Development and Challenges of Cyclic Peptides for Immunomodulation
- Authors: Jiang X.1, Gao L.1, Li Z.1, Shen Y.1, Lin Z.1
-
Affiliations:
- School of Pharmacy and Bioengineering, Chongqing University of Technology
- Issue: Vol 25, No 5 (2024)
- Pages: 353-375
- Section: Life Sciences
- URL: https://rjsocmed.com/1389-2037/article/view/645617
- DOI: https://doi.org/10.2174/0113892037272528231030074158
- ID: 645617
Cite item
Full Text
Abstract
Cyclic peptides are polypeptide chains formed by cyclic sequences of amide bonds between protein-derived or non-protein-derived amino acids. Compared to linear peptides, cyclic peptides offer several unique advantages, such as increased stability, stronger affinity, improved selectivity, and reduced toxicity. Cyclic peptide has been proved to have a promising application prospect in the medical field. In addition, this paper mainly describes that cyclic peptides play an important role in anti-cancer, anti-inflammatory, anti-virus, treatment of multiple sclerosis and membranous nephropathy through immunomodulation. In order to know more useful information about cyclic peptides in clinical research and drug application, this paper also summarizes cyclic peptides currently in the clinical trial stage and cyclic peptide drugs approved for marketing in the recent five years. Cyclic peptides have many advantages and great potential in treating various diseases, but there are still many challenges to be solved in the development process of cyclic peptides. about cyclic peptides in clinical research and drug application, this paper also summarizes cyclic peptides currently in the clinical trial stage and cyclic peptide drugs approved for marketing in the recent five years. Cyclic peptides have many advantages and great potential in treating various diseases, but there are still many challenges to be solved in the development process of cyclic peptides.
About the authors
Xianqiong Jiang
School of Pharmacy and Bioengineering, Chongqing University of Technology
Email: info@benthamscience.net
Li Gao
School of Pharmacy and Bioengineering, Chongqing University of Technology
Email: info@benthamscience.net
Zhilong Li
School of Pharmacy and Bioengineering, Chongqing University of Technology
Email: info@benthamscience.net
Yan Shen
School of Pharmacy and Bioengineering, Chongqing University of Technology
Email: info@benthamscience.net
Zhi-Hua Lin
School of Pharmacy and Bioengineering, Chongqing University of Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325. doi: 10.1038/s41573-020-00135-8 PMID: 33536635
- Abdalla, M.; McGaw, L. Natural cyclic peptides as an attractive modality for therapeutics: A mini review. Molecules, 2018, 23(8), 2080-2198. doi: 10.3390/molecules23082080 PMID: 30127265
- Bellavita, R.; Maione, A.; Merlino, F.; Siciliano, A.; Dardano, P.; De Stefano, L.; Galdiero, S.; Galdiero, E.; Grieco, P.; Falanga, A. Antifungal and antibiofilm activity of cyclic temporin L peptide analogues against albicans and non-albicans candida species. Pharmaceutics, 2022, 14(2), 454-478. doi: 10.3390/pharmaceutics14020454 PMID: 35214187
- (a) Bajraktari-Sylejmani, G.; Von Linde, T.; Burhenne, J.; Haefeli, W.E.; Sauter, M.; Weiss, J. Evaluation of pept1 (slC15A1) substrate characteristics of therapeutic cyclic peptides. Pharmaceutics, 2022, 14(8), 1610-1620. doi: 10.3390/pharmaceutics14081610 PMID: 36015235; (b) Horton, D.A.; Bourne, G.T.; Smythe, M.L. Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput. Aided Mol. Des., 2002, 16(5/6), 415-431. doi: 10.1023/A:1020863921840 PMID: 12489688; (c) Furman, O.; Zaporozhets, A.; Tobi, D.; Bazylevich, A.; Firer, M.A.; Patsenker, L.; Gellerman, G.; Lubin, B.C.R. Novel cyclic peptides for targeting EGFR and EGRvIII mutation for drug delivery. Pharmaceutics, 2022, 14(7), 1505-1522. doi: 10.3390/pharmaceutics14071505 PMID: 35890400; (d) Gallo, M.; Defaus, S.; Andreu, D. Disrupting GPCR complexes with smart drug-like peptides. Pharmaceutics, 2022, 14(1), 161-177. doi: 10.3390/pharmaceutics14010161 PMID: 35057055
- Yang, L.; Tan, R.; Wang, Q.; Huang, W.; Yin, Y. Antifungal cyclopeptides from halobacillus litoralis ys3106 of marine origin. Tetrahedron Lett., 2002, 43(37), 6545-6548. doi: 10.1016/S0040-4039(02)01458-2
- Jiang, L.; Huang, P.; Ren, B.; Song, Z.; Zhu, G.; He, W.; Zhang, J.; Oyeleye, A.; Dai, H.; Zhang, L.; Liu, X. Antibacterial polyene-polyol macrolides and cyclic peptides from the marine-derived Streptomyces sp. MS110128. Appl. Microbiol. Biotechnol., 2021, 105(12), 4975-4986. doi: 10.1007/s00253-021-11226-w PMID: 34146138
- Karim, M.R.U.; In, Y.; Zhou, T.; Harunari, E.; Oku, N.; Igarashi, Y. Nyuzenamides A and B: Bicyclic peptides with antifungal and cytotoxic activity from a marine-derived streptomyces sp. Org. Lett., 2021, 23(6), 2109-2113. doi: 10.1021/acs.orglett.1c00210 PMID: 33661652
- Muratspahić, E.; Tomaević, N.; Nasrollahi-Shirazi, S.; Gattringer, J.; Emser, F.S.; Freissmuth, M.; Gruber, C.W. Plant-Derived cyclotides modulate κ-opioid receptor signaling. J. Nat. Prod., 2021, 84(8), 2238-2248. doi: 10.1021/acs.jnatprod.1c00301 PMID: 34308635
- (a) Du, Q.; Huang, Y.H.; Bajpai, A.; Frosig- Jorgensen, M.; Zhao, G.; Craik, D.J. Evaluation of the in vivo Aphrodisiac Activity of a Cyclotide Extract from Hybanthus enneaspermus. J. Nat. Prod., 2020, 83(12), 3736-3743. doi: 10.1021/acs.jnatprod.0c01045 PMID: 33296204; (b) Fahradpour, M.; Keov, P.; Tognola, C.; Perez-Santamarina, E.; McCormick, P.J.; Ghassempour, A.; Gruber, C.W. Cyclotides isolated from an ipecac root extract antagonize the corticotropin releasing factor type 1 receptor. Front. Pharmacol., 2017, 8, 616-629. doi: 10.3389/fphar.2017.00616 PMID: 29033832; (c) Anastasiou, E.; Lorentz, K.O.; Stein, G.J.; Mitchell, P.D. Prehistoric schistosomiasis parasite found in the middle east. Lancet Infect. Dis., 2014, 14(7), 553-554. doi: 10.1016/S1473-3099(14)70794-7 PMID: 24953264
- Abdalla, M.A. Three new cyclotetrapeptides isolated from streptomyces sp. 447. Nat. Prod. Res., 2017, 31(9), 1014-1021. doi: 10.1080/14786419.2016.1263849 PMID: 27936924
- Wyche, T.P.; Ruzzini, A.C.; Schwab, L.; Currie, C.R.; Clardy, J.; Tryptorubin, A. Tryptorubin A: A polycyclic peptide from a fungus-derived streptomycete. J. Am. Chem. Soc., 2017, 139(37), 12899-12902. doi: 10.1021/jacs.7b06176 PMID: 28853867
- Liang, X.; Nong, X.H.; Huang, Z.H.; Qi, S.H. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus simplicillium obclavatum EIODSF 020. J. Agric. Food Chem., 2017, 65(25), 5114-5121. doi: 10.1021/acs.jafc.7b01238 PMID: 28578573
- Zhou, T.; Katsuragawa, M.; Xing, T.; Fukaya, K.; Okuda, T.; Tokiwa, T.; Tashiro, E.; Imoto, M.; Oku, N.; Urabe, D.; Igarashi, Y. Cyclopeptides from the mushroom pathogen fungus cladobotryum varium. J. Nat. Prod., 2021, 84(2), 327-338. doi: 10.1021/acs.jnatprod.0c00980 PMID: 33439652
- Takashina, K.; Katsuyama, A.; Kaguchi, R.; Yamamoto, K.; Sato, T.; Takahashi, S.; Horiuchi, M.; Yokota, S.; Ichikawa, S. Solid-phase total synthesis of plusbacin A3. Org. Lett., 2022, 24(11), 2253-2257. doi: 10.1021/acs.orglett.2c00667 PMID: 35293208
- Ullrich, S.; George, J.; Coram, A.E.; Morewood, R.; Nitsche, C. Biocompatible and selective generation of bicyclic peptides. Angew. Chem. Int. Ed., 2022, 61(43), e202208400. doi: 10.1002/anie.202208400 PMID: 35852030
- Marciniak, A.; Pacini, L.; Papini, A.M.; Brasuń, J. Bicyclopeptides: a new class of ligands for Cu( II ) ions. Dalton Trans., 2022, 51(35), 13368-13375. doi: 10.1039/D2DT01497A PMID: 35984441
- Yates, N.D.J.; Warnes, M.E.; Breetveld, R.; Spicer, C.D.; Signoret, N.; Fascione, M. Preparation and application of an inexpensive α-formylglycine building block compatible with fmoc solid-phase peptide synthesis. Org. Lett., 2023, 25(12), 2001-2005. doi: 10.1021/acs.orglett.2c04059 PMID: 36662590
- Nagaya, A.; Murase, S.; Mimori, Y.; Wakui, K.; Yoshino, M.; Matsuda, A.; Kobayashi, Y.; Kurasaki, H.; Cary, D.R.; Masuya, K.; Handa, M.; Nishizawa, N. Extended solution-phase peptide synthesis strategy using isostearyl-mixed anhydride coupling and a new C-terminal silyl ester-protecting group for N -methylated cyclic peptide production. Org. Process Res. Dev., 2021, 25(9), 2029-2038. doi: 10.1021/acs.oprd.1c00078
- Li, H.; Li, J.; Chao, J.; Zhang, Z.; Qin, C. Total liquid-phase sythesis, head-to-tail cyclization and synergistic self-cleavage of peptide on small-molecular supports. ChemRxiv, 2021, 2021
- Hossain, F.; Nishat, S.; Andreana, P.R. Synthesis of malformin-A 1, C, a glycan, and an aglycon analog: Potential scaffolds for targeted cancer therapy. Pept. Sci., 2022, 114(4), e24260. doi: 10.1002/pep2.24260
- Kanwal, I.; Mushtaq, F.; Ali, H.; Tufail, P.; Jahan, H.; Shaheen, F. First report on the synthesis and structural studies of trans-Phakellistatin 18: A rotamer of marine natural product phakellistatin 18. Nat. Prod. Res., 2023, 37(9), 1470-1479. doi: 10.1080/14786419.2021.2023141 PMID: 34986732
- Yayat, H.N.A.; Maharani, R.; Hidayat, A.T.; Wiani, I.; Zainuddin, A.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total synthesis of a reversed cyclopurpuracin using a combination of solid and solution phase methods. J. Heterocycl. Chem., 2022, 59(11), 1963-1970. doi: 10.1002/jhet.4532
- Napitupulu, O.I.; Sumiarsa, D.; Subroto, T.; Nurlelasari; Harneti, D.; Supratman, U.; Maharani, R. Synthesis of cyclo-PLAI using a combination of solid- and solution-phase methods. Synth. Commun., 2019, 49(2), 308-315. doi: 10.1080/00397911.2018.1554148
- Wills, R.; Adebomi, V.; Raj, M. Site-selective peptide macrocyclization. ChemBioChem, 2021, 22(1), 52-62. doi: 10.1002/cbic.202000398 PMID: 32794268
- Raj, M.; Wills, R.D.; Adebomi, V.T. Peptide cyclization at high concentration. Synlett, 2020, 31(16), 1537-1542. doi: 10.1055/s-0040-1707165
- Wills, R.; Adebomi, V.; Spancake, C.; Cohen, R.D.; Raj, M. Synthesis of L-cyclic tetrapeptides by backbone amide activation CyClick strategy. Tetrahedron, 2022, 126, 133071-133076. doi: 10.1016/j.tet.2022.133071
- Habibi, Y.; Weerasinghe, N.W.; Uggowitzer, K.A.; Thibodeaux, C.J. Partially modified peptide intermediates in lanthipeptide biosynthesis alter the structure and dynamics of a lanthipeptide synthetase. J. Am. Chem. Soc., 2022, 144(23), 10230-10240. doi: 10.1021/jacs.2c00727 PMID: 35647706
- (a) Rice, A.J.; Pelton, J.M.; Kramer, N.J.; Catlin, D.S.; Nair, S.K.; Pogorelov, T.V.; Mitchell, D.A.; Bowers, A.A. Enzymatic pyridine aromatization during thiopeptide biosynthesis. J. Am. Chem. Soc., 2022, 144(46), 21116-21124. doi: 10.1021/jacs.2c07377 PMID: 36351243; (b) Nguyen, D.T.; Le, T.T.; Rice, A.J.; Hudson, G.A.; Van der Donk, W.A.; Mitchell, D.A. Accessing diverse pyridine-based macrocyclic peptides by a two-site recognition pathway. J. Am. Chem. Soc., 2022, 144(25), 11263-11269. doi: 10.1021/jacs.2c02824 PMID: 35713415
- Kersten, R.D.; Mydy, L.S.; Fallon, T.R.; de Waal, F.; Shafiq, K.; Wotring, J.W.; Sexton, J.Z.; Weng, J.K. Gene-guided discovery and ribosomal biosynthesis of moroidin peptides. J. Am. Chem. Soc., 2022, 144(17), 7686-7692. doi: 10.1021/jacs.2c00014 PMID: 35438481
- Sugiyama, R.; Suarez, A.F.L.; Morishita, Y.; Nguyen, T.Q.N.; Tooh, Y.W.; Roslan, M.N.H.B.; Lo Choy, J.; Su, Q.; Goh, W.Y.; Gunawan, G.A.; Wong, F.T.; Morinaka, B.I. The biosynthetic landscape of triceptides reveals radical sam enzymes that catalyze cyclophane formation on tyr- and his-containing motifs. J. Am. Chem. Soc., 2022, 144(26), 11580-11593. doi: 10.1021/jacs.2c00521 PMID: 35729768
- Luo, J.; Liu, S.; Lu, H.; Chen, Q.; Shi, Y. A comprehensive review of microorganism-derived cyclic peptides: Bioactive functions and food safety applications. Compr. Rev. Food Sci. Food Saf., 2022, 21(6), 5272-5290. doi: 10.1111/1541-4337.13038 PMID: 36161470
- Kazmaier, U.; Junk, L. Recent developments on the synthesis and bioactivity of ilamycins/rufomycins and cyclomarins, marine cyclopeptides that demonstrate anti-malaria and anti-tuberculosis activity. Mar. Drugs, 2021, 19(8), 446-472. doi: 10.3390/md19080446 PMID: 34436284
- Kazemi Shariat Panahi, H.; Mohammadipanah, F.; Rahmati, F.; Tarlani, A.; Hamedi, J. In situ recovery of persipeptides from streptomyces zagrosensis fermentation broth by enhanced adsorption. Iran. J. Biotechnol., 2020, 18(2), e2231-e2240. PMID: 33542931
- Helaly, S.E.; Hamad, Z.; El Sayed, M.A.; Abdel-Motaal, F.F.; Nassar, M.I.; Ito, S.; Stadler, M. Bacillus methylotrophicus ASWU-C2, a strain inhabiting hot desert soil, a new source for antibacterial bacillopyrone, pyrophen, and cyclopeptides. Z. Naturforsch. C J. Biosci., 2018, 74(1-2), 55-59. doi: 10.1515/znc-2018-0093 PMID: 30864389
- (a) Zhao, L.; Wei, L.; Li, X.; Chen, H.; Liu, J.; Wang, X.; Guan, F. Design and synthesis of novel cyclopeptide p53-MDM2 inhibitors with isoindolinone as antitumor agent. J. Mol. Struct., 2023, 1275, 134604-134610. doi: 10.1016/j.molstruc.2022.134604; (b) Xiao, S.; Wang, Z.; Zhang, H.; Zhao, L.; Chang, Q.; Zhang, X.; Yan, R.; Wu, X.; Jin, Y. Photoinduced synthesis of methylated marine cyclopeptide galaxamide analogs with isoindolinone as anticancer agents. Mar. Drugs, 2022, 20(6), 379-399. doi: 10.3390/md20060379 PMID: 35736182; (c) Jiang, S.; Zhao, L.; Wu, J.; Bao, Y.; Wang, Z.; Jin, Y. Photo-induced synthesis, structure and in vitro bioactivity of a natural cyclic peptide Yunnanin A analog. RSC Advances, 2020, 10(1), 210-214. doi: 10.1039/C9RA09163G PMID: 35492554; (d) Zhang, H.; Wu, J.; Wang, J.; Xiao, S.; Zhao, L.; Yan, R.; Wu, X.; Wang, Z.; Fan, L.; Jin, Y. Novel Isoindolinone-based analogs of the natural cyclic peptide fenestin A: Synthesis and antitumor activity. ACS Med. Chem. Lett., 2022, 13(7), 1118-1124. doi: 10.1021/acsmedchemlett.2c00149 PMID: 35859879; (e) Bao, Y.; Zhao, L.; Wu, J.; Jiang, S.; Wang, Z.; Jin, Y. Photo-induced synthesis of Axinastatin 3 analogs, the secondary structures and their in vitro antitumor activities. Bioorg. Med. Chem. Lett., 2019, 29(22), 126730-126734. doi: 10.1016/j.bmcl.2019.126730 PMID: 31607609
- (a) Zhang, J.N.; Xia, Y.X.; Zhang, H.J. Natural cyclopeptides as anticancer agents in the last 20 years. Int. J. Mol. Sci., 2021, 22(8), 3973-4030. doi: 10.3390/ijms22083973 PMID: 33921480; (b) Zhao, K.; Xing, R.; Yan, X. Cyclic dipeptides: Biological activities and self-assembled materials. Pept. Sci., 2021, 113(2), e24202-e24214. doi: 10.1002/pep2.24202; (c) Jwad, R.; Weissberger, D.; Hunter, L. Strategies for fine-tuning the conformations of cyclic peptides. Chem. Rev., 2020, 120(17), 9743-9789. doi: 10.1021/acs.chemrev.0c00013 PMID: 32786420; (d) Chow, H.Y.; Zhang, Y.; Matheson, E.; Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev., 2019, 119(17), 9971-10001. doi: 10.1021/acs.chemrev.8b00657 PMID: 31318534; (e) Malde, A.K.; Hill, T.A.; Iyer, A.; Fairlie, D.P. Crystal structures of protein-bound cyclic peptides. Chem. Rev., 2019, 119(17), 9861-9914. doi: 10.1021/acs.chemrev.8b00807 PMID: 31046237; (f) Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally absorbed cyclic peptides. Chem. Rev., 2017, 117(12), 8094-8128. doi: 10.1021/acs.chemrev.6b00838 PMID: 28541045; (g) Dougherty, P.G.; Sahni, A.; Pei, D. Understanding cell penetration of cyclic peptides. Chem. Rev., 2019, 119(17), 10241-10287. doi: 10.1021/acs.chemrev.9b00008 PMID: 31083977; (h) Zorzi, A.; Deyle, K.; Heinis, C. Cyclic peptide therapeutics: Past, present and future. Curr. Opin. Chem. Biol., 2017, 38, 24-29. doi: 10.1016/j.cbpa.2017.02.006 PMID: 28249193
- Räder, A.F.B.; Reichart, F.; Weinmüller, M.; Kessler, H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg. Med. Chem., 2018, 26(10), 2766-2773. doi: 10.1016/j.bmc.2017.08.031 PMID: 28886995
- Iskandarsyah; Tejo, B.A.; Tambunan, U.S.F.; Verkhivker, G.; Siahaan, T.J. Structural modifications of ICAM-1 cyclic peptides to improve the activity to inhibit heterotypic adhesion of T cells. Chem. Biol. Drug Des., 2008, 72(1), 27-33. doi: 10.1111/j.1747-0285.2008.00676.x PMID: 18554252
- Tang, J.; He, Y.; Chen, H.; Sheng, W.; Wang, H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C(sp3)H activation. Chem. Sci., 2017, 8(6), 4565-4570. doi: 10.1039/C6SC05530C PMID: 28936334
- Ulapane, K.R.; Kopec, B.M.; Siahaan, T.J. Improving in vivo brain delivery of monoclonal antibody using novel cyclic peptides. Pharmaceutics, 2019, 11(11), 568-582. doi: 10.3390/pharmaceutics11110568 PMID: 31683745
- Kumar, S.; Mandal, D.; El-Mowafi, S.A.; Mozaffari, S.; Tiwari, R.K.; Parang, K. Click-free synthesis of a multivalent tricyclic peptide as a molecular transporter. Pharmaceutics, 2020, 12(9), 842-858. doi: 10.3390/pharmaceutics12090842 PMID: 32899170
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
- Wang, H.M.; Seo, C.D.; Lee, K.J.; Park, J.H.; Lim, H.S. Evaluation of the cell permeability of bicyclic peptoids and bicyclic peptide-peptoid hybrids. Bioorg. Chem., 2022, 127, 105976-105983. doi: 10.1016/j.bioorg.2022.105976 PMID: 35777233
- Riniker, S.; Zurich, E. Toward the elucidation of the mechanism for passive membrane permeability of cyclic peptides. Future Med. Chem., 2019, 11(7), 637-639. doi: 10.4155/fmc-2018-0429 PMID: 30920310
- Linker, S.M.; Schellhaas, C.; Ries, B.; Roth, H.J.; Fouché, M.; Rodde, S.; Riniker, S. Polar/apolar interfaces modulate the conformational behavior of cyclic peptides with impact on their passive membrane permeability. RSC Advances, 2022, 12(10), 5782-5796. doi: 10.1039/D1RA09025A PMID: 35424539
- Ono, T.; Tabata, K.V.; Goto, Y.; Saito, Y.; Suga, H.; Noji, H.; Morimoto, J.; Sando, S. Label-free quantification of passive membrane permeability of cyclic peptides across lipid bilayers: Penetration speed of cyclosporin A across lipid bilayers. Chem. Sci., 2023, 14(2), 345-349. doi: 10.1039/D2SC05785A PMID: 36687349
- Peraro, L.; Kritzer, J.A. Emerging methods and design principles for cell-penetrant peptides. Angew. Chem. Int. Ed., 2018, 57(37), 11868-11881. doi: 10.1002/anie.201801361 PMID: 29740917
- Salim, H.; Pei, D. Assessing the cellular uptake, endosomal escape, and cytosolic entry efficiencies of cyclic peptides. Methods Mol. Biol., 2022, 2371(16), 301-316. doi: 10.1007/978-1-0716-1689-5_16 PMID: 34596855
- Levi, B.; Yacobovich, S.; Kirby, M.; Becker, M.; Agranyoni, O.; Redko, B.; Gellerman, G.; Pinhasov, A.; Koman, I.; Nesher, E. Anti-cancer effects of cyclic peptide ALOS4 in a human melanoma mouse model. Int. J. Mol. Sci., 2021, 22(17), 9579-9585. doi: 10.3390/ijms22179579 PMID: 34502483
- Ramadhani, D.; Maharani, R.; Gazzali, A.M.; Muchtaridi, M. Cyclic peptides for the treatment of cancers: A review. Molecules, 2022, 27(14), 4428. doi: 10.3390/molecules27144428 PMID: 35889301
- Pinto, M.E.F.; Najas, J.Z.G.; Magalhães, L.G.; Bobey, A.F.; Mendonça, J.N.; Lopes, N.P.; Leme, F.M.; Teixeira, S.P.; Trovó, M.; Andricopulo, A.D.; Koehbach, J.; Gruber, C.W.; Cilli, E.M.; Bolzani, V.S. Inhibition of breast cancer cell migration by cyclotides isolated from pombalia calceolaria. J. Nat. Prod., 2018, 81(5), 1203-1208. doi: 10.1021/acs.jnatprod.7b00969 PMID: 29757646
- Du, X.; Xiao, S.; Luo, Q.; Liu, X.; Liu, J. Laminaria japonica cyclic peptides exert anti-colorectal carcinoma effects through apoptosis induction in vitro and in vivo. J. Pept. Sci., 2022, 28(5), e3385-e3394. doi: 10.1002/psc.3385 PMID: 34935253
- Li, D.; Liao, X.; Zhong, S.; Zhao, B.; Xu, S. Synthesis of marine cyclopeptide galaxamide analogues as potential anticancer agents. Mar. Drugs, 2022, 20(3), 158-169. doi: 10.3390/md20030158 PMID: 35323457
- Suresh, K.; Abhishek, T.; Varsha, T.; Sukhbir Lal, K.; Renu, S.; Manish, K.; Ajay, S.; Tarun, V.; Reshu, V.; Girish, K.; Abdulsalam, A. Synthesis, anticancer, and antimicrobial evaluation of integerrimide-A. BioMed Res. Int., 2022.
- S, R.; S, P.; Joann, M.D.; S, J. Evaluation of anti-inflammatory efficacy of RA-V: A natural cyclopeptide. Appl. Biochem. Biotechnol., 2020, 190(2), 732-744. doi: 10.1007/s12010-019-03124-9 PMID: 31482289
- Liu, J.; Wang, H.; Wang, G.; Luo, Q.; Cao, H.; Liu, X.; Zhang, Z.; Yang, P.; Liu, Z. Anti-inflammatory potency of Locusta migratoria manilensis cyclopeptides in mast cells and macrophages. RSC Advances, 2019, 9(54), 31296-31305. doi: 10.1039/C9RA06284J PMID: 35527955
- Liu, J.; Gu, B.; Yang, L.; Yang, F.; Lin, H. New anti-inflammatory cyclopeptides from a sponge-derived fungus aspergillus violaceofuscus. Front Chem., 2018, 6, 226-233. doi: 10.3389/fchem.2018.00226 PMID: 29963550
- (a) Alsaffar, R.M.; Ali, S.; Rashid, S.; Rashid, S.M.; Majid, S.; Rehman, M.U. Immunomodulation: An immune regulatory mechanism in carcinoma therapeutics. Int. Immunopharmacol., 2021, 99, 107984-107996. doi: 10.1016/j.intimp.2021.107984 PMID: 34303999; (b) Yang, Y.; Mao, H.; Chen, L.; Li, L. Targeting signal pathways triggered by cyclic peptides in cancer: Current trends and future challenges. Arch. Biochem. Biophys., 2021, 701, 108776-108790. doi: 10.1016/j.abb.2021.108776 PMID: 33515532
- Chia, L.Y.; Kumar, P.V.; Maki, M.A.A.; Ravichandran, G.; Thilagar, S. A Review: The antiviral activity of cyclic peptides. Int. J. Pept. Res. Ther., 2022, 29(1), 7-33. doi: 10.1007/s10989-022-10478-y PMID: 36471676
- Park, J.Y.; Yang, S.Y.; Kim, Y.C.; Kim, J.C.; Dang, Q.L.; Kim, J.J.; Kim, I.S. Antiviral peptide from Pseudomonas chlororaphis O6 against tobacco mosaic virus (TMV). J. Korean Soc. Appl. Biol. Chem., 2012, 55(1), 89-94. doi: 10.1007/s13765-012-0015-2
- Song, X.; Lu, L.; Passioura, T.; Suga, H. Macrocyclic peptide inhibitors for the proteinprotein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5. Org. Biomol. Chem., 2017, 15(24), 5155-5160. doi: 10.1039/C7OB00012J PMID: 28574091
- Lee, B.W.; Quy Ha, T.K.; Park, E.J.; Cho, H.M.; Ryu, B.; Doan, T.P.; Lee, H.J.; Oh, W.K. Melicopteline AE, unusual cyclopeptide alkaloids with antiviral activity against influenza a virus from melicope pteleifolia. J. Org. Chem., 2021, 86(2), 1437-1447. doi: 10.1021/acs.joc.0c02137 PMID: 33369410
- Johansen-Leete, J.; Ullrich, S.; Fry, S.E.; Frkic, R.; Bedding, M.J.; Aggarwal, A.; Ashhurst, A.S.; Ekanayake, K.B.; Mahawaththa, M.C.; Sasi, V.M.; Luedtke, S.; Ford, D.J.; ODonoghue, A.J.; Passioura, T.; Larance, M.; Otting, G.; Turville, S.; Jackson, C.J.; Nitsche, C.; Payne, R.J. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chem. Sci., 2022, 13(13), 3826-3836. doi: 10.1039/D1SC06750H PMID: 35432913
- Smith, C.A.; Hinman, C.L. Evidence that L1AD3, an apoptosis-inducing cyclic peptide, binds a leukemic T-cell membrane protein receptor. Arch. Biochem. Biophys., 2004, 432(1), 88-101. doi: 10.1016/j.abb.2004.08.010 PMID: 15519300
- Anderson, M.E.; Yakovleva, T.; Hu, Y.; Siahaan, T.J. Inhibition of ICAM-1/LFA-1-mediated heterotypic T-cell adhesion to epithelial cells: design of ICAM-1 cyclic peptides. Bioorg. Med. Chem. Lett., 2004, 14(6), 1399-1402. doi: 10.1016/j.bmcl.2003.09.100 PMID: 15006370
- Chittasupho, C.; Manikwar, P.; Krise, J.P.; Siahaan, T.J.; Berkland, C. cIBR effectively targets nanoparticles to LFA-1 on acute lymphoblastic T cells. Mol. Pharm., 2010, 7(1), 146-155. doi: 10.1021/mp900185u PMID: 19883077
- Gründemann, C.; Thell, K.; Lengen, K.; Garcia-Käufer, M.; Huang, Y.H.; Huber, R.; Craik, D.J.; Schabbauer, G.; Gruber, C.W. Cyclotides suppress human T-lymphocyte proliferation by an interleukin 2-dependent mechanism. PLoS One, 2013, 8(6), e68016-e68027. doi: 10.1371/journal.pone.0068016 PMID: 23840803
- Pinto, M.E.F.; Chan, L.Y.; Koehbach, J.; Devi, S.; Gründemann, C.; Gruber, C.W.; Gomes, M.; Bolzani, V.S.; Cilli, E.M.; Craik, D.J. Cyclotides from brazilian palicourea sessilis and their effects on human lymphocytes. J. Nat. Prod., 2021, 84(1), 81-90. doi: 10.1021/acs.jnatprod.0c01069 PMID: 33397096
- Hazama, D.; Yin, Y.; Murata, Y.; Matsuda, M.; Okamoto, T.; Tanaka, D.; Terasaka, N.; Zhao, J.; Sakamoto, M.; Kakuchi, Y.; Saito, Y.; Kotani, T.; Nishimura, Y.; Nakagawa, A.; Suga, H.; Matozaki, T. Macrocyclic peptide-mediated blockade of the CD47-SIRPα interaction as a potential cancer immunotherapy. Cell Chem. Biol., 2020, 27(9), 1181-1191.e7. doi: 10.1016/j.chembiol.2020.06.008 PMID: 32640189
- Karanam, G.; Arumugam, M.K.; Sirpu Natesh, N. Anticancer effect of marine sponge-associated Bacillus pumilus amk1 derived dipeptide cyclo (-Pro-Tyr) in human liver cancer cell line through apoptosis and G2/M phase arrest. Int. J. Pept. Res. Ther., 2020, 26(1), 445-457. doi: 10.1007/s10989-019-09850-2
- Karanam, G.; Arumugam, M.K. Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo(-Pro-Tyr). Mol. Biol. Rep., 2020, 47(5), 3347-3359. doi: 10.1007/s11033-020-05407-5 PMID: 32248385
- Magiera-Mularz, K.; Kuska, K.; Skalniak, L.; Grudnik, P.; Musielak, B.; Plewka, J.; Kocik, J.; Stec, M.; Weglarczyk, K.; Sala, D.; Wladyka, B.; Siedlar, M.; Holak, T.A.; Dubin, G. Macrocyclic peptide inhibitor of PD-1/PD-L1 immune checkpoint. Adv. Ther., 2021, 4(2), 2000195-2000200. doi: 10.1002/adtp.202000195
- Zhai, W.; Zhou, X.; Zhai, M.; Li, W.; Ran, Y.; Sun, Y.; Du, J.; Zhao, W.; Xing, L.; Qi, Y.; Gao, Y. Blocking of the PD-1/PD-L1 interaction by a novel cyclic peptide inhibitor for cancer immunotherapy. Sci. China Life Sci., 2021, 64(4), 548-562. doi: 10.1007/s11427-020-1740-8 PMID: 32737851
- Zhai, W.; Zhou, X.; Wang, H.; Li, W.; Chen, G.; Sui, X.; Li, G.; Qi, Y.; Gao, Y. A novel cyclic peptide targeting LAG-3 for cancer immunotherapy by activating antigen-specific CD8+ T cell responses. Acta Pharm. Sin. B, 2020, 10(6), 1047-1060. doi: 10.1016/j.apsb.2020.01.005 PMID: 32642411
- Miao, Q.; Zhang, W.; Zhang, K.; Li, H.; Zhu, J.; Jiang, S. Rational design of a potent macrocyclic peptide inhibitor targeting the PD-1/PD-L1 proteinprotein interaction. RSC Advances, 2021, 11(38), 23270-23279. doi: 10.1039/D1RA03118J PMID: 35479790
- Wang, X.; Hu, C.; Wu, X.; Wang, S.; Zhang, A.; Chen, W.; Shen, Y.; Tan, R.; Wu, X.; Sun, Y.; Xu, Q.; Roseotoxin, B. Roseotoxin B improves allergic contact dermatitis through a unique anti-inflammatory mechanism involving excessive activation of autophagy in activated t lymphocytes. J. Invest. Dermatol., 2016, 136(8), 1636-1646. doi: 10.1016/j.jid.2016.04.017 PMID: 27155460
- Shen, Y.; Luo, Q.; Xu, H.; Gong, F.; Zhou, X.; Sun, Y.; Wu, X.; Liu, W.; Zeng, G.; Tan, N.; Xu, Q. Mitochondria-dependent apoptosis of activated T lymphocytes induced by astin C, a plant cyclopeptide, for preventing murine experimental colitis. Biochem. Pharmacol., 2011, 82(3), 260-268. doi: 10.1016/j.bcp.2011.04.013 PMID: 21569765
- Wang, Z.; Zhao, S.; Song, L.; Pu, Y.; Wang, Q.; Zeng, G.; Liu, X.; Bai, M.; Li, S.; Gao, F.; Chen, L.; Wang, C.; Tan, N. Natural cyclopeptide RA-V inhibits the NF-κB signaling pathway by targeting TAK1. Cell Death Dis., 2018, 9(7), 715. doi: 10.1038/s41419-018-0743-2 PMID: 29915207
- Zou, X.G.; Shim, Y.Y.; Cho, J.Y.; Jeong, D.; Yang, J.; Deng, Z.Y.; Reaney, M.J.T. Flaxseed orbitides, linusorbs, inhibit LPS-induced THP-1 macrophage inflammation. RSC Advances, 2020, 10(38), 22622-22630. doi: 10.1039/C9RA09058D PMID: 35514549
- Matsoukas, J.M.; Ligielli, I.; Chasapis, C.T.; Kelaidonis, K.; Apostolopoulos, V.; Mavromoustakos, T. Novel approaches in the immunotherapy of multiple sclerosis: Cyclization of myelin epitope peptides and conjugation with mannan. Brain Sci., 2021, 11(12), 1583-1596. doi: 10.3390/brainsci11121583 PMID: 34942885
- Hellinger, R.; Muratspahić, E.; Devi, S.; Koehbach, J.; Vasileva, M.; Harvey, P.J.; Craik, D.J.; Gründemann, C.; Gruber, C.W. Importance of the cyclic cystine knot structural motif for immunosuppressive effects of cyclotides. ACS Chem. Biol., 2021, 16(11), 2373-2386. doi: 10.1021/acschembio.1c00524 PMID: 34592097
- Thell, K.; Hellinger, R.; Sahin, E.; Michenthaler, P.; Gold-Binder, M.; Haider, T.; Kuttke, M.; Liutkevičiūtė, Z.; Göransson, U.; Gründemann, C.; Schabbauer, G.; Gruber, C.W. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci., 2016, 113(15), 3960-3965. doi: 10.1073/pnas.1519960113 PMID: 27035952
- Dayani, L.; Dinani, M.S.; Aliomrani, M.; Hashempour, H.; Varshosaz, J.; Taheri, A. Immunomodulatory effects of cyclotides isolated from Viola odorata in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Mult. Scler. Relat. Disord., 2022, 64, 103958-103972. doi: 10.1016/j.msard.2022.103958 PMID: 35716476
- (a) Liddicoat, A.M.; Lavelle, E.C. Modulation of innate immunity by cyclosporine A. Biochem. Pharmacol., 2019, 163, 472-480. doi: 10.1016/j.bcp.2019.03.022 PMID: 30880061; (b) Patel, D.; Wairkar, S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv. Transl. Res., 2019, 9(6), 1067-1081. doi: 10.1007/s13346-019-00650-1 PMID: 31144214
- Fervenza, F.C.; Appel, G.B.; Barbour, S.J.; Rovin, B.H.; Lafayette, R.A.; Aslam, N.; Jefferson, J.A.; Gipson, P.E.; Rizk, D.V.; Sedor, J.R.; Simon, J.F.; McCarthy, E.T.; Brenchley, P.; Sethi, S.; Avila-Casado, C.; Beanlands, H.; Lieske, J.C.; Philibert, D.; Li, T.; Thomas, L.F.; Green, D.F.; Juncos, L.A.; Beara-Lasic, L.; Blumenthal, S.S.; Sussman, A.N.; Erickson, S.B.; Hladunewich, M.; Canetta, P.A.; Hebert, L.A.; Leung, N.; Radhakrishnan, J.; Reich, H.N.; Parikh, S.V.; Gipson, D.S.; Lee, D.K.; da Costa, B.R.; Jüni, P.; Cattran, D.C. Rituximab or cyclosporine in the treatment of membranous nephropathy. N. Engl. J. Med., 2019, 381(1), 36-46. doi: 10.1056/NEJMoa1814427 PMID: 31269364
- Costa, L.; Sousa, E.; Fernandes, C. Cyclic peptides in pipeline: what future for these great molecules? Pharmaceuticals, 2023, 16(7), 996. doi: 10.3390/ph16070996 PMID: 37513908
- Dhillon, S.; Keam, S.J. Bremelanotide: First approval. Drugs, 2019, 79(14), 1599-1606. doi: 10.1007/s40265-019-01187-w PMID: 31429064
- Scheinberg, A.R.; Martin, P.; Turkeltaub, J.A. Terlipressin in the management of liver disease. Expert Opin. Pharmacother., 2023, 24(15), 1665-1671. doi: 10.1080/14656566.2023.2244427 PMID: 37535437
- Markham, A. Setmelanotide: First approval. Drugs, 2021, 81(3), 397-403. doi: 10.1007/s40265-021-01470-9 PMID: 33638809
- Duggan, S. Vosoritide: First approval. Drugs, 2021, 81(17), 2057-2062. doi: 10.1007/s40265-021-01623-w PMID: 34694597
- Hoy, S.M. Pegcetacoplan: First approval. Drugs, 2021, 81(12), 1423-1430. doi: 10.1007/s40265-021-01560-8 PMID: 34342834
- Heo, Y.A. Voclosporin: First approval. Drugs, 2021, 81(5), 605-610. doi: 10.1007/s40265-021-01488-z PMID: 33788181
- Keam, S.J. Lutetium Lu 177 vipivotide tetraxetan: First approval. Mol. Diagn. Ther., 2022, 26(4), 467-475. doi: 10.1007/s40291-022-00594-2 PMID: 35553387
- Lamb, Y.N. Pacritinib: First approval. Drugs, 2022, 82(7), 831-838. doi: 10.1007/s40265-022-01718-y PMID: 35567653
- Syed, Y.Y. Rezafungin: First approval. Drugs, 2023, 83(9), 833-840. doi: 10.1007/s40265-023-01891-8 PMID: 37212966
- Boivin-Jahns, V.; Uhland, K.; Holthoff, H.P.; Beyersdorf, N.; Kocoski, V.; Kerkau, T.; Münch, G.; Lohse, M.J.; Ungerer, M.; Jahns, R. Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure. PLoS One, 2018, 13(8), e0201160. doi: 10.1371/journal.pone.0201160 PMID: 30125285
- Anup, K.; Harri, J.; Raed Mohd Taiseer, A-R.; Anwaar, S.; Milind, A.P.; Anusha, C.; Timothy, S.; Sean, K.; Mazin Mazin, A-K.; John, A.; Benjamin, M.; Samuel, L.; Mojtaba, O.; Amit, R.; Scott James, W.; Subhrajit, S.; Prasad, D.; Rashna, M.; Weijing, S.; Joaquina Celebre, B. Phase Ib/IIa trial of CEND-1 in combination with neoadjuvant FOLFIRINOX-based therapies in pancreatic, colorectal, and appendiceal cancers (CENDIFOX). J. Clin. Oncol., 2022, 40(16)
- Mastellos, D.C.; Skendros, P.; Lambris, J.D. Is complement the culprit behind COVID-19 vaccine-related adverse reactions? J. Clin. Invest., 2021, 131(11), e151092. doi: 10.1172/JCI151092 PMID: 33945504
- (a) Zhuang, L.; Huang, S.; Liu, W.Q.; Karim, A.S.; Jewett, M.C.; Li, J. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab. Eng., 2020, 60, 37-44. doi: 10.1016/j.ymben.2020.03.009 PMID: 32224263; (b) Zhang, D.; Ma, Z.; Chen, H.; Lu, Y.; Chen, X. Valinomycin as a potential antiviral agent against coronaviruses: A review. Biomed. J., 2020, 43(5), 414-423. doi: 10.1016/j.bj.2020.08.006 PMID: 33012699
- OShaughnessy, J.; Kaklamani, V.; Kalinsky, K. Perspectives on the mechanism of action and clinical application of eribulin for metastatic breast cancer. Future Oncol., 2019, 15(14), 1641-1653. doi: 10.2217/fon-2018-0936 PMID: 30892083
- Barth, P.; Bruijnzeel, P.; Wach, A.; Sellier Kessler, O.; Hooftman, L.; Zimmermann, J.; Naue, N.; Huber, B.; Heimbeck, I.; Kappeler, D.; Timmer, W.; Chevalier, E. Single dose escalation studies with inhaled POL6014, a potent novel selective reversible inhibitor of human neutrophil elastase, in healthy volunteers and subjects with cystic fibrosis. J. Cyst. Fibros., 2020, 19(2), 299-304. doi: 10.1016/j.jcf.2019.08.020 PMID: 31501052
- Guerlavais, V.; Sawyer, T.K.; Carvajal, L.; Chang, Y.S.; Graves, B.; Ren, J.G.; Sutton, D.; Olson, K.A.; Packman, K.; Darlak, K.; Elkin, C.; Feyfant, E.; Kesavan, K.; Gangurde, P.; Vassilev, L.T.; Nash, H.M.; Vukovic, V.; Aivado, M.; Annis, D.A. Discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-helical peptide in clinical development. J. Med. Chem., 2023, 66(14), 9401-9417. doi: 10.1021/acs.jmedchem.3c00623 PMID: 37439511
- Howard, J.F., Jr; Bresch, S.; Genge, A.; Hewamadduma, C.; Hinton, J.; Hussain, Y.; Juntas-Morales, R.; Kaminski, H.J.; Maniaol, A.; Mantegazza, R.; Masuda, M.; Sivakumar, K.; Śmiłowski, M.; Utsugisawa, K.; Vu, T.; Weiss, M.D.; Zajda, M.; Boroojerdi, B.; Brock, M.; de la Borderie, G.; Duda, P.W.; Lowcock, R.; Vanderkelen, M.; Leite, M.I.; Sembinelli, D.; Teitelbaum, J.; Nicolle, M.; Bernard, E.; Svahn, J.; Spinazzi, M.; Stojkovic, T.; Demeret, S.; Weiss, N.; Le Guennec, L.; Messai, S.; Tranchant, C.; Nadaj-Pakleza, A.; Chanson, J-B.; Suliman, M.; Zaidi, L.; Tard, C.; Lecointe, P.; Zschüntzsch, J.; Schmidt, J.; Glaubitz, S.; Zeng, R.; Scholl, M.; Kowarik, M.; Ziemann, U.; Krumbholz, M.; Martin, P.; Ruschil, C.; Dünschede, J.; Kemmner, R.; Rumpel, N.; Berger, B.; Totzeck, A.; Hagenacker, T.; Stolte, B.; Iorio, R.; Evoli, A.; Falso, S.; Antozzi, C.; Frangiamore, R.; Vanoli, F.; Rinaldi, E.; Deguchi, K.; Minami, N.; Nagane, Y.; Suzuki, Y.; Ishida, S.; Suzuki, S.; Nakahara, J.; Nagaoka, A.; Yoshimura, S.; Konno, S.; Tsuya, Y.; Uzawa, A.; Kubota, T.; Takahashi, M.; Okuno, T.; Murai, H.; Gilhus, N.E.; Boldingh, M.; Rønning, T.H.; Chyrchel-Paszkiewicz, U.; Kumor, K.; Zielinski, T.; Banaszkiewicz, K.; Błaż, M.; Kłósek, A.; Świderek-Matysiak, M.; Szczudlik, A.; Paśko, A.; Szczechowski, L.; Banach, M.; Ilkowski, J.; Kapetanovic Garcia, S.; Ortiz Bagan, P.; Belén Cánovas Segura, A.; Turon Sans, J.; Vidal Fernandez, N.; Cortes Vicente, E.; Rodrigo Armenteros, P.; Ashraghi, M.; Cavey, A.; Haslam, L.; Emery, A.; Liow, K.; Yegiaian, S.; Barboi, A.; Vazquez, R.M.; Lennon, J.; Pascuzzi, R.M.; Bodkin, C.; Guingrich, S.; Comer, A.; Bromberg, M.; Janecki, T.; Saba, S.; Tellez, M.; Elsheikh, B.; Freimer, M.; Heintzman, S.; Govindarajan, R.; Guptill, J.; Massey, J.M.; Juel, V.; Gonzalez, N.; Habib, A.A.; Mozaffar, T.; Korb, M.; Goyal, N.; Machemehl, H.; Manousakis, G.; Allen, J.; Harper, E.; Farmakidis, C.; Saavedra, L.; Dimachkie, M.; Pasnoor, M.; Akhter, S.; Beydoun, S.; McIlduff, C.; Nye, J.; Roy, B.; Munro Sheldon, B.; Nowak, R.; Barnes, B.; Rivner, M.; Suresh, N.; Shaw, J.; Harvey, B.; Lam, L.; Thomas, N.; Chopra, M.; Traub, R.E.; Jones, S.; Wagoner, M.; Smajic, S.; Aly, R.; Katz, J.; Chen, H.; Miller, R.G.; Jenkins, L.; Khan, S.; Khatri, B.; Sershon, L.; Pavlakis, P.; Holzberg, S.; Li, Y.; Caristo, I.B.; Marquardt, R.; Hastings, D.; Rube, J.; Lisak, R.P.; Choudhury, A.; Ruzhansky, K.; Sachdev, A.; Shin, S.; Bratton, J.; Fetter, M.; McKinnon, N.; McKinnon, J.; Sissons-Ross, L.; Sahu, A.; Distad, B.J. Safety and efficacy of zilucoplan in patients with generalised myasthenia gravis (RAISE): A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Neurol., 2023, 22(5), 395-406. doi: 10.1016/S1474-4422(23)00080-7 PMID: 37059508
- Mammen, A.L.; Amato, A.A.; Dimachkie, M.M.; Chinoy, H.; Hussain, Y.; Lilleker, J.B.; Pinal-Fernandez, I.; Allenbach, Y.; Boroojerdi, B.; Vanderkelen, M.; Delicha, E.M.; Koendgen, H.; Farzaneh-Far, R.; Duda, P.W.; Sayegh, C.; Benveniste, O.; Amato, A.A.; Benveniste, O.; Biliciler, S.; Chinoy, H.; Dimachkie, M.M.; Edmundson, C.; Freimer, M.; Geraci, A.; Hussain, Y.; Machado, P.; Mammen, A.L.; Mozaffar, T.; Soltanzadeh, P.; Suresh, N.; van der Kooi, A.; Allenbach, Y.; Appleby, M.; Barohn, R.J.; Champtiaux, N.; Doughty, C.; Farias, J.; Farmakidis, C.; Habib, A.A.; Karam, C.; Lilleker, J.; Lorusso, S.; Pasnoor, M.; Pinal-Fernandez, I.; Querin, G.; Raaphorst, J.; Ransley, G.; Saba, S.; Sheikh, K.; Snedden, A.; Statland, J.; Vu, T. Zilucoplan in immune-mediated necrotising myopathy: A phase 2, randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol., 2023, 5(2), e67-e76. doi: 10.1016/S2665-9913(23)00003-6 PMID: 36923454
- Cook, N.; Banerji, U.; Evans, J.; Biondo, A.; Germetaki, T.; Randhawa, M.; Godfrey, L.; Leslie, S.; Jeffrey, P.; Rigby, M.; Bennett, G.; Blakemore, S.; Koehler, M.; Niewiarowski, A.; Pittman, M.; Symeonides, S.N. 464PPharmacokinetic (PK) assessment of BT1718: A phase I/II a study of BT1718, a first in class bicycle toxin conjugate (BTC), in patients (pts) with advanced solid tumours. Ann. Oncol., 2019, 30(5)
- Capucine, B.; Vincent, G.; Irene, B.; Bernard, D.; Antoine, I.; Sophie, C.; Gerald Steven, F.; Andrea, N.; Oscar, R.; Louise, C.; Elisa, F.; Loic, V.; Sebastien, H.; Amy, D.; Cong, X.; Hongmei, X.; Rajiv, S.; Dominic, S.; Meredith, M. BT8009-100: A phase I/II study of novel bicyclic peptide and MMAE conjugate BT8009 in patients (pts) with advanced malignancies associated with nectin-4 expression, including urothelial cancer (UC). J. Clin. Oncol., 2023, 41(6), 498-498.
- Bendell, J.C.; Wang, J.S.Z.; Bashir, B.; Richardson, D.L.; Bennett, G.; Campbell, C.; Hennessy, M.G.; Jeffrey, P.; Kirui, J.; Mahnke, L.; Shapiro, G. BT5528-100 phase I/II study of the safety, pharmacokinetics, and preliminary clinical activity of BT5528 in patients with advanced malignancies associated with EphA2 expression. J. Clin. Oncol., 2020, 38(15_suppl), TPS3655. doi: 10.1200/JCO.2020.38.15_suppl.TPS3655
- Kyriakos, P.P.; Afshin, D.; Amy, D.; Sandra, H.; Sally, W.; Punit, U.; Heather, C.; Kristen, H.; Roshawn, W.; Sebastien, H.; Dominic, S.; Jordi Rodon, A. A combined phase I/II study of a novel bicycle tumor-targeted immune cell agonist BT7480 in patients with nectin-4 associated advanced malignancies. J. Clin. Oncol., 2022, 40(16)
- Wyer, S.; Townsend, D.M.; Ye, Z.; Kourtidis, A.; Choo, Y.M.; de Barros, A.L.B.; Donia, M.S.; Hamann, M.T. Recent advances and limitations in the application of kahalalides for the control of cancer. Biomed. Pharmacother., 2022, 148, 112676-112685. doi: 10.1016/j.biopha.2022.112676 PMID: 35149387
- a) Ling, Y.H.; Aracil, M.; Zou, Y.; Yuan, Z.; Lu, B.; Jimeno, J.; Cuervo, A.M.; Perez-Soler, R. PM02734 (elisidepsin) induces caspase-independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death-associated protein kinase. Clin. Cancer Res., 2011, 17(16), 5353-5366. doi: 10.1158/1078-0432.CCR-10-1948 PMID: 21690574; b) Martín-Algarra, S.; Espinosa, E.; Rubió, J.; López, J.J.L.; Manzano, J.L.; Carrión, L.A.; Plazaola, A.; Tanovic, A.; Paz-Ares, L. Phase II study of weekly Kahalalide F in patients with advanced malignant melanoma. Eur. J. Cancer, 2009, 45(5), 732-735. doi: 10.1016/j.ejca.2008.12.005 PMID: 19186051
- Ballantyne, C.M.; Banka, P.; Mendez, G.; Garcia, R.; Rosenstock, J.; Rodgers, A.; Mendizabal, G.; Mitchel, Y.; Catapano, A.L. Phase 2b randomized trial of the oral PCSK9 inhibitor MK-0616. J. Am. Coll. Cardiol., 2023, 81(16), 1553-1564. doi: 10.1016/j.jacc.2023.02.018 PMID: 36889610
- Tanada, M.; Tamiya, M.; Matsuo, A.; Chiyoda, A.; Takano, K.; Ito, T.; Irie, M.; Kotake, T.; Takeyama, R.; Kawada, H.; Hayashi, R.; Ishikawa, S.; Nomura, K.; Furuichi, N.; Morita, Y.; Kage, M.; Hashimoto, S.; Nii, K.; Sase, H.; Ohara, K.; Ohta, A.; Kuramoto, S.; Nishimura, Y.; Iikura, H.; Shiraishi, T. Development of orally bioavailable peptides targeting an intracellular protein: From a hit to a clinical KRAs inhibitor. J. Am. Chem. Soc., 2023, 145(30), 16610-16620. doi: 10.1021/jacs.3c03886 PMID: 37463267
- Saharan, R.; Kumar, S.; Khokra, S.L. A comprehensive review on therapeutic potentials of natural cyclic peptides. Curr. Nutr. Food Sci., 2021, 18, 441-449.
Supplementary files
