Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic


Цитировать

Полный текст

Аннотация

The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.

Об авторах

Mark Schumacher

Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press (US): Washington (DC), 2011.
  2. Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet, 2006, 367(9522), 1618-1625. doi: 10.1016/S0140-6736(06)68700-X PMID: 16698416
  3. Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284. doi: 10.1016/j.cell.2009.09.028 PMID: 19837031
  4. Reichling, D.B.; Green, P.G.; Levine, J.D. The fundamental unit of pain is the cell. Pain, 2013, 154(Suppl. 1), S2-S9. doi: 10.1016/j.pain.2013.05.037
  5. Guan, Z.; Hellman, J.; Schumacher, M. Contemporary views on inflammatory pain mechanisms: Trping over innate and microglial pathways. F1000 Res., 2016, 5, 2425. doi: 10.12688/f1000research.8710.1 PMID: 27781082
  6. Apkarian, A.V.; Bushnell, M.C.; Treede, R.D.; Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain, 2005, 9(4), 463-484. doi: 10.1016/j.ejpain.2004.11.001 PMID: 15979027
  7. Dworkin, R.H.; Turk, D.C.; Basch, E.; Berger, A.; Cleeland, C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Kerns, R.D.; Markman, J.; Porter, L.; Raja, S.N.; Ross, E.; Todd, K.; Wallace, M.; Woolf, C.J. Considerations for extrapolating evidence of acute and chronic pain analgesic efficacy. Pain, 2011, 152(8), 1705-1708. doi: 10.1016/j.pain.2011.02.026 PMID: 21396781
  8. De Felice, M.; Sanoja, R.; Wang, R.; Vera-Portocarrero, L.; Oyarzo, J.; King, T.; Ossipov, M.H.; Vanderah, T.W.; Lai, J.; Dussor, G.O.; Fields, H.L.; Price, T.J.; Porreca, F. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain, 2011, 152(12), 2701-2709. doi: 10.1016/j.pain.2011.06.008 PMID: 21745713
  9. Piomelli, D.; Sasso, O. Peripheral gating of pain signals by endogenous lipid mediators. Nat. Neurosci., 2014, 17(2), 164-174. doi: 10.1038/nn.3612 PMID: 24473264
  10. Sexton, J.E.; Vernon, J.; Wood, J.N. TRPs and Pain. Handb. Exp. Pharmacol., 2014, 223, 873-897. doi: 10.1007/978-3-319-05161-1_6 PMID: 24961972
  11. Amaya, F.; Oh-hashi, K.; Naruse, Y.; Iijima, N.; Ueda, M.; Shimosato, G.; Tominaga, M.; Tanaka, Y.; Tanaka, M. Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res., 2003, 963(1-2), 190-196. doi: 10.1016/S0006-8993(02)03972-0 PMID: 12560124
  12. Amaya, F.; Shimosato, G.; Nagano, M.; Ueda, M.; Hashimoto, S.; Tanaka, Y.; Suzuki, H.; Tanaka, M. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur. J. Neurosci., 2004, 20(9), 2303-2310. doi: 10.1111/j.1460-9568.2004.03701.x PMID: 15525272
  13. Petruska, J.C.; Mendell, L.M. The many functions of nerve growth factor: Multiple actions on nociceptors. Neurosci. Lett., 2004, 361(1-3), 168-171. doi: 10.1016/j.neulet.2003.12.012 PMID: 15135920
  14. Anand, U.; Otto, W.R.; Facer, P.; Zebda, N.; Selmer, I.; Gunthorpe, M.J.; Chessell, I.P.; Sinisi, M.; Birch, R.; Anand, P. TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci. Lett., 2008, 438(2), 221-227. doi: 10.1016/j.neulet.2008.04.007 PMID: 18456404
  15. Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci., 2008, 28(10), 2485-2494. doi: 10.1523/JNEUROSCI.5369-07.2008 PMID: 18322093
  16. Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience, 2015, 310, 206-215. doi: 10.1016/j.neuroscience.2015.09.042 PMID: 26393428
  17. Bandell, M.; Story, G.M.; Hwang, S.W.; Viswanath, V.; Eid, S.R.; Petrus, M.J.; Earley, T.J.; Patapoutian, A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 2004, 41(6), 849-857. doi: 10.1016/S0896-6273(04)00150-3 PMID: 15046718
  18. Bautista, D.M.; Jordt, S.E.; Nikai, T.; Tsuruda, P.R.; Read, A.J.; Poblete, J.; Yamoah, E.N.; Basbaum, A.I.; Julius, D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 2006, 124(6), 1269-1282. doi: 10.1016/j.cell.2006.02.023 PMID: 16564016
  19. Bautista, D.M.; Pellegrino, M.; Tsunozaki, M. TRPA1: A gatekeeper for inflammation. Annu. Rev. Physiol., 2013, 75(1), 181-200. doi: 10.1146/annurev-physiol-030212-183811 PMID: 23020579
  20. Bell, J.T.; Loomis, A.K.; Butcher, L.M.; Gao, F.; Zhang, B.; Hyde, C.L.; Sun, J.; Wu, H.; Ward, K.; Harris, J.; Scollen, S.; Davies, M.N.; Schalkwyk, L.C.; Mill, J.; Ahmadi, K.R.; Ainali, C.; Barrett, A.; Bataille, V.; Bell, J.T.; Buil, A.; Deloukas, P.; Dermitzakis, E.T.; Dimas, A.S.; Durbin, R.; Glass, D.; Grundberg, E.; Hassanali, N.; Hedman, A.K.; Ingle, C.; Knowles, D.; Krestyaninova, M.; Lindgren, C.M.; Lowe, C.E.; McCarthy, M.I.; Meduri, E.; di Meglio, P.; Min, J.L.; Montgomery, S.B.; Nestle, F.O.; Nica, A.C.; Nisbet, J.; O’Rahilly, S.; Parts, L.; Potter, S.; Sekowska, M.; Shin, S-Y.; Small, K.S.; Soranzo, N.; Spector, T.D.; Surdulescu, G.; Travers, M.E.; Tsaprouni, L.; Tsoka, S.; Wilk, A.; Yang, T-P.; Zondervan, K.T.; Williams, F.M.K.; Li, N.; Deloukas, P.; Beck, S.; McMahon, S.B.; Wang, J.; John, S.L.; Spector, T.D. Differential methylation of the TRPA1 promoter in pain sensitivity. Nat. Commun., 2014, 5(1), 2978. doi: 10.1038/ncomms3978 PMID: 24496475
  21. Cattaruzza, F.; Johnson, C.; Leggit, A.; Grady, E.; Schenk, A.K.; Cevikbas, F.; Cedron, W.; Bondada, S.; Kirkwood, R.; Malone, B.; Steinhoff, M.; Bunnett, N.; Kirkwood, K.S. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(11), G1002-G1012. doi: 10.1152/ajpgi.00005.2013 PMID: 23558009
  22. da Costa, D.S.M.; Meotti, F.C.; Andrade, E.L.; Leal, P.C.; Motta, E.M.; Calixto, J.B. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain, 2010, 148(3), 431-437. doi: 10.1016/j.pain.2009.12.002 PMID: 20056530
  23. Diogenes, A.; Akopian, A.N.; Hargreaves, K.M. NGF up-regulates TRPA1: Implications for orofacial pain. J. Dent. Res., 2007, 86(6), 550-555. doi: 10.1177/154405910708600612 PMID: 17525356
  24. Gregus, A.M.; Doolen, S.; Dumlao, D.S.; Buczynski, M.W.; Takasusuki, T.; Fitzsimmons, B.L.; Hua, X.Y.; Taylor, B.K.; Dennis, E.A.; Yaksh, T.L. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc. Natl. Acad. Sci., 2012, 109(17), 6721-6726. doi: 10.1073/pnas.1110460109 PMID: 22493235
  25. Zappia, K.J.; O’Hara, C.L.; Moehring, F.; Kwan, K.Y.; Stucky, C.L. Sensory neuron-specific deletion of TRPA1 results in mechanical cutaneous sensory deficits. eNeuro, 2017, 4(1), ENEURO. 0069-16.2017. doi: 10.1523/ENEURO.0069-16.2017 PMID: 28303259
  26. Bonnie, R.J. Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use; Phillips, J.K.; Ford, M.A.; Bonnie, R.J., Eds.; National Academies Press (US): Washington (DC), 2017. doi: 10.17226/24781
  27. Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain, 2011, 152(3), S2-S15. doi: 10.1016/j.pain.2010.09.030 PMID: 20961685
  28. McGreevy, K.; Bottros, M.M.; Raja, S.N. Preventing chronic pain following acute pain: Risk factors, preventive strategies, and their efficacy. Eur. J. Pain Suppl., 2011, 5(S2), 365-376. doi: 10.1016/j.eujps.2011.08.013 PMID: 22102847
  29. Lewin, G.R.; Mendell, L.M. Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat. J. Neurophysiol., 1994, 71(3), 941-949. doi: 10.1152/jn.1994.71.3.941 PMID: 8201434
  30. Andreev, N.Y.; Dimitrieva, N.; Koltzenburg, M.; McMahon, S.B. Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain, 1995, 63(1), 109-115. doi: 10.1016/0304-3959(95)00024-M PMID: 8577480
  31. Koltzenburg, M. The changing sensitivity in the life of the nociceptor. Pain, 1999, 82(Suppl. 1), S93-S102. doi: 10.1016/S0304-3959(99)00142-6 PMID: 10491977
  32. Michael, G.J.; Priestley, J.V. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J. Neurosci., 1999, 19(5), 1844-1854. doi: 10.1523/JNEUROSCI.19-05-01844.1999 PMID: 10024368
  33. Woolf, C.J.; Costigan, M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc. Natl. Acad. Sci., 1999, 96(14), 7723-7730. doi: 10.1073/pnas.96.14.7723 PMID: 10393888
  34. Lindsay, R.M.; Harmar, A.J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature, 1989, 337(6205), 362-364. doi: 10.1038/337362a0 PMID: 2911387
  35. McMahon, S.B. NGF as a mediator of inflammatory pain. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1996, 351(1338), 431-440. doi: 10.1098/rstb.1996.0039 PMID: 8730782
  36. Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002, 36(1), 57-68. doi: 10.1016/S0896-6273(02)00908-X PMID: 12367506
  37. Zhang, X.; Huang, J.; McNaughton, P.A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J., 2005, 24(24), 4211-4223. doi: 10.1038/sj.emboj.7600893 PMID: 16319926
  38. Xue, Q.; Jong, B.; Chen, T.; Schumacher, M.A. Transcription of rat TRPV1 utilizes a dual promoter system that is positively regulated by nerve growth factor. J. Neurochem., 2007, 101(1), 212-222. doi: 10.1111/j.1471-4159.2006.04363.x PMID: 17217411
  39. Chu, C.; Zavala, K.; Fahimi, A.; Lee, J.; Xue, Q.; Eilers, H.; Schumacher, M.A. Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons. Mol. Pain, 2011, 7, 1744-8069-7-44. doi: 10.1186/1744-8069-7-44 PMID: 21645329
  40. Bonnington, J.K.; McNaughton, P.A. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol., 2003, 551(2), 433-446. doi: 10.1113/jphysiol.2003.039990 PMID: 12815188
  41. Chuang, H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature, 2001, 411(6840), 957-962. doi: 10.1038/35082088 PMID: 11418861
  42. Rukwied, R.; Mayer, A.; Kluschina, O.; Obreja, O.; Schley, M.; Schmelz, M. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain, 2010, 148(3), 407-413. doi: 10.1016/j.pain.2009.11.022 PMID: 20022698
  43. Amann, R.; Schuligoi, R.; Herzeg, G.; Donnerer, J. Intraplantar injection of nerve growth factor into the rat hind paw: Local edema and effects on thermal nociceptive threshold. Pain, 1996, 64(2), 323-329. doi: 10.1016/0304-3959(95)00120-4 PMID: 8740610
  44. Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824. doi: 10.1038/39807 PMID: 9349813
  45. Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 2000, 288(5464), 306-313. doi: 10.1126/science.288.5464.306 PMID: 10764638
  46. Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; Hughes, S.A.; Rance, K.; Grau, E.; Harper, A.J.; Pugh, P.L.; Rogers, D.C.; Bingham, S.; Randall, A.; Sheardown, S.A. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 2000, 405(6783), 183-187. doi: 10.1038/35012076 PMID: 10821274
  47. Schumacher, M.A. Transient receptor potential channels in pain and inflammation: Therapeutic opportunities. Pain Pract., 2010, 10(3), 185-200. doi: 10.1111/j.1533-2500.2010.00358.x PMID: 20230457
  48. Blackshaw, L.A. Transient receptor potential cation channels in visceral sensory pathways. Br. J. Pharmacol., 2014, 171(10), 2528-2536. doi: 10.1111/bph.12641 PMID: 24641218
  49. Lawton, S.K.; Xu, F.; Tran, A.; Wong, E.; Prakash, A.; Schumacher, M.; Hellman, J.; Wilhelmsen, K. N -arachidonoyl dopamine modulates acute systemic inflammation via nonhematopoietic TRPV1. J. Immunol., 2017, 199(4), 1465-1475. doi: 10.4049/jimmunol.1602151 PMID: 28701511
  50. Xue, Q.; Yu, Y.; Trilk, S.L.; Jong, B.E.; Schumacher, M.A. The genomic organization of the gene encoding the vanilloid receptor: Evidence for multiple splice variants. Genomics, 2001, 76(1-3), 14-20. doi: 10.1006/geno.2001.6582 PMID: 11549313
  51. Supp, D.M.; Witte, D.P.; Branford, W.W.; Smith, E.P.; Potter, S.S. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev. Biol., 1996, 176(2), 284-299. doi: 10.1006/dbio.1996.0134 PMID: 8660867
  52. Suske, G. The Sp-family of transcription factors. Gene, 1999, 238(2), 291-300. doi: 10.1016/S0378-1119(99)00357-1
  53. Bouwman, P.; Philipsen, S. Regulation of the activity of Sp1-related transcription factors. Mol. Cell. Endocrinol., 2002, 195(1-2), 27-38. doi: 10.1016/S0303-7207(02)00221-6 PMID: 12354670
  54. Li, L.; He, S.; Sun, J.M.; Davie, J.R. Gene regulation by Sp1 and Sp3. Biochem. Cell Biol., 2004, 82(4), 460-471. doi: 10.1139/o04-045 PMID: 15284899
  55. Saia, G.; Lalonde, J.; Sun, X.; Ramos, B.; Gill, G. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling. J. Neurochem., 2014, 129(4), 743-752. doi: 10.1111/jnc.12657 PMID: 24475768
  56. Priya, A.; Johar, K.; Nair, B.; Wong-Riley, M.T.T. Specificity protein 4 (Sp4) regulates the transcription of AMPA receptor subunit GluA2 (Gria2). Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(6), 1196-1206. doi: 10.1016/j.bbamcr.2014.02.008 PMID: 24576410
  57. Sun, X.; Pinacho, R.; Saia, G.; Punko, D.; Meana, J.J.; Ramos, B.; Gill, G. Transcription factor Sp4 regulates expression of nervous wreck 2 to control NMDAR1 levels and dendrite patterning. Dev. Neurobiol., 2015, 75(1), 93-108. doi: 10.1002/dneu.22212 PMID: 25045015
  58. Nair, B.; Johar, K.; Priya, A.; Wong-Riley, M.T.T. Specificity protein 4 (Sp4) transcriptionally regulates inhibitory GABAergic receptors in neurons. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(1), 1-9. doi: 10.1016/j.bbamcr.2015.10.005 PMID: 26469128
  59. Johar, K.; Priya, A.; Dhar, S.; Liu, Q.; Wong-Riley, M.T.T. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons. J. Neurochem., 2013, 127(4), 496-508. doi: 10.1111/jnc.12433 PMID: 24032355
  60. Johar, K.; Priya, A.; Wong-Riley, M.T.T. Regulation of Na +/K + -ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons. Eur. J. Neurosci., 2014, 39(4), 566-578. doi: 10.1111/ejn.12415 PMID: 24219545
  61. Zhou, X.; Tang, W.; Greenwood, T.A.; Guo, S.; He, L.; Geyer, M.A.; Kelsoe, J.R. Transcription factor SP4 is a susceptibility gene for bipolar disorder. PLoS One, 2009, 4(4), e5196. doi: 10.1371/journal.pone.0005196 PMID: 19401786
  62. Shi, J.; Potash, J.B.; Knowles, J.A.; Weissman, M.M.; Coryell, W.; Scheftner, W.A.; Lawson, W.B.; DePaulo, J.R., Jr; Gejman, P.V.; Sanders, A.R.; Johnson, J.K.; Adams, P.; Chaudhury, S.; Jancic, D.; Evgrafov, O.; Zvinyatskovskiy, A.; Ertman, N.; Gladis, M.; Neimanas, K.; Goodell, M.; Hale, N.; Ney, N.; Verma, R.; Mirel, D.; Holmans, P.; Levinson, D.F. Genome-wide association study of recurrent early-onset major depressive disorder. Mol. Psychiatry, 2011, 16(2), 193-201. doi: 10.1038/mp.2009.124 PMID: 20125088
  63. Pinacho, R.; Villalmanzo, N.; Lalonde, J.; Haro, J.M.; Meana, J.J.; Gill, G.; Ramos, B. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord., 2011, 13(5-6), 474-485. doi: 10.1111/j.1399-5618.2011.00941.x PMID: 22017217
  64. Chang, W.C.; Chen, B.K. Transcription factor Sp1 functions as an anchor protein in gene transcription of human 12(S)-lipoxygenase. Biochem. Biophys. Res. Commun., 2005, 338(1), 117-121. doi: 10.1016/j.bbrc.2005.08.014 PMID: 16122700
  65. Zhao, C.; He, X.; Tian, C.; Meng, A. Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos. Biochem. Biophys. Res. Commun., 2006, 342(1), 214-220. doi: 10.1016/j.bbrc.2006.01.134 PMID: 16472769
  66. Zhou, X.; Qyang, Y.; Kelsoe, J.R.; Masliah, E.; Geyer, M.A. Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav., 2007, 6(3), 269-276. doi: 10.1111/j.1601-183X.2006.00256.x PMID: 16899055
  67. Ramos, B.; Gaudillière, B.; Bonni, A.; Gill, G. Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9882-9887. doi: 10.1073/pnas.0701946104 PMID: 17535924
  68. Ramos, B.; Valín, A.; Sun, X.; Gill, G. Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol. Cell. Neurosci., 2009, 42(2), 152-159. doi: 10.1016/j.mcn.2009.06.008 PMID: 19555762
  69. Lerner, L.E.; Gribanova, Y.E.; Whitaker, L.; Knox, B.E.; Farber, D.B. The rod cGMP-phosphodiesterase beta-subunit promoter is a specific target for Sp4 and is not activated by other Sp proteins or CRX. J. Biol. Chem., 2002, 277(29), 25877-25883. doi: 10.1074/jbc.M201407200 PMID: 11943774
  70. Sheehan, K.; Lee, J.; Chong, J.; Zavala, K.; Sharma, M.; Philipsen, S.; Maruyama, T.; Xu, Z.; Guan, Z.; Eilers, H.; Kawamata, T.; Schumacher, M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One, 2019, 14(2), e0211349. doi: 10.1371/journal.pone.0211349 PMID: 30811405
  71. Merchant, J.L.; Du, M.; Todisco, A. Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem. Biophys. Res. Commun., 1999, 254(2), 454-461. doi: 10.1006/bbrc.1998.9964 PMID: 9918860
  72. Chu, S.; Ferro, T.J. Sp1: Regulation of gene expression by phosphorylation. Gene, 2005, 348, 1-11. doi: 10.1016/j.gene.2005.01.013 PMID: 15777659
  73. Lennertz, R.C.; Kossyreva, E.A.; Smith, A.K.; Stucky, C.L. TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One, 2012, 7(8), e43597. doi: 10.1371/journal.pone.0043597 PMID: 22927999
  74. Brierley, S.M.; Castro, J.; Harrington, A.M.; Hughes, P.A.; Page, A.J.; Rychkov, G.Y.; Blackshaw, L.A. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J. Physiol., 2011, 589(14), 3575-3593. doi: 10.1113/jphysiol.2011.206789 PMID: 21558163
  75. Petrus, M.; Peier, A.M.; Bandell, M.; Hwang, S.W.; Huynh, T.; Olney, N.; Jegla, T.; Patapoutian, A. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain, 2007, 3, 1744-8069-3-40. doi: 10.1186/1744-8069-3-40 PMID: 18086313
  76. Jerić M.; Vukojević K.; Vuica, A.; Filipović N. Diabetes mellitus influences the expression of NPY and VEGF in neurons of rat trigeminal ganglion. Neuropeptides, 2017, 62, 57-64. doi: 10.1016/j.npep.2016.11.001 PMID: 27836326
  77. De Logu, F.; De Prá, S.D.T.; de David Antoniazzi, C.T.; Kudsi, S.Q.; Ferro, P.R.; Landini, L.; Rigo, F.K.; de Bem Silveira, G.; Silveira, P.C.L.; Oliveira, S.M.; Marini, M.; Mattei, G.; Ferreira, J.; Geppetti, P.; Nassini, R.; Trevisan, G. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I. Brain Behav. Immun., 2020, 88, 535-546. doi: 10.1016/j.bbi.2020.04.037 PMID: 32315759
  78. Liu, X.J.; Liu, T.; Chen, G.; Wang, B.; Yu, X.L.; Yin, C.; Ji, R.R. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation. Sci. Rep., 2016, 6(1), 28188. doi: 10.1038/srep28188 PMID: 27312666
  79. Dansereau, M.A.; Midavaine, É.; Bégin-Lavallée, V.; Belkouch, M.; Beaudet, N.; Longpré, J.M.; Mélik-Parsadaniantz, S.; Sarret, P. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J. Neuroinflammation, 2021, 18(1), 79. doi: 10.1186/s12974-021-02125-y PMID: 33757529
  80. Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354(6312), 572-577. doi: 10.1126/science.aaf8924 PMID: 27811267
  81. Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A. Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; Mortazavi, A. A survey of best practices for RNA-seq data analysis. Genome Biol., 2016, 17(1), 13. doi: 10.1186/s13059-016-0881-8 PMID: 26813401
  82. Kukurba, K.R.; Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. Protoc., 2015, 2015(11), pdb.top084970. doi: 10.1101/pdb.top084970 PMID: 25870306
  83. Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med., 1990, 9(7), 811-818. doi: 10.1002/sim.4780090710 PMID: 2218183
  84. Kober, K.M.; Schumacher, M.; Conley, Y.P.; Topp, K.; Mazor, M.; Hammer, M.J.; Paul, S.M.; Levine, J.D.; Miaskowski, C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol. Pain, 2019, 15. doi: 10.1177/1744806919878088 PMID: 31486345
  85. Dowell, D.; Haegerich, T.M.; Chou, R. CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA, 2016, 315(15), 1624-1645. doi: 10.1001/jama.2016.1464 PMID: 26977696
  86. Els, C.; Jackson, T.D.; Hagtvedt, R.; Kunyk, D.; Sonnenberg, B.; Lappi, V.G.; Straube, S. High-dose opioids for chronic non-cancer pain: An overview of Cochrane Reviews. Cochrane Libr., 2017, 2018(1), CD012299. doi: 10.1002/14651858.CD012299.pub2 PMID: 29084358
  87. Zavala, K.; Lee, J.; Chong, J.; Sharma, M.; Eilers, H.; Schumacher, M.A. The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons. Neurosci. Lett., 2014, 578, 211-216. doi: 10.1016/j.neulet.2014.01.021 PMID: 24468003
  88. Gómez, K.; Sandoval, A.; Barragán-Iglesias, P.; Granados-Soto, V.; Delgado-Lezama, R.; Felix, R.; González-Ramírez, R. Transcription factor Sp1 regulates the expression of calcium channel α2δ-1 subunit in neuropathic pain. Neuroscience, 2019, 412, 207-215. doi: 10.1016/j.neuroscience.2019.06.011 PMID: 31220545

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024