L.; Potter, S.; Sekowska, M.; Shin, S-Y.; Small, K.S.; Soranzo, N.; Spector, T.D.; Surdulescu, G.; Travers, M.E.; Tsaprouni, L.; Tsoka, S.; Wilk, A.; Yang, T-P.; Zondervan, K.T.; Williams, F.M.K.; Li, N.; Deloukas, P.; Beck, S.; McMahon, S.B.; Wang, J.; John, S.L.; Spector, T.D. Differential methylation of the TRPA1 promoter in pain sensitivity. Nat. Commun., 2014, 5(1), 2978. doi: 10.1038/ncomms3978 PMID: 24496475
- Cattaruzza, F.; Johnson, C.; Leggit, A.; Grady, E.; Schenk, A.K.; Cevikbas, F.; Cedron, W.; Bondada, S.; Kirkwood, R.; Malone, B.; Steinhoff, M.; Bunnett, N.; Kirkwood, K.S. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(11), G1002-G1012. doi: 10.1152/ajpgi.00005.2013 PMID: 23558009
- da Costa, D.S.M.; Meotti, F.C.; Andrade, E.L.; Leal, P.C.; Motta, E.M.; Calixto, J.B. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain, 2010, 148(3), 431-437. doi: 10.1016/j.pain.2009.12.002 PMID: 20056530
- Diogenes, A.; Akopian, A.N.; Hargreaves, K.M. NGF up-regulates TRPA1: Implications for orofacial pain. J. Dent. Res., 2007, 86(6), 550-555. doi: 10.1177/154405910708600612 PMID: 17525356
- Gregus, A.M.; Doolen, S.; Dumlao, D.S.; Buczynski, M.W.; Takasusuki, T.; Fitzsimmons, B.L.; Hua, X.Y.; Taylor, B.K.; Dennis, E.A.; Yaksh, T.L. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc. Natl. Acad. Sci., 2012, 109(17), 6721-6726. doi: 10.1073/pnas.1110460109 PMID: 22493235
- Zappia, K.J.; OHara, C.L.; Moehring, F.; Kwan, K.Y.; Stucky, C.L. Sensory neuron-specific deletion of TRPA1 results in mechanical cutaneous sensory deficits. eNeuro, 2017, 4(1), ENEURO. 0069-16.2017. doi: 10.1523/ENEURO.0069-16.2017 PMID: 28303259
- Bonnie, R.J. Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use; Phillips, J.K.; Ford, M.A.; Bonnie, R.J., Eds.; National Academies Press (US): Washington (DC), 2017. doi: 10.17226/24781
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain, 2011, 152(3), S2-S15. doi: 10.1016/j.pain.2010.09.030 PMID: 20961685
- McGreevy, K.; Bottros, M.M.; Raja, S.N. Preventing chronic pain following acute pain: Risk factors, preventive strategies, and their efficacy. Eur. J. Pain Suppl., 2011, 5(S2), 365-376. doi: 10.1016/j.eujps.2011.08.013 PMID: 22102847
- Lewin, G.R.; Mendell, L.M. Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat. J. Neurophysiol., 1994, 71(3), 941-949. doi: 10.1152/jn.1994.71.3.941 PMID: 8201434
- Andreev, N.Y.; Dimitrieva, N.; Koltzenburg, M.; McMahon, S.B. Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain, 1995, 63(1), 109-115. doi: 10.1016/0304-3959(95)00024-M PMID: 8577480
- Koltzenburg, M. The changing sensitivity in the life of the nociceptor. Pain, 1999, 82(Suppl. 1), S93-S102. doi: 10.1016/S0304-3959(99)00142-6 PMID: 10491977
- Michael, G.J.; Priestley, J.V. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J. Neurosci., 1999, 19(5), 1844-1854. doi: 10.1523/JNEUROSCI.19-05-01844.1999 PMID: 10024368
- Woolf, C.J.; Costigan, M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc. Natl. Acad. Sci., 1999, 96(14), 7723-7730. doi: 10.1073/pnas.96.14.7723 PMID: 10393888
- Lindsay, R.M.; Harmar, A.J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature, 1989, 337(6205), 362-364. doi: 10.1038/337362a0 PMID: 2911387
- McMahon, S.B. NGF as a mediator of inflammatory pain. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1996, 351(1338), 431-440. doi: 10.1098/rstb.1996.0039 PMID: 8730782
- Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002, 36(1), 57-68. doi: 10.1016/S0896-6273(02)00908-X PMID: 12367506
- Zhang, X.; Huang, J.; McNaughton, P.A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J., 2005, 24(24), 4211-4223. doi: 10.1038/sj.emboj.7600893 PMID: 16319926
- Xue, Q.; Jong, B.; Chen, T.; Schumacher, M.A. Transcription of rat TRPV1 utilizes a dual promoter system that is positively regulated by nerve growth factor. J. Neurochem., 2007, 101(1), 212-222. doi: 10.1111/j.1471-4159.2006.04363.x PMID: 17217411
- Chu, C.; Zavala, K.; Fahimi, A.; Lee, J.; Xue, Q.; Eilers, H.; Schumacher, M.A. Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons. Mol. Pain, 2011, 7, 1744-8069-7-44. doi: 10.1186/1744-8069-7-44 PMID: 21645329
- Bonnington, J.K.; McNaughton, P.A. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol., 2003, 551(2), 433-446. doi: 10.1113/jphysiol.2003.039990 PMID: 12815188
- Chuang, H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature, 2001, 411(6840), 957-962. doi: 10.1038/35082088 PMID: 11418861
- Rukwied, R.; Mayer, A.; Kluschina, O.; Obreja, O.; Schley, M.; Schmelz, M. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain, 2010, 148(3), 407-413. doi: 10.1016/j.pain.2009.11.022 PMID: 20022698
- Amann, R.; Schuligoi, R.; Herzeg, G.; Donnerer, J. Intraplantar injection of nerve growth factor into the rat hind paw: Local edema and effects on thermal nociceptive threshold. Pain, 1996, 64(2), 323-329. doi: 10.1016/0304-3959(95)00120-4 PMID: 8740610
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824. doi: 10.1038/39807 PMID: 9349813
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 2000, 288(5464), 306-313. doi: 10.1126/science.288.5464.306 PMID: 10764638
- Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; Hughes, S.A.; Rance, K.; Grau, E.; Harper, A.J.; Pugh, P.L.; Rogers, D.C.; Bingham, S.; Randall, A.; Sheardown, S.A. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 2000, 405(6783), 183-187. doi: 10.1038/35012076 PMID: 10821274
- Schumacher, M.A. Transient receptor potential channels in pain and inflammation: Therapeutic opportunities. Pain Pract., 2010, 10(3), 185-200. doi: 10.1111/j.1533-2500.2010.00358.x PMID: 20230457
- Blackshaw, L.A. Transient receptor potential cation channels in visceral sensory pathways. Br. J. Pharmacol., 2014, 171(10), 2528-2536. doi: 10.1111/bph.12641 PMID: 24641218
- Lawton, S.K.; Xu, F.; Tran, A.; Wong, E.; Prakash, A.; Schumacher, M.; Hellman, J.; Wilhelmsen, K. N -arachidonoyl dopamine modulates acute systemic inflammation via nonhematopoietic TRPV1. J. Immunol., 2017, 199(4), 1465-1475. doi: 10.4049/jimmunol.1602151 PMID: 28701511
- Xue, Q.; Yu, Y.; Trilk, S.L.; Jong, B.E.; Schumacher, M.A. The genomic organization of the gene encoding the vanilloid receptor: Evidence for multiple splice variants. Genomics, 2001, 76(1-3), 14-20. doi: 10.1006/geno.2001.6582 PMID: 11549313
- Supp, D.M.; Witte, D.P.; Branford, W.W.; Smith, E.P.; Potter, S.S. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev. Biol., 1996, 176(2), 284-299. doi: 10.1006/dbio.1996.0134 PMID: 8660867
- Suske, G. The Sp-family of transcription factors. Gene, 1999, 238(2), 291-300. doi: 10.1016/S0378-1119(99)00357-1
- Bouwman, P.; Philipsen, S. Regulation of the activity of Sp1-related transcription factors. Mol. Cell. Endocrinol., 2002, 195(1-2), 27-38. doi: 10.1016/S0303-7207(02)00221-6 PMID: 12354670
- Li, L.; He, S.; Sun, J.M.; Davie, J.R. Gene regulation by Sp1 and Sp3. Biochem. Cell Biol., 2004, 82(4), 460-471. doi: 10.1139/o04-045 PMID: 15284899
- Saia, G.; Lalonde, J.; Sun, X.; Ramos, B.; Gill, G. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling. J. Neurochem., 2014, 129(4), 743-752. doi: 10.1111/jnc.12657 PMID: 24475768
- Priya, A.; Johar, K.; Nair, B.; Wong-Riley, M.T.T. Specificity protein 4 (Sp4) regulates the transcription of AMPA receptor subunit GluA2 (Gria2). Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(6), 1196-1206. doi: 10.1016/j.bbamcr.2014.02.008 PMID: 24576410
- Sun, X.; Pinacho, R.; Saia, G.; Punko, D.; Meana, J.J.; Ramos, B.; Gill, G. Transcription factor Sp4 regulates expression of nervous wreck 2 to control NMDAR1 levels and dendrite patterning. Dev. Neurobiol., 2015, 75(1), 93-108. doi: 10.1002/dneu.22212 PMID: 25045015
- Nair, B.; Johar, K.; Priya, A.; Wong-Riley, M.T.T. Specificity protein 4 (Sp4) transcriptionally regulates inhibitory GABAergic receptors in neurons. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(1), 1-9. doi: 10.1016/j.bbamcr.2015.10.005 PMID: 26469128
- Johar, K.; Priya, A.; Dhar, S.; Liu, Q.; Wong-Riley, M.T.T. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons. J. Neurochem., 2013, 127(4), 496-508. doi: 10.1111/jnc.12433 PMID: 24032355
- Johar, K.; Priya, A.; Wong-Riley, M.T.T. Regulation of Na +/K + -ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons. Eur. J. Neurosci., 2014, 39(4), 566-578. doi: 10.1111/ejn.12415 PMID: 24219545
- Zhou, X.; Tang, W.; Greenwood, T.A.; Guo, S.; He, L.; Geyer, M.A.; Kelsoe, J.R. Transcription factor SP4 is a susceptibility gene for bipolar disorder. PLoS One, 2009, 4(4), e5196. doi: 10.1371/journal.pone.0005196 PMID: 19401786
- Shi, J.; Potash, J.B.; Knowles, J.A.; Weissman, M.M.; Coryell, W.; Scheftner, W.A.; Lawson, W.B.; DePaulo, J.R., Jr; Gejman, P.V.; Sanders, A.R.; Johnson, J.K.; Adams, P.; Chaudhury, S.; Jancic, D.; Evgrafov, O.; Zvinyatskovskiy, A.; Ertman, N.; Gladis, M.; Neimanas, K.; Goodell, M.; Hale, N.; Ney, N.; Verma, R.; Mirel, D.; Holmans, P.; Levinson, D.F. Genome-wide association study of recurrent early-onset major depressive disorder. Mol. Psychiatry, 2011, 16(2), 193-201. doi: 10.1038/mp.2009.124 PMID: 20125088
- Pinacho, R.; Villalmanzo, N.; Lalonde, J.; Haro, J.M.; Meana, J.J.; Gill, G.; Ramos, B. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord., 2011, 13(5-6), 474-485. doi: 10.1111/j.1399-5618.2011.00941.x PMID: 22017217
- Chang, W.C.; Chen, B.K. Transcription factor Sp1 functions as an anchor protein in gene transcription of human 12(S)-lipoxygenase. Biochem. Biophys. Res. Commun., 2005, 338(1), 117-121. doi: 10.1016/j.bbrc.2005.08.014 PMID: 16122700
- Zhao, C.; He, X.; Tian, C.; Meng, A. Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos. Biochem. Biophys. Res. Commun., 2006, 342(1), 214-220. doi: 10.1016/j.bbrc.2006.01.134 PMID: 16472769
- Zhou, X.; Qyang, Y.; Kelsoe, J.R.; Masliah, E.; Geyer, M.A. Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav., 2007, 6(3), 269-276. doi: 10.1111/j.1601-183X.2006.00256.x PMID: 16899055
- Ramos, B.; Gaudillière, B.; Bonni, A.; Gill, G. Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9882-9887. doi: 10.1073/pnas.0701946104 PMID: 17535924
- Ramos, B.; Valín, A.; Sun, X.; Gill, G. Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol. Cell. Neurosci., 2009, 42(2), 152-159. doi: 10.1016/j.mcn.2009.06.008 PMID: 19555762
- Lerner, L.E.; Gribanova, Y.E.; Whitaker, L.; Knox, B.E.; Farber, D.B. The rod cGMP-phosphodiesterase beta-subunit promoter is a specific target for Sp4 and is not activated by other Sp proteins or CRX. J. Biol. Chem., 2002, 277(29), 25877-25883. doi: 10.1074/jbc.M201407200 PMID: 11943774
- Sheehan, K.; Lee, J.; Chong, J.; Zavala, K.; Sharma, M.; Philipsen, S.; Maruyama, T.; Xu, Z.; Guan, Z.; Eilers, H.; Kawamata, T.; Schumacher, M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One, 2019, 14(2), e0211349. doi: 10.1371/journal.pone.0211349 PMID: 30811405
- Merchant, J.L.; Du, M.; Todisco, A. Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem. Biophys. Res. Commun., 1999, 254(2), 454-461. doi: 10.1006/bbrc.1998.9964 PMID: 9918860
- Chu, S.; Ferro, T.J. Sp1: Regulation of gene expression by phosphorylation. Gene, 2005, 348, 1-11. doi: 10.1016/j.gene.2005.01.013 PMID: 15777659
- Lennertz, R.C.; Kossyreva, E.A.; Smith, A.K.; Stucky, C.L. TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One, 2012, 7(8), e43597. doi: 10.1371/journal.pone.0043597 PMID: 22927999
- Brierley, S.M.; Castro, J.; Harrington, A.M.; Hughes, P.A.; Page, A.J.; Rychkov, G.Y.; Blackshaw, L.A. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J. Physiol., 2011, 589(14), 3575-3593. doi: 10.1113/jphysiol.2011.206789 PMID: 21558163
- Petrus, M.; Peier, A.M.; Bandell, M.; Hwang, S.W.; Huynh, T.; Olney, N.; Jegla, T.; Patapoutian, A. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain, 2007, 3, 1744-8069-3-40. doi: 10.1186/1744-8069-3-40 PMID: 18086313
- Jerić M.; Vukojević K.; Vuica, A.; Filipović N. Diabetes mellitus influences the expression of NPY and VEGF in neurons of rat trigeminal ganglion. Neuropeptides, 2017, 62, 57-64. doi: 10.1016/j.npep.2016.11.001 PMID: 27836326
- De Logu, F.; De Prá, S.D.T.; de David Antoniazzi, C.T.; Kudsi, S.Q.; Ferro, P.R.; Landini, L.; Rigo, F.K.; de Bem Silveira, G.; Silveira, P.C.L.; Oliveira, S.M.; Marini, M.; Mattei, G.; Ferreira, J.; Geppetti, P.; Nassini, R.; Trevisan, G. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I. Brain Behav. Immun., 2020, 88, 535-546. doi: 10.1016/j.bbi.2020.04.037 PMID: 32315759
- Liu, X.J.; Liu, T.; Chen, G.; Wang, B.; Yu, X.L.; Yin, C.; Ji, R.R. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation. Sci. Rep., 2016, 6(1), 28188. doi: 10.1038/srep28188 PMID: 27312666
- Dansereau, M.A.; Midavaine, É.; Bégin-Lavallée, V.; Belkouch, M.; Beaudet, N.; Longpré, J.M.; Mélik-Parsadaniantz, S.; Sarret, P. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J. Neuroinflammation, 2021, 18(1), 79. doi: 10.1186/s12974-021-02125-y PMID: 33757529
- Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354(6312), 572-577. doi: 10.1126/science.aaf8924 PMID: 27811267
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A. Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; Mortazavi, A. A survey of best practices for RNA-seq data analysis. Genome Biol., 2016, 17(1), 13. doi: 10.1186/s13059-016-0881-8 PMID: 26813401
- Kukurba, K.R.; Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. Protoc., 2015, 2015(11), pdb.top084970. doi: 10.1101/pdb.top084970 PMID: 25870306
- Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med., 1990, 9(7), 811-818. doi: 10.1002/sim.4780090710 PMID: 2218183
- Kober, K.M.; Schumacher, M.; Conley, Y.P.; Topp, K.; Mazor, M.; Hammer, M.J.; Paul, S.M.; Levine, J.D.; Miaskowski, C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol. Pain, 2019, 15. doi: 10.1177/1744806919878088 PMID: 31486345
- Dowell, D.; Haegerich, T.M.; Chou, R. CDC guideline for prescribing opioids for chronic painUnited States, 2016. JAMA, 2016, 315(15), 1624-1645. doi: 10.1001/jama.2016.1464 PMID: 26977696
- Els, C.; Jackson, T.D.; Hagtvedt, R.; Kunyk, D.; Sonnenberg, B.; Lappi, V.G.; Straube, S. High-dose opioids for chronic non-cancer pain: An overview of Cochrane Reviews. Cochrane Libr., 2017, 2018(1), CD012299. doi: 10.1002/14651858.CD012299.pub2 PMID: 29084358
- Zavala, K.; Lee, J.; Chong, J.; Sharma, M.; Eilers, H.; Schumacher, M.A. The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons. Neurosci. Lett., 2014, 578, 211-216. doi: 10.1016/j.neulet.2014.01.021 PMID: 24468003
- Gómez, K.; Sandoval, A.; Barragán-Iglesias, P.; Granados-Soto, V.; Delgado-Lezama, R.; Felix, R.; González-Ramírez, R. Transcription factor Sp1 regulates the expression of calcium channel α2δ-1 subunit in neuropathic pain. Neuroscience, 2019, 412, 207-215. doi: 10.1016/j.neuroscience.2019.06.011 PMID: 31220545
Дополнительные файлы
