Naringenin Nanoformulations for Neurodegenerative Diseases
- Authors: Sahoo L.1, Tripathy N.1, Dilnawaz F.1
-
Affiliations:
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management
- Issue: Vol 25, No 16 (2024)
- Pages: 2108-2124
- Section: Biotechnology
- URL: https://rjsocmed.com/1389-2010/article/view/645298
- DOI: https://doi.org/10.2174/0113892010281459240118091137
- ID: 645298
Cite item
Full Text
Abstract
:Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers and can overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed as delivery systems, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models and administration routes as a potential treatment for brain disorders. The conclusion from this review is that proper nanoformulations of NRG are a possible therapeutic alternative for the treatment of neurological diseases
About the authors
Liza Sahoo
Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management
Email: info@benthamscience.net
Nigam Tripathy
Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management
Email: info@benthamscience.net
Fahima Dilnawaz
Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management
Author for correspondence.
Email: info@benthamscience.net
References
- Singh, S.; Deora, H.; Neyaz, A.; Das, K.K.; Mehrotra, A.; Srivastava, A.K.; Behari, S.; Jaiswal, A.K.; Jaiswal, S. Trends in clinico-epidemiology profile of surgically operated glioma patients in a tertiary care center over 12 yearsthrough the looking glass! Egypt J. Neurosurg., 2021, 36(1), 32. doi: 10.1186/s41984-021-00118-w
- Farmanfarma, K.K.; Mohammadian, M.; Shahabinia, Z.; Hassanipour, S.; Salehiniya, H. Brain cancer in the world: An epidemiological review. World Cancer Res. J., 2019, 6(5), 1-5.
- Melamed, J.R.; Morgan, J.T.; Ioele, S.A.; Gleghorn, J.P.; Sims-Mourtada, J.; Day, E.S. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget, 2018, 9(43), 27000-27015. doi: 10.18632/oncotarget.25467 PMID: 29930746
- Nouri, Z.; Fakhri, S.; El-Senduny, F.F.; Sanadgol, N.; Abd-ElGhani, G.E.; Farzaei, M.H.; Chen, J.T. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules, 2019, 9(11), 690. doi: 10.3390/biom9110690 PMID: 31684142
- Sargazi, M.L.; Juybari, K.B.; Tarzi, M.E.; Amirkhosravi, A.; Nematollahi, M.H.; Mirzamohammdi, S.; Mehrbani, M.; Mehrabani, M.; Mehrabani, M. Naringenin attenuates cell viability and migration of C6 glioblastoma cell line: A possible role of hedgehog signaling pathway. Mol. Biol. Rep., 2021, 48(9), 6413-6421. doi: 10.1007/s11033-021-06641-1 PMID: 34427888
- Naqvi, S.; Panghal, A.; Flora, S.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front. Neurosci., 2020, 14, 494. doi: 10.3389/fnins.2020.00494 PMID: 32581676
- do Nascimento, R.P.; dos Santos, B.L.; Amparo, J.A.O.; Soares, J.R.P.; da Silva, K.C.; Santana, M.R.; Almeida, Á.M.A.N.; da Silva, V.D.A.; Costa, M.F.D.; Ulrich, H.; Moura-Neto, V.; Lopes, G.P.F.; Costa, S.L. Neuroimmunomodulatory properties of flavonoids and derivates: A potential action as adjuvants for the treatment of glioblastoma. Pharmaceutics, 2022, 14(1), 116. doi: 10.3390/pharmaceutics14010116 PMID: 35057010
- Davis, M. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol. Nurs., 2016, 20(5)(Suppl.), S2-S8. doi: 10.1188/16.CJON.S1.2-8 PMID: 27668386
- Abotaleb, M.; Samuel, S.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers, 2018, 11(1), 28. doi: 10.3390/cancers11010028 PMID: 30597838
- Santos, B.L.; Oliveira, M.N.; Coelho, P.L.C.; Pitanga, B.P.S.; da Silva, A.B.; Adelita, T.; Silva, V.D.A.; Costa, M.F.D.; El-Bachá, R.S.; Tardy, M.; Chneiweiss, H.; Junier, M.P.; Moura-Neto, V.; Costa, S.L. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chem. Biol. Interact., 2015, 242, 123-138. doi: 10.1016/j.cbi.2015.07.014 PMID: 26408079
- Joshi, R.; Kulkarni, Y.A.; Wairkar, S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci., 2018, 215, 43-56. doi: 10.1016/j.lfs.2018.10.066 PMID: 30391464
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24(10), 851-874. doi: 10.1016/j.nutres.2004.07.005
- Kiran, S.; Rohini, P. Bhagyasree PJJoP, Phytochemistry. Flavonoid: A review on Naringenin. J. Pharmacogn. Phytochem., 2017, 6(5), 2778-2783.
- Bhia, M.; Motallebi, M.; Abadi, B.; Zarepour, A.; Pereira-Silva, M.; Saremnejad, F.; Santos, A.C.; Zarrabi, A.; Melero, A.; Jafari, S.M.; Shakibaei, M. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics, 2021, 13(2), 291. doi: 10.3390/pharmaceutics13020291 PMID: 33672366
- Rauf, A.; Shariati, M.A.; Imran, M.; Bashir, K.; Khan, S.A.; Mitra, S.; Emran, T.B.; Badalova, K.; Uddin, M.S.; Mubarak, M.S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Derkho, M.; Korpayev, S.; Zengin, G. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environ. Sci. Pollut. Res. Int., 2022, 29(21), 31025-31041. doi: 10.1007/s11356-022-18754-6 PMID: 35119637
- Zobeiri, M.; Belwal, T.; Parvizi, F.; Naseri, R.; Farzaei, M.H.; Nabavi, S.F.; Sureda, A.; Nabavi, S.M. Naringenin and its nano-formulations for fatty liver: Cellular modes of action and clinical perspective. Curr. Pharm. Biotechnol., 2018, 19(3), 196-205. doi: 10.2174/1389201019666180514170122 PMID: 29766801
- Mbaveng, A.T.; Zhao, Q.; Kuete, V. Harmful and protective effects of phenolic compounds from African medicinal plants. In: Toxicological survey of African medicinal plants; Elsevier, 2014; pp. 577-609. doi: 10.1016/B978-0-12-800018-2.00020-0
- Jadeja, R.N.; Devkar, R.V. Polyphenols and flavonoids in controlling non-alcoholic steatohepatitis. In: Polyphenols in human health and disease; Elsevier, 2014; pp. 615-623. doi: 10.1016/B978-0-12-398456-2.00047-5
- Arafah, A.; Rehman, M.U.; Mir, T.M.; Wali, A.F.; Ali, R.; Qamar, W.; Khan, R.; Ahmad, A.; Aga, S.S.; Alqahtani, S.; Almatroudi, N.M. Multi-therapeutic potential of naringenin (4′, 5, 7-trihydroxyflavonone): experimental evidence and mechanisms. Plants, 2020, 9(12), 1784. doi: 10.3390/plants9121784 PMID: 33339267
- Cordenonsi, L.M.; Bromberger, N.G.; Raffin, R.P.; Scherman, E.E. Simultaneous separation and sensitive detection of naringin and naringenin in nanoparticles by chromatographic method indicating stability and photodegradation kinetics. Biomed. Chromatogr., 2016, 30(2), 155-162. doi: 10.1002/bmc.3531 PMID: 26053258
- Adebiyi, A.O.; Adebiyi, O.O.; Owira, P.M.O. Naringin mitigates cardiac hypertrophy by reducing oxidative stress and inactivating c-Jun nuclear kinase-1 protein in type I diabetes. J. Cardiovasc. Pharmacol., 2016, 67(2), 136-144. doi: 10.1097/FJC.0000000000000325 PMID: 26421421
- Nyane, N.A.; Tlaila, T.B.; Malefane, T.G.; Ndwandwe, D.E.; Owira, P.M.O. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur. J. Pharmacol., 2017, 803, 103-111. doi: 10.1016/j.ejphar.2017.03.042 PMID: 28322845
- Hernández-Aquino, E.; Muriel, P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J. Gastroenterol., 2018, 24(16), 1679-1707. doi: 10.3748/wjg.v24.i16.1679 PMID: 29713125
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother., 2022, 146, 112442. doi: 10.1016/j.biopha.2021.112442 PMID: 35062053
- Naeini, F.; Namkhah, Z.; Ostadrahimi, A.; Tutunchi, H.; Hosseinzadeh-Attar, M.J. A comprehensive systematic review of the effects of naringenin, a citrus-derived flavonoid, on risk factors for nonalcoholic fatty liver disease. Adv. Nutr., 2021, 12(2), 413-428. doi: 10.1093/advances/nmaa106 PMID: 32879962
- Xu, J.; Guo, Z.; Yuan, S.; Li, H. BCL2L1 is identified as a target of naringenin in regulating ovarian cancer progression. Mol. Cell. Biochem., 2022, 477(5), 1541-1553. doi: 10.1007/s11010-022-04389-1 PMID: 35184257
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457. doi: 10.3390/nu12020457 PMID: 32059369
- Joshi, R.; Kulkarni, Y.A. Wairkar SJLs. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin. An update., 2018, 215, 43-56. PMID: 30391464
- Fuster, M.G.; Carissimi, G.; Montalbán, M.G.; Víllora, G. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials, 2020, 10(4), 718. doi: 10.3390/nano10040718 PMID: 32290154
- Thilakarathna, S.; Rupasinghe, H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387. doi: 10.3390/nu5093367 PMID: 23989753
- Kumar, S; Pandey, AK Chemistry and biological activities of flavonoids: An overview. Sci. World J, 2013, 201#. doi: 10.1155/2013/162750
- Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., 2017, 105(1), 10-22. doi: 10.3945/ajcn.116.136051 PMID: 27881391
- Sabarinathan, D.; Vanisree, A.J. Naringenin, a flavanone alters the tumorigenic features of C6 glioma cells. Biomed. Prevent. Nutr., 2011, 1(1), 19-24. doi: 10.1016/j.bionut.2010.06.001
- Sa, P.; Singh, P.; Dilnawaz, F.; Sahoo, S.K. Application of therapeutic nanoplatforms as a potential candidate for the treatment of CNS disorders: Challenges and possibilities. Curr. Pharm. Des., 2022, 28(33), 2742-2757. doi: 10.2174/1381612828666220729104433 PMID: 35909283
- Ortiz, R.; Cabeza, L.; Perazzoli, G.; Jimenez-Lopez, J.; García-Pinel, B.; Melguizo, C.; Prados, J. Nanoformulations for glioblastoma multiforme: A new hope for treatment. Future Med. Chem., 2019, 11(18), 2461-2482. doi: 10.4155/fmc-2018-0521 PMID: 31544490
- Upadhyay, RK Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014
- Ayala-Fuentes, J.C.; Chavez-Santoscoy, R.A. Nanotechnology as a key to enhance the benefits and improve the bioavailability of flavonoids in the food industry. Foods, 2021, 10(11), 2701. doi: 10.3390/foods10112701 PMID: 34828981
- Ballabh, P.; Braun, A.; Nedergaard, M. The bloodbrain barrier: An overview. Neurobiol. Dis., 2004, 16(1), 1-13. doi: 10.1016/j.nbd.2003.12.016 PMID: 15207256
- Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the bloodbrain barrier. Nature, 2010, 468(7323), 557-561. doi: 10.1038/nature09522 PMID: 20944627
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci., 2013, 36(10), 587-597. doi: 10.1016/j.tins.2013.07.001 PMID: 23968694
- Keaney, J.; Campbell, M. The dynamic bloodbrain barrier. FEBS J., 2015, 282(21), 4067-4079. doi: 10.1111/febs.13412 PMID: 26277326
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyteendothelial interactions at the bloodbrain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53. doi: 10.1038/nrn1824 PMID: 16371949
- Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R. Begley DJJNod. Structure and function of the bloodbrain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
- Stamatovic, S.; Keep, R.; Andjelkovic, A. Brain endothelial cell-cell junctions: How to "open" the blood brain barrier. Curr. Neuropharmacol., 2008, 6(3), 179-192. doi: 10.2174/157015908785777210 PMID: 19506719
- Pandey, P.K.; Sharma, A.K.; Gupta, U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers, 2016, 4(1), e1129476. doi: 10.1080/21688370.2015.1129476 PMID: 27141418
- Schneider, S.W.; Ludwig, T.; Tatenhorst, L.; Braune, S.; Oberleithner, H.; Senner, V.; Paulus, W. Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol., 2004, 107(3), 272-276. doi: 10.1007/s00401-003-0810-2 PMID: 14730455
- Hellström, M.; Gerhardt, H.; Kalén, M.; Li, X.; Eriksson, U.; Wolburg, H.; Betsholtz, C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol., 2001, 153(3), 543-554. doi: 10.1083/jcb.153.3.543 PMID: 11331305
- Pafundi, D.H.; Laack, N.N.; Youland, R.S.; Parney, I.F.; Lowe, V.J.; Giannini, C.; Kemp, B.J.; Grams, M.P.; Morris, J.M.; Hoover, J.M.; Hu, L.S.; Sarkaria, J.N.; Brinkmann, D.H. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro-oncol., 2013, 15(8), 1058-1067. doi: 10.1093/neuonc/not002 PMID: 23460322
- Oberoi, R.K.; Parrish, K.E.; Sio, T.T.; Mittapalli, R.K.; Elmquist, W.F.; Sarkaria, J.N. Strategies to improve delivery of anticancer drugs across the bloodbrain barrier to treat glioblastoma. Neuro-oncol., 2016, 18(1), 27-36. doi: 10.1093/neuonc/nov164 PMID: 26359209
- Ishihara, H.; Kubota, H.; Lindberg, R.L.P.; Leppert, D.; Gloor, S.M.; Errede, M.; Virgintino, D.; Fontana, A.; Yonekawa, Y.; Frei, K. Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor β2 involves matrix metalloproteinases and tight junction proteins. J. Neuropathol. Exp. Neurol., 2008, 67(5), 435-448. doi: 10.1097/NEN.0b013e31816fd622 PMID: 18431253
- Zhang, F. xu, C.; Liu, C. Drug delivery strategies to enhance the permeability of the bloodbrain barrier for treatment of glioma. Drug Des. Devel. Ther., 2015, 9, 2089-2100. doi: 10.2147/DDDT.S79592 PMID: 25926719
- Lemée, J.M.; Clavreul, A.; Menei, P. Intratumoral heterogeneity in glioblastoma: dont forget the peritumoral brain zone. Neuro-oncol., 2015, 17(10), 1322-1332. doi: 10.1093/neuonc/nov119 PMID: 26203067
- Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis, 2018, 7(1), 10. doi: 10.1038/s41389-017-0011-9 PMID: 29362402
- Burgstaller, G.; Oehrle, B.; Gerckens, M.; White, E.S.; Schiller, H.B.; Eickelberg, O. The instructive extracellular matrix of the lung: Basic composition and alterations in chronic lung disease. Eur. Respir. J., 2017, 50(1), 1601805. doi: 10.1183/13993003.01805-2016 PMID: 28679607
- Zhao, M.; van Straten, D.; Broekman, M.; Préat, V.; Schiffelers, R. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics, 2020, 10(3), 1355-1372. doi: 10.7150/thno.38147
- Hottinger, A.F.; Stupp, R.; Homicsko, K. Standards of care and novel approaches in the management of glioblastoma multiforme. Chin. J. Cancer, 2014, 33(1), 32-39. doi: 10.5732/cjc.013.10207 PMID: 24384238
- Jnaidi, R.; Almeida, A.J.; Gonçalves, L.M. Solid lipid nanoparticles and nanostructured lipid carriers as smart drug delivery systems in the treatment of glioblastoma multiforme. Pharmaceutics, 2020, 12(9), 860. doi: 10.3390/pharmaceutics12090860 PMID: 32927610
- Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; Beroukhim, R.; Bernard, B.; Wu, C.J.; Genovese, G.; Shmulevich, I.; Barnholtz-Sloan, J.; Zou, L.; Vegesna, R.; Shukla, S.A.; Ciriello, G.; Yung, W.K.; Zhang, W.; Sougnez, C.; Mikkelsen, T.; Aldape, K.; Bigner, D.D.; Van Meir, E.G.; Prados, M.; Sloan, A.; Black, K.L.; Eschbacher, J.; Finocchiaro, G.; Friedman, W.; Andrews, D.W.; Guha, A.; Iacocca, M.; ONeill, B.P.; Foltz, G.; Myers, J.; Weisenberger, D.J.; Penny, R.; Kucherlapati, R.; Perou, C.M.; Hayes, D.N.; Gibbs, R.; Marra, M.; Mills, G.B.; Lander, E.; Spellman, P.; Wilson, R.; Sander, C.; Weinstein, J.; Meyerson, M.; Gabriel, S.; Laird, P.W.; Haussler, D.; Getz, G.; Chin, L.; Benz, C.; Barnholtz-Sloan, J.; Barrett, W.; Ostrom, Q.; Wolinsky, Y.; Black, K.L.; Bose, B.; Boulos, P.T.; Boulos, M.; Brown, J.; Czerinski, C.; Eppley, M.; Iacocca, M.; Kempista, T.; Kitko, T.; Koyfman, Y.; Rabeno, B.; Rastogi, P.; Sugarman, M.; Swanson, P.; Yalamanchii, K.; Otey, I.P.; Liu, Y.S.; Xiao, Y.; Auman, J.T.; Chen, P-C.; Hadjipanayis, A.; Lee, E.; Lee, S.; Park, P.J.; Seidman, J.; Yang, L.; Kucherlapati, R.; Kalkanis, S.; Mikkelsen, T.; Poisson, L.M.; Raghunathan, A.; Scarpace, L.; Bernard, B.; Bressler, R.; Eakin, A.; Iype, L.; Kreisberg, R.B.; Leinonen, K.; Reynolds, S.; Rovira, H.; Thorsson, V.; Shmulevich, I.; Annala, M.J.; Penny, R.; Paulauskis, J.; Curley, E.; Hatfield, M.; Mallery, D.; Morris, S.; Shelton, T.; Shelton, C.; Sherman, M.; Yena, P.; Cuppini, L.; DiMeco, F.; Eoli, M.; Finocchiaro, G.; Maderna, E.; Pollo, B.; Saini, M.; Balu, S.; Hoadley, K.A.; Li, L.; Miller, C.R.; Shi, Y.; Topal, M.D.; Wu, J.; Dunn, G.; Giannini, C.; ONeill, B.P.; Aksoy, B.A.; Antipin, Y.; Borsu, L.; Berman, S.H.; Brennan, C.W.; Cerami, E.; Chakravarty, D.; Ciriello, G.; Gao, J.; Gross, B.; Jacobsen, A.; Ladanyi, M.; Lash, A.; Liang, Y.; Reva, B.; Sander, C.; Schultz, N.; Shen, R.; Socci, N.D.; Viale, A.; Ferguson, M.L.; Chen, Q-R.; Demchok, J.A.; Dillon, L.A.L.; Shaw, K.R.M.; Sheth, M.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Davidsen, T.; Guyer, M.S.; Ozenberger, B.A.; Sofia, H.J.; Bergsten, J.; Eckman, J.; Harr, J.; Myers, J.; Smith, C.; Tucker, K.; Winemiller, C.; Zach, L.A.; Ljubimova, J.Y.; Eley, G.; Ayala, B.; Jensen, M.A.; Kahn, A.; Pihl, T.D.; Pot, D.A.; Wan, Y.; Eschbacher, J.; Foltz, G.; Hansen, N.; Hothi, P.; Lin, B.; Shah, N.; Yoon, J.; Lau, C.; Berens, M.; Ardlie, K.; Beroukhim, R.; Carter, S.L.; Cherniack, A.D.; Noble, M.; Cho, J.; Cibulskis, K.; DiCara, D.; Frazer, S.; Gabriel, S.B.; Gehlenborg, N.; Gentry, J.; Heiman, D.; Kim, J.; Jing, R.; Lander, E.S.; Lawrence, M.; Lin, P.; Mallard, W.; Meyerson, M.; Onofrio, R.C.; Saksena, G.; Schumacher, S.; Sougnez, C.; Stojanov, P.; Tabak, B.; Voet, D.; Zhang, H.; Zou, L.; Getz, G.; Dees, N.N.; Ding, L.; Fulton, L.L.; Fulton, R.S.; Kanchi, K-L.; Mardis, E.R.; Wilson, R.K.; Baylin, S.B.; Andrews, D.W.; Harshyne, L.; Cohen, M.L.; Devine, K.; Sloan, A.E.; VandenBerg, S.R.; Berger, M.S.; Prados, M.; Carlin, D.; Craft, B.; Ellrott, K.; Goldman, M.; Goldstein, T.; Grifford, M.; Haussler, D.; Ma, S.; Ng, S.; Salama, S.R.; Sanborn, J.Z.; Stuart, J.; Swatloski, T.; Waltman, P.; Zhu, J.; Foss, R.; Frentzen, B.; Friedman, W.; McTiernan, R.; Yachnis, A.; Hayes, D.N.; Perou, C.M.; Zheng, S.; Vegesna, R.; Mao, Y.; Akbani, R.; Aldape, K.; Bogler, O.; Fuller, G.N.; Liu, W.; Liu, Y.; Lu, Y.; Mills, G.; Protopopov, A.; Ren, X.; Sun, Y.; Wu, C-J.; Yung, W.K.A.; Zhang, W.; Zhang, J.; Chen, K.; Weinstein, J.N.; Chin, L.; Verhaak, R.G.W.; Noushmehr, H.; Weisenberger, D.J.; Bootwalla, M.S.; Lai, P.H.; Triche, T.J., Jr; Van Den Berg, D.J.; Laird, P.W.; Gutmann, D.H.; Lehman, N.L.; VanMeir, E.G.; Brat, D.; Olson, J.J.; Mastrogianakis, G.M.; Devi, N.S.; Zhang, Z.; Bigner, D.; Lipp, E.; McLendon, R. The somatic genomic landscape of glioblastoma. Cell, 2013, 155(2), 462-477. doi: 10.1016/j.cell.2013.09.034 PMID: 24120142
- Bao, S.; Wu, Q.; Sathornsumetee, S.; Hao, Y.; Li, Z.; Hjelmeland, A.B.; Shi, Q.; McLendon, R.E.; Bigner, D.D.; Rich, J.N. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res., 2006, 66(16), 7843-7848. doi: 10.1158/0008-5472.CAN-06-1010 PMID: 16912155
- Huang, J.; Yu, J.; Tu, L.; Huang, N.; Li, H.; Luo, Y. Isocitrate dehydrogenase mutations in glioma: From basic discovery to therapeutics development. Front. Oncol., 2019, 9, 506. doi: 10.3389/fonc.2019.00506 PMID: 31263678
- Favero, F.; McGranahan, N.; Salm, M.; Birkbak, N.J.; Sanborn, J.Z.; Benz, S.C.; Becq, J.; Peden, J.F.; Kingsbury, Z.; Grocok, R.J.; Humphray, S.; Bentley, D.; Spencer-Dene, B.; Gutteridge, A.; Brada, M.; Roger, S.; Dietrich, P.Y.; Forshew, T.; Gerlinger, M.; Rowan, A.; Stamp, G.; Eklund, A.C.; Szallasi, Z.; Swanton, C. Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome. Ann. Oncol., 2015, 26(5), 880-887. doi: 10.1093/annonc/mdv127 PMID: 25732040
- Eskilsson, E.; Rosland, G.V.; Talasila, K.M.; Knappskog, S.; Keunen, O.; Sottoriva, A.; Foerster, S.; Solecki, G.; Taxt, T.; Jirik, R.; Fritah, S.; Harter, P.N.; Välk, K.; Al Hossain, J.; Joseph, J.V.; Jahedi, R.; Saed, H.S.; Piccirillo, S.G.; Spiteri, I.; Leiss, L.; Euskirchen, P.; Graziani, G.; Daubon, T.; Lund-Johansen, M.; Enger, P.Ø.; Winkler, F.; Ritter, C.A.; Niclou, S.P.; Watts, C.; Bjerkvig, R.; Miletic, H. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro-oncol., 2016, 18(12), 1644-1655. doi: 10.1093/neuonc/now113 PMID: 27286795
- Mosrati, M.A.; Malmström, A.; Lysiak, M.; Krysztofiak, A.; Hallbeck, M.; Milos, P.; Hallbeck, A.L.; Bratthäll, C.; Strandéus, M.; Stenmark-Askmalm, M.; Söderkvist, P. TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget, 2015, 6(18), 16663-16673. doi: 10.18632/oncotarget.4389 PMID: 26143636
- Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res., 2003, 63(18), 5821-5828. PMID: 14522905
- Zhu, T.S.; Costello, M.A.; Talsma, C.E.; Flack, C.G.; Crowley, J.G.; Hamm, L.L.; He, X.; Hervey-Jumper, S.L.; Heth, J.A.; Muraszko, K.M.; DiMeco, F.; Vescovi, A.L.; Fan, X. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res., 2011, 71(18), 6061-6072. doi: 10.1158/0008-5472.CAN-10-4269 PMID: 21788346
- Filatova, A.; Acker, T.; Garvalov, B.K. The cancer stem cell niche (s): The crosstalk between glioma stem cells and their microenvironment. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(2), 2496-2508.
- Dundar, T.T.; Hatiboglu, M.A.; Ergul, Z.; Seyithanoglu, M.H.; Sozen, E.; Tuzgen, S.; Kaynar, M.Y.; Karaoz, E. Glioblastoma stem cells and comparison of isolation methods. J. Clin. Med. Res., 2019, 11(6), 415-421. doi: 10.14740/jocmr3781 PMID: 31143308
- Alcantara, L.S.; Parada, L.F. Cancer stem cells in gliomas: Evolving concepts and therapeutic implications. Curr. Opin. Neurol., 2021, 34(6), 868-874. doi: 10.1097/WCO.0000000000000994 PMID: 34581301
- Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy. In: Vaupel, P.; Kelleher, D.K.; Höckel, M., Eds.; Seminars in oncology; Elsevier, 2001.
- Oliver, L.; Olivier, C.; Marhuenda, F.; Campone, M.; Vallette, F. Hypoxia and the malignant glioma microenvironment: Regulation and implications for therapy. Curr. Mol. Pharmacol., 2009, 2(3), 263-284.
- Monteiro, A.; Hill, R.; Pilkington, G.; Madureira, P. The role of hypoxia in glioblastoma invasion. Cells, 2017, 6(4), 45. doi: 10.3390/cells6040045 PMID: 29165393
- Rashid, F.; Niklison-Chirou, M.V. Proteasome inhibitiona new target for brain tumours. Cell Death Discov., 2019, 5(1), 147. doi: 10.1038/s41420-019-0227-x PMID: 31815002
- Aliabadi, F.; Sohrabi, B.; Mostafavi, E.; Pazoki-Toroudi, H.; Webster, T.J. Ubiquitinproteasome system and the role of its inhibitors in cancer therapy. Open Biol., 2021, 11(4), 200390. doi: 10.1098/rsob.200390 PMID: 33906413
- Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972. doi: 10.1038/jcbfm.2012.126 PMID: 22929442
- Leybaert, L.; De Bock, M.; Van Moorhem, M.; Decrock, E.; De Vuyst, E. Neurobarrier coupling in the brain: Adjusting glucose entry with demand. J. Neurosci. Res., 2007, 85(15), 3213-3220. doi: 10.1002/jnr.21189 PMID: 17265466
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996. doi: 10.1056/NEJMoa043330 PMID: 15758009
- Barani, I.J.; Larson, D.A. Radiation therapy of glioblastoma; Current Understanding and Treatment of Gliomas, 2015, pp. 49-73.
- Markowicz-Piasecka, M.; Markiewicz, A.; Darłak, P.; Sikora, J.; Adla, S.K.; Bagina, S.; Huttunen, K.M. Current chemical, biological, and physiological views in the development of successful brain-targeted pharmaceutics. Neurotherapeutics, 2022, 19(3), 942-976. doi: 10.1007/s13311-022-01228-5 PMID: 35391662
- Ganipineni, L.P.; Danhier, F.; Préat, V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J. Control. Release, 2018, 281, 42-57. doi: 10.1016/j.jconrel.2018.05.008 PMID: 29753958
- Zhao, Y.; Yue, P.; Peng, Y.; Sun, Y.; Chen, X.; Zhao, Z.; Han, B. Recent advances in drug delivery systems for targeting brain tumors. Drug Deliv., 2023, 30(1), 1-18. doi: 10.1080/10717544.2022.2154409 PMID: 36597214
- Mojarad-Jabali, S.; Farshbaf, M.; Walker, P.R.; Hemmati, S.; Fatahi, Y.; Zakeri-Milani, P.; Sarfraz, M.; Valizadeh, H. An update on actively targeted liposomes in advanced drug delivery to glioma. Int. J. Pharm., 2021, 602, 120645. doi: 10.1016/j.ijpharm.2021.120645 PMID: 33915182
- Caro, C.; Avasthi, A.; Paez-Muñoz, J.M.; Pernia Leal, M.; García-Martín, M.L. Passive targeting of high-grade gliomas via the EPR effect: A closed path for metallic nanoparticles? Biomater. Sci., 2021, 9(23), 7984-7995. doi: 10.1039/D1BM01398J PMID: 34710207
- Hefnawy, A. El-Sherbiny IMJNfBTDD; Passive and Active Targeting of Brain Tumors, 2021, pp. 63-78.
- Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res., 2008, 7(3), 1089-1099. doi: 10.4314/tjpr.v7i3.14693
- Erdoğdu, Y.; Ünsalan, O.; Güllüoğlu, M.T. Vibrational analysis of flavone. Turk. J. Phys., 2009, 33(5), 249-260.
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278. doi: 10.4161/oxim.2.5.9498 PMID: 20716914
- Hughes, L.A.; Arts, I.C.; Ambergen, T.; Brants, H.A.; Dagnelie, P.C.; Goldbohm, R.A.; van den Brandt, P.A.; Weijenberg, M.P. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: A longitudinal analysis from the netherlands cohort study. Am. J. Clin. Nutr., 2008, 88(5), 1341-1352. PMID: 18996871
- Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. Bioavailability of the Flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1148-G1154. doi: 10.1152/ajpgi.2000.279.6.G1148 PMID: 11093936
- Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In vitro, 2006, 20(2), 187-210. doi: 10.1016/j.tiv.2005.06.048 PMID: 16289744
- Bi, S.; Ding, L.; Tian, Y.; Song, D.; Zhou, X.; Liu, X.; Zhang, H. Investigation of the interaction between flavonoids and human serum albumin. J. Mol. Struct., 2004, 703(1-3), 37-45. doi: 10.1016/j.molstruc.2004.05.026
- Lee, S.; Lee, C.H.; Moon, S.S.; Kim, E.; Kim, C.T.; Kim, B.H.; Bok, S.H.; Jeong, T.S. Naringenin derivatives as anti-atherogenic agents. Bioorg. Med. Chem. Lett., 2003, 13(22), 3901-3903. doi: 10.1016/j.bmcl.2003.09.009 PMID: 14592471
- Motallebi, M.; Bhia, M.; Rajani, H.F.; Bhia, I.; Tabarraei, H.; Mohammadkhani, N. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci., 2022, 305, 120752. doi: 10.1016/j.lfs.2022.120752
- Liu, P.; Gao, J.; Chen, Y.; Long, W.; Shen, X.; Tang, W. Anticancer activity of total flavonoids isolated from xianhe yanling recipe (仙鹤延龄方). Chin. J. Integr. Med., 2011, 17(6), 459-463. doi: 10.1007/s11655-011-0644-z PMID: 21660680
- Liu, L.; Shan, S.; Zhang, K.; Ning, Z.Q.; Lu, X.P.; Cheng, Y.Y. Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin. Phytother. Res., 2008, 22(10), 1400-1403.
- Sousa, C.; Duarte, D.; Silva-Lima, B.; Videira, M. Repurposing natural dietary flavonoids in the modulation of cancer tumorigenesis: Decrypting the molecular targets of naringenin, hesperetin and myricetin. Nutr. Cancer, 2022, 74(4), 1188-1202. doi: 10.1080/01635581.2021.1955285 PMID: 34739306
- El Daibani, A.A.; Xi, Y.; Luo, L.; Mei, X.; Zhou, C.; Yasuda, S.; Liu, M.C. Sulfation of hesperetin, naringenin and apigenin by the human cytosolic sulfotransferases: A comprehensive analysis. Nat. Prod. Res., 2020, 34(6), 797-803. doi: 10.1080/14786419.2018.1503264 PMID: 30398375
- Lee, J.; Kim, D.H.; Kim, J.H. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine, 2019, 58, 152762. doi: 10.1016/j.phymed.2018.11.022 PMID: 31005717
- Galluzzo, P.; Ascenzi, P.; Bulzomi, P.; Marino, M. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology, 2008, 149(5), 2567-2575. doi: 10.1210/en.2007-1173 PMID: 18239068
- Chang, H.L.; Chang, Y.M.; Lai, S.C.; Chen, K.M.; Wang, K.C.; Chiu, T.T.; Chang, F.H.; Hsu, L.S. Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and −9. Exp. Ther. Med., 2017, 13(2), 739-744. doi: 10.3892/etm.2016.3994 PMID: 28352360
- Yoshida, H.; Takamura, N.; Shuto, T.; Ogata, K.; Tokunaga, J.; Kawai, K.; Kai, H. The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes. Biochem. Biophys. Res. Commun., 2010, 394(3), 728-732. doi: 10.1016/j.bbrc.2010.03.060 PMID: 20230793
- Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol., 2016, 54(12), 3203-3210. doi: 10.1080/13880209.2016.1216131 PMID: 27564838
- Jäger, A.; Saaby, L. Flavonoids and the CNS. Molecules, 2011, 16(2), 1471-1485. doi: 10.3390/molecules16021471 PMID: 21311414
- Rajadurai, M.; Stanely, M.P.P. Preventive effect of naringin on isoproterenol-induced cardiotoxicity in Wistar rats: An in vivo and in vitro study. Toxicology, 2007, 232(3), 216-225. doi: 10.1016/j.tox.2007.01.006 PMID: 17289242
- Borowitzka, M.A. High-value products from microalgaetheir development and commercialisation. J. Appl. Phycol., 2013, 25(3), 743-756. doi: 10.1007/s10811-013-9983-9
- Yadavalli, R.; Ratnapuram, H.; Motamarry, S.; Reddy, C.N.; Ashokkumar, V.; Kuppam, C. Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Convers. Biorefin., 2020, 1-9.
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact., 2018, 17(1), 36. doi: 10.1186/s12934-018-0879-x PMID: 29506528
- Yang, J.; Yuan, L.; Wen, Y.; Zhou, H.; Jiang, W.; Xu, D.; Wang, M. Protective effects of naringin in cerebral infarction and its molecular mechanism. Med. Sci. Monit., 2020, 26, e918772-e1. doi: 10.12659/MSM.918772 PMID: 31901198
- Chen, Y.Y.; Chang, Y.M.; Wang, K.Y.; Chen, P.N.; Hseu, Y.C.; Chen, K.M.; Yeh, K.T.; Chen, C.J.; Hsu, L.S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol., 2019, 34(3), 233-239. doi: 10.1002/tox.22677 PMID: 30431227
- Arya, A.; Chahal, R.; Rao, R.; Rahman, M.H.; Kaushik, D.; Akhtar, M.F.; Saleem, A.; Khalifa, S.M.A.; El-Seedi, H.R.; Kamel, M.; Albadrani, G.M.; Abdel-Daim, M.M.; Mittal, V. Acetylcholinesterase inhibitory potential of various sesquiterpene analogues for Alzheimers disease therapy. Biomolecules, 2021, 11(3), 350. doi: 10.3390/biom11030350 PMID: 33669097
- Lien, L.M.; Wang, M.J.; Chen, R.J.; Chiu, H.C.; Wu, J.L.; Shen, M.Y.; Chou, D.S.; Sheu, J.R.; Lin, K.H.; Lu, W.J. Nobiletin, a polymethoxylated flavone, inhibits glioma cell growth and migration via arresting cell cycle and suppressing MAPK and Akt pathways. Phytother. Res., 2016, 30(2), 214-221. doi: 10.1002/ptr.5517 PMID: 26560814
- Maggioni, D.; Nicolini, G.; Rigolio, R.; Biffi, L.; Pignataro, L.; Gaini, R.; Garavello, W. Myricetin and naringenin inhibit human squamous cell carcinoma proliferation and migration in vitro. Nutr. Cancer, 2014, 66(7), 1257-1267. doi: 10.1080/01635581.2014.951732 PMID: 25256786
- Aroui, S.; Aouey, B.; Chtourou, Y.; Meunier, A.C.; Fetoui, H.; Kenani, A. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem. Biol. Interact., 2016, 244, 195-203. doi: 10.1016/j.cbi.2015.12.011 PMID: 26721195
- Li, Q.; Wang, Y.; Zhang, L.; Chen, L.; Du, Y.; Ye, T. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway. Fitoterapia, 2016, 111, 78-86.
- Kumar, R.P.; Abraham, A. PVP-coated naringenin nanoparticles for biomedical applications In vivo toxicological evaluations. Chem. Biol. Interact., 2016, 257, 110-118. doi: 10.1016/j.cbi.2016.07.012 PMID: 27417253
- Yang, L.J.; Ma, S.X.; Zhou, S.Y.; Chen, W.; Yuan, M.W.; Yin, Y.Q.; Yang, X.D. Preparation and characterization of inclusion complexes of naringenin with β-cyclodextrin or its derivative. Carbohydr. Polym., 2013, 98(1), 861-869. doi: 10.1016/j.carbpol.2013.07.010 PMID: 23987422
- Najmanová, I.; Vopralová, M.; Saso, L.; Mladěnka, P. The pharmacokinetics of flavanones. Crit. Rev. Food Sci. Nutr., 2020, 60(18), 3155-3171. doi: 10.1080/10408398.2019.1679085 PMID: 31650849
- Rahaiee, S.; Assadpour, E.; Faridi, E.A.; Silva, A.S.; Jafari, S.M. Application of nano/microencapsulated phenolic compounds against cancer. Adv. Colloid Interface Sci., 2020, 279, 102153. doi: 10.1016/j.cis.2020.102153 PMID: 32289738
- Faridi, E.A.; Assadpour, E.; Jafari, S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol., 2018, 76, 56-66. doi: 10.1016/j.tifs.2018.04.002
- Chen, W.; Jiang, L.; Hu, Y.; Fang, G.; Yang, B.; Li, J.; Liang, N.; Wu, L.; Hussain, Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J. Control. Release, 2021, 340, 342-360. doi: 10.1016/j.jconrel.2021.10.020 PMID: 34695522
- Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613. doi: 10.1016/j.biopha.2018.04.055 PMID: 29677547
- Wang, L.; Wang, X.; Shen, L.; Alrobaian, M.; Panda, S.K.; Almasmoum, H.A.; Ghaith, M.M.; Almaimani, R.A.; Ibrahim, I.A.A.; Singh, T.; Baothman, A.A.; Choudhry, H.; Beg, S. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomed. Pharmacother., 2021, 138, 111461. doi: 10.1016/j.biopha.2021.111461 PMID: 33706131
- Daisy Precilla, S.; Kuduvalli, S.S.; Angeline Praveena, E.; Thangavel, S.; Anitha, T.S. Integration of synthetic and natural derivatives revives the therapeutic potential of temozolomide against glioma- an in vitro and in vivo perspective. Life Sci., 2022, 301, 120609. doi: 10.1016/j.lfs.2022.120609 PMID: 35526592
- Song, T.; Zhang, M.; Wu, J.; Chen, F.; Wang, Y.; Ma, Y.; Dai, Z. Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest. New Drugs, 2020, 38(6), 1743-1754. doi: 10.1007/s10637-020-00979-2 PMID: 32767162
- Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Asfour, H.Z. Neuroprotective and antioxidant effect of naringenin-loaded nanoparticles for nose-to-brain delivery. Brain Sci., 2019, 9(10), 275. doi: 10.3390/brainsci9100275 PMID: 31618942
- Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303. doi: 10.4103/1735-5362.235156 PMID: 30065762
- Md, S.; Gan, S.Y.; Haw, Y.H.; Ho, C.L.; Wong, S.; Choudhury, H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int. J. Biol. Macromol, 2018, 118((Pt A)), 1211-1219. doi: 10.1016/j.ijbiomac.2018.06.190 PMID: 30001606
- Bhandari, R.; Paliwal, J.K.; Kuhad, A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J. Funct. Foods, 2018, 47, 361-375. doi: 10.1016/j.jff.2018.05.065
- Bhandari, R.; Paliwal, J.K.; Kuhad, A.J.C.D.D. Enhanced bioavailability and higher uptake of brain-targeted surface engineered delivery system of naringenin developed as a therapeutic for autism spectrum disorder. Curr. Drug Deliv., 2023, 20(2), 158-182.
- Ahmad, N.; Ahmad, R.; Ahmad, F.J.; Ahmad, W.; Alam, M.A.; Amir, M.; Ali, A. Poloxamer-chitosan-based naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J. Biol. Sci., 2020, 27(1), 500-517. doi: 10.1016/j.sjbs.2019.11.008 PMID: 31889876
- Ahmad, A.; Fauzia, E.; Kumar, M.; Mishra, R.K.; Kumar, A.; Khan, M.A.; Raza, S.S.; Khan, R. Gelatin-coated polycaprolactone nanoparticle-mediated naringenin delivery rescue human mesenchymal stem cells from oxygen glucose deprivation-induced inflammatory stress. ACS Biomater. Sci. Eng., 2019, 5(2), 683-695. doi: 10.1021/acsbiomaterials.8b01081 PMID: 33405831
- Kaur, A.; Dang, S. Development of a nanoemulsion loaded with naringenin. Nanotechnol, 2022, 58(1), 53-63. doi: 10.4024/N27KA19A.ntp.18.01
- Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinsons disease model. Biomed Res. Int., 2019, 2019
- Saleh, T.M.; Saleh, M.C.; Connell, B.J.; Song, Y.H. A co‐drug conjugate of naringenin and lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clin. Exp. Pharmacol. Physiol., 2017, 44(10), 1008-1016. doi: 10.1111/1440-1681.12799 PMID: 28636787
- Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128. doi: 10.1016/S0378-5173(02)00180-1 PMID: 12176234
- Mani, M.; Balasubramanian, S.; Manikandan, K.R.; Kulandaivel, B. Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinsons disease model. J. Appl. Pharm. Sci., 2021, 11(2), 19-28.
- Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals Special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9. doi: 10.1016/j.ejpb.2011.01.007 PMID: 21266197
- Keck, C.M.; Müller, R.H. Nanotoxicological classification system (NCS) A guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm., 2013, 84(3), 445-448. doi: 10.1016/j.ejpb.2013.01.001 PMID: 23333302
- Keck, C.; Jansch, M.; Müller, R. Protein adsorption patterns and analysis on IV nanoemulsionsthe key factor determining the organ distribution. Pharmaceutics, 2012, 5(4), 36-68. doi: 10.3390/pharmaceutics5010036 PMID: 24300396
- Warheit, D.B. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol. Sci., 2008, 101(2), 183-185. doi: 10.1093/toxsci/kfm279 PMID: 18300382
- Raunio, H. In silico toxicology - non-testing methods. Front. Pharmacol., 2011, 2, 33. doi: 10.3389/fphar.2011.00033 PMID: 21772821
- Rusyn, I.; Daston, G.P. Computational toxicology: Realizing the promise of the toxicity testing in the 21st century. Environ. Health Perspect., 2010, 118(8), 1047-1050. doi: 10.1289/ehp.1001925 PMID: 20483702
- Winkler, D.A.; Mombelli, E.; Pietroiusti, A.; Tran, L.; Worth, A.; Fadeel, B.; McCall, M.J. Applying quantitative structureactivity relationship approaches to nanotoxicology: Current status and future potential. Toxicology, 2013, 313(1), 15-23. doi: 10.1016/j.tox.2012.11.005 PMID: 23165187
- Oksel, C.; Ma, C.Y.; Wang, X.Z. Structure-activity relationship models for hazard assessment and risk management of engineered nanomaterials. Procedia Eng., 2015, 102, 1500-1510. doi: 10.1016/j.proeng.2015.01.284
- Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv., 2017, 14(7), 851-864. doi: 10.1080/17425247.2016.1244187 PMID: 27730820
- Elinzano, H.; Toms, S.; Robison, J.; Mohler, A.; Carcieri, A.; Cielo, D. Nanoliposomal irinotecan and metronomic temozolomide for patients with recurrent glioblastoma: BrUOG329, a Phase I brown university oncology research group trial. Am. J. Clin. Oncol., 2021, 44(2), 49-52.
- Clarke, J.L.; Molinaro, A.M.; Cabrera, J.R.; DeSilva, A.A.; Rabbitt, J.E.; Prey, J. A phase 1 trial of intravenous liposomal irinotecan in patients with recurrent high-grade glioma. Cancer Chemother. Pharmacol., 2017, 79(3), 603-610. doi: 10.1007/s00280-017-3247-3
- Beier, C.P.; Schmid, C.; Gorlia, T.; Kleinletzenberger, C.; Beier, D.; Grauer, O. RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma-a phase II study. BMC Cancer, 2009, 9, 308.
- Brandsma, D.; Kerklaan, B.M.; Diéras, V.; Altintas, S.; Anders, C.; Ballester, M.A. Phase 1/2a study of glutathione pegylated liposomal doxorubicin (2b3-101) in patients with brain metastases (BM) from solid tumors or recurrent high grade gliomas (HGG). ESMO J, 2014, 25(SUPPLEMENT 4), IV157.
- Kasenda, B.; König, D.; Manni, M.; Ritschard, R.; Duthaler, U.; Bartoszek, E. Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open, 2022, 7(1), 100365. doi: 10.1016/j.esmoop.2021.100365
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
- Available from: https://clinicaltrials.gov/study/NCT02340156
- Gao, Y.; Joshi, M.; Zhao, Z.; Mitragotri, S.J.B.; Medicine, T. PEGylated therapeutics in the clinic. Bioeng. Transl. Med., 2023. doi: 10.1002/btm2.10600
- Siefker-Radtke, A. A phase l study of a tumor-targeted systemic nanodelivery system, SGT-94, in genitourinary cancers. Mol. Ther., 2016, 24(8), 1484-1491.
- Kumthekar, P.; Ko, C.H.; Paunesku, T.; Dixit, K.; Sonabend, A.M.; Bloch, O. A first-in-human phase 0 clinical study of RNA interferencebased spherical nucleic acids in patients with recurrent glioblastoma. Sci. Transl. Med., 2021, 13(584), eabb3945. doi: 10.1126/scitranslmed.abb3945
- Zucchetti, M.; Boiardi, A.; Silvani, A.; Parisi, I.; Piccolrovazzi, S.; DIncalci, M. Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother. Pharmacol., 1999, 44, 173-176.
- Chastagner, P.; Devictor, B.; Geoerger, B.; Aerts, I.; Leblond, P.; Frappaz, D. Phase I study of non-pegylated liposomal doxorubicin in children with recurrent/refractory high-grade glioma. Cancer Chemother. Pharmacol., 2015, 76(2), 425-432.
- Ruiz-Molina, D.; Mao, X.; Alfonso-Triguero, P.; Lorenzo, J.; Bruna, J.; Yuste, V.J. Advances in preclinical/clinical glioblastoma treatment: Can nanoparticles be of help? Cancers, 2022, 14(19), 4960.
Supplementary files
