The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies


Cite item

Full Text

Abstract

:Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.

About the authors

Mohaddeseh Bahmani

Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Saba Mehrtabar

Student Research Committee, Tabriz University of Medical Science

Email: info@benthamscience.net

Ali Jafarizadeh

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Sevda Zoghi

Liver and Gastrointestinal Diseases Research Cente, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Fatemah Heravi

Macquarie Medical School, Macquarie University

Email: info@benthamscience.net

Amin Abbasi

Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Sarvin Sanaie

Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Sama Rahnemayan

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Hamed Leylabadlo

Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhang, Q.; Yun, Y.; An, H.; Zhao, W.; Ma, T.; Wang, Z.; Yang, F. Gut microbiome composition associated with major depressive disorder and sleep quality. Front. Psychiatry, 2021, 12, 645045. doi: 10.3389/fpsyt.2021.645045 PMID: 34093266
  2. Belmaker, R.H.; Agam, G. Major depressive disorder. N. Engl. J. Med., 2008, 358(1), 55-68. doi: 10.1056/NEJMra073096 PMID: 18172175
  3. Chen, J.; Zheng, P.; Liu, Y.; Zhong, X.; Wang, H.; Guo, Y.; Xie, P. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr. Dis. Treat., 2018, 14, 647-655. doi: 10.2147/NDT.S159322 PMID: 29520144
  4. Lopez Molina, M.A.; Jansen, K.; Drews, C.; Pinheiro, R.; Silva, R.; Souza, L. Major depressive disorder symptoms in male and female young adults. Psychol. Health Med., 2014, 19(2), 136-145. doi: 10.1080/13548506.2013.793369 PMID: 23651450
  5. Ebrahimzadeh, L.H.; Ghotaslou, R.; Samadi, K.H.; Feizabadi, M.M.; Moaddab, S.Y.; Farajnia, S.; Sheykhsaran, E.; Sanaie, S.; Shanehbandi, D.; Bannazadeh Baghi, H. Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(4), 613-627. doi: 10.1007/s10096-019-03746-1 PMID: 31828683
  6. Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell, 2012, 148(6), 1258-1270. doi: 10.1016/j.cell.2012.01.035 PMID: 22424233
  7. Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar, R.D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803. doi: 10.3748/wjg.v21.i29.8787 PMID: 26269668
  8. McGuinness, A.J.; Davis, J.A.; Dawson, S.L.; Loughman, A.; Collier, F.; O’Hely, M.; Simpson, C.A.; Green, J.; Marx, W.; Hair, C.; Guest, G.; Mohebbi, M.; Berk, M.; Stupart, D.; Watters, D.; Jacka, F.N. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry, 2022, 27(4), 1920-1935. doi: 10.1038/s41380-022-01456-3 PMID: 35194166
  9. Slyepchenko, A.; Maes, M.; Jacka, F.N. Kِhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; Carvalho, A.F. Gut microbiota, bacterial translocation, and interactions with diet: Pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother. Psychosom., 2017, 86(1), 31-46. doi: 10.1159/000448957 PMID: 27884012
  10. Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol., 2020, 13(2), 423-434. doi: 10.1111/1751-7915.13479 PMID: 31448542
  11. Zhuang, Z.; Yang, R.; Wang, W.; Qi, L.; Huang, T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J. Neuroinflammation, 2020, 17(1), 288. doi: 10.1186/s12974-020-01961-8 PMID: 33008395
  12. Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol., 2015, 23(1), 1-21. doi: 10.1037/a0038550 PMID: 25643025
  13. Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in major depressive disorder. Eur. Neuropsychopharmacol., 2016, 26(3), 397-410. doi: 10.1016/j.euroneuro.2015.12.039 PMID: 26851834
  14. Haleem, D.J.; Haider, S. Food restriction decreases serotonin and its synthesis rate in the hypothalamus. Neuroreport, 1996, 7(6), 1153-1156. doi: 10.1097/00001756-199604260-00011 PMID: 8817522
  15. Badawy, A.A.B. Tryptophan: The key to boosting brain serotonin synthesis in depressive illness. J. Psychopharmacol., 2013, 27(10), 878-893. doi: 10.1177/0269881113499209 PMID: 23904410
  16. Hou, C.; Jia, F.; Liu, Y.; Li, L. CSF serotonin, 5-hydroxyindolacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res., 2006, 1095(1), 154-158. doi: 10.1016/j.brainres.2006.04.026 PMID: 16713589
  17. Albert, P.R.; Le François, B.; Vahid-Ansari, F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: The 5-HT1A receptor gene as a paradigm. J. Psychiatry Neurosci., 2019, 44(3), 164-176. doi: 10.1503/jpn.180209 PMID: 30807072
  18. Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain, 2017, 10(1), 28. doi: 10.1186/s13041-017-0306-y PMID: 28646910
  19. Stockmeier, C.A.; Shapiro, L.A.; Dilley, G.E.; Kolli, T.N.; Friedman, L.; Rajkowska, G. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J. Neurosci., 1998, 18(18), 7394-7401. doi: 10.1523/JNEUROSCI.18-18-07394.1998 PMID: 9736659
  20. Ślifirski, G.; Król, M.; Turło, J. 5-HT receptors and the development of new antidepressants. Int. J. Mol. Sci., 2021, 22(16), 9015. doi: 10.3390/ijms22169015 PMID: 34445721
  21. Moret, C.; Briley, M. The importance of norepinephrine in depression. Neuropsych. Dis. Treat., 2011, 7(S1), 9-13.
  22. Cottingham, C.; Wang, Q. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy. Neurosci. Biobehav. Rev., 2012, 36(10), 2214-2225. doi: 10.1016/j.neubiorev.2012.07.011 PMID: 22910678
  23. Rivero, G.; Gabilondo, A.M.; García-Sevilla, J.A. La Harpe, R.; Callado, L.F.; Meana, J.J. Increased α2- and β1-adrenoceptor densities in postmortem brain of subjects with depression: Differential effect of antidepressant treatment. J. Affect. Disord., 2014, 167, 343-350. doi: 10.1016/j.jad.2014.06.016 PMID: 25020269
  24. Xu, Y.; Li, F.; Huang, X.; Sun, N.; Zhang, F.; Liu, P.; Yang, H.; Luo, J.; Sun, Y.; Zhang, K. The norepinephrine transporter gene modulates the relationship between urban/rural residency and major depressive disorder in a Chinese population. Psychiatry Res., 2009, 168(3), 213-217. doi: 10.1016/j.psychres.2009.03.015 PMID: 19564048
  25. Haenisch, B.; Bilkei-Gorzo, A.; Caron, M.G.; Bönisch, H Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J. Neurochem., 2009, 111(2), 403-416. doi: 10.1111/j.1471-4159.2009.06345.x PMID: 19694905
  26. Vishnuram, P. Study of high dose Vitamin-C in anxity & depression cases. Indian J. Basic Appl. Med. Res., 2020, 101, 374-378.
  27. Li, Y.; Zhang, B.; Pan, X.; Wang, Y.; Xu, X.; Wang, R.; Liu, Z. Dopamine-mediated major depressive disorder in the neural circuit of ventral tegmental area-nucleus accumbens-medial prefrontal cortex: from biological evidence to computational models. Front. Cell. Neurosci., 2022, 16, 923039. doi: 10.3389/fncel.2022.923039 PMID: 35966208
  28. Der-Avakian, A.; Markou, A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci., 2012, 35(1), 68-77. doi: 10.1016/j.tins.2011.11.005 PMID: 22177980
  29. Belujon, P.; Grace, A.A. Dopamine system dysregulation in major depressive disorders. Int. J. Neuropsychopharmacol., 2017, 20(12), 1036-1046. doi: 10.1093/ijnp/pyx056 PMID: 29106542
  30. Pittenger, C.; Duman, R.S. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 2008, 33(1), 88-109. doi: 10.1038/sj.npp.1301574 PMID: 17851537
  31. Trullas, R.; Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol., 1990, 185(1), 1-10. doi: 10.1016/0014-2999(90)90204-J PMID: 2171955
  32. Chandley, M.J.; Szebeni, A.; Szebeni, K.; Crawford, J.D.; Stockmeier, C.A.; Turecki, G.; Kostrzewa, R.M.; Ordway, G.A. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int. J. Neuropsychopharmacol., 2014, 17(10), 1569-1578. doi: 10.1017/S1461145714000662 PMID: 24925192
  33. Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354. doi: 10.1016/S0006-3223(99)00230-9 PMID: 10686270
  34. Berk, M.; Plein, H.; Ferreira, D. Platelet glutamate receptor supersensitivity in major depressive disorder. Clin. Neuropharmacol., 2001, 24(3), 129-132. doi: 10.1097/00002826-200105000-00002 PMID: 11391122
  35. Brambilla, P.; Perez, J.; Barale, F.; Schettini, G.; Soares, J.C. GABAergic dysfunction in mood disorders. Mol. Psychiatry, 2003, 8(8), 721-737. 715 doi: 10.1038/sj.mp.4001362 PMID: 12888801
  36. Abdallah, C.G.; Jackowski, A.; Sato, J.R.; Mao, X.; Kang, G.; Cheema, R.; Coplan, J.D.; Mathew, S.J.; Shungu, D.C. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur. Neuropsychopharmacol., 2015, 25(8), 1082-1090. doi: 10.1016/j.euroneuro.2015.04.025 PMID: 25983019
  37. Croarkin, P.E.; Levinson, A.J.; Daskalakis, Z.J. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci. Biobehav. Rev., 2011, 35(3), 818-825. doi: 10.1016/j.neubiorev.2010.10.002 PMID: 20946914
  38. Sanacora, G.; Mason, G.F.; Rothman, D.L.; Hyder, F.; Ciarcia, J.J.; Ostroff, R.B.; Berman, R.M.; Krystal, J.H. Increased cortical GABA concentrations in depressed patients receiving ECT. Am. J. Psychiatry, 2003, 160(3), 577-579. doi: 10.1176/appi.ajp.160.3.577 PMID: 12611844
  39. Hosie, A.M.; Wilkins, M.E.; da Silva, H.M.A.; Smart, T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature, 2006, 444(7118), 486-489. doi: 10.1038/nature05324 PMID: 17108970
  40. Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; Jonas, J.; Kanes, S. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 2018, 392(10152), 1058-1070. doi: 10.1016/S0140-6736(18)31551-4 PMID: 30177236
  41. Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621. doi: 10.1002/cphy.c150015 PMID: 27065163
  42. Shea, A.; Walsh, C.; MacMillan, H.; Steiner, M. Child maltreatment and HPA axis dysregulation: Relationship to major depressive disorder and post traumatic stress disorder in females. Psychoneuroendocrinology, 2005, 30(2), 162-178. doi: 10.1016/j.psyneuen.2004.07.001 PMID: 15471614
  43. Young, E.A.; Altemus, M.; Lopez, J.F.; Kocsis, J.H.; Schatzberg, A.F.; deBattista, C.; Zubieta, J.K. HPA axis activation in major depression and response to fluoxetine: A pilot study. Psychoneuroendocrinology, 2004, 29(9), 1198-1204. doi: 10.1016/j.psyneuen.2004.02.002 PMID: 15219644
  44. Vreeburg, S.A.; Hoogendijk, W.J.G.; van Pelt, J.; DeRijk, R.H.; Verhagen, J.C.M.; van Dyck, R.; Smit, J.H.; Zitman, F.G.; Penninx, B.W.J.H. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: Results from a large cohort study. Arch. Gen. Psychiatry, 2009, 66(6), 617-626. doi: 10.1001/archgenpsychiatry.2009.50 PMID: 19487626
  45. Papiol, S.; Arias, B.; Gastó, C.; Gutiérrez, B.; Catalán, R.; Fañanás, L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J. Affect. Disord., 2007, 104(1-3), 83-90. doi: 10.1016/j.jad.2007.02.017 PMID: 17467808
  46. Holsboer-Trachsler, E.; Stohler, R.; Hatzinger, M. Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res., 1991, 38(2), 163-171. doi: 10.1016/0165-1781(91)90041-M PMID: 1661430
  47. Kunugi, H.; Urushibara, T.; Nanko, S. Combined DEX/CRH test among Japanese patients with major depression. J. Psychiatr. Res., 2004, 38(2), 123-128. doi: 10.1016/S0022-3956(03)00103-1 PMID: 14757325
  48. Kunugi, H.; Hori, H.; Adachi, N.; Numakawa, T. Interface between hypothalamic‐pituitary‐adrenal axis and brain‐derived neurotrophic factor in depression. Psychiatry Clin. Neurosci., 2010, 64(5), 447-459. doi: 10.1111/j.1440-1819.2010.02135.x PMID: 20923424
  49. Lee, B.H.; Kim, Y.K. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig., 2010, 7(4), 231-235. doi: 10.4306/pi.2010.7.4.231 PMID: 21253405
  50. Lee, B.H.; Kim, H.; Park, S.H.; Kim, Y.K. Decreased plasma BDNF level in depressive patients. J. Affect. Disord., 2007, 101(1-3), 239-244. doi: 10.1016/j.jad.2006.11.005 PMID: 17173978
  51. Gonul, A.S.; Akdeniz, F.; Taneli, F.; Donat, O. Eker, Ç.; Vahip, S. Effect of treatment on serum brain–derived neurotrophic factor levels in depressed patients. Eur. Arch. Psychiatry Clin. Neurosci., 2005, 255(6), 381-386. doi: 10.1007/s00406-005-0578-6 PMID: 15809771
  52. Kumamaru, E.; Numakawa, T.; Adachi, N.; Yagasaki, Y.; Izumi, A.; Niyaz, M.; Kudo, M.; Kunugi, H. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol. Endocrinol., 2008, 22(3), 546-558. doi: 10.1210/me.2007-0264 PMID: 18096693
  53. Numakawa, T.; Kumamaru, E.; Adachi, N.; Yagasaki, Y.; Izumi, A.; Kunugi, H. Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-γ signaling for glutamate release via a glutamate transporter. Proc. Natl. Acad. Sci., 2009, 106(2), 647-652. doi: 10.1073/pnas.0800888106 PMID: 19126684
  54. Patel, A. Review: The role of inflammation in depression. Psychiatr. Danub., 2013, 25(Suppl. 2), S216-S223. PMID: 23995180
  55. Krogh, J.; Benros, M.E. Jørgensen, M.B.; Vesterager, L.; Elfving, B.; Nordentoft, M. The association between depressive symptoms, cognitive function, and inflammation in major depression. Brain Behav. Immun., 2014, 35, 70-76. doi: 10.1016/j.bbi.2013.08.014 PMID: 24016864
  56. Dantzer, R.; Wollman, E.E.; Yirmiya, R. Cytokines, stress, and depression; Springer, 1999. doi: 10.1007/b102345
  57. Enache, D.; Pariante, C.M.; Mondelli, V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav. Immun., 2019, 81, 24-40. doi: 10.1016/j.bbi.2019.06.015 PMID: 31195092
  58. Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med., 2009, 71(2), 171-186. doi: 10.1097/PSY.0b013e3181907c1b PMID: 19188531
  59. Opel, N.; Cearns, M.; Clark, S.; Toben, C.; Grotegerd, D.; Heindel, W.; Kugel, H.; Teuber, A.; Minnerup, H.; Berger, K.; Dannlowski, U.; Baune, B.T. Large-scale evidence for an association between low-grade peripheral inflammation and brain structural alterations in major depression in the BiDirect study. J. Psychiatry Neurosci., 2019, 44(6), 423-431. doi: 10.1503/jpn.180208 PMID: 31304733
  60. Schiepers, O.J.G.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(2), 201-217. doi: 10.1016/j.pnpbp.2004.11.003 PMID: 15694227
  61. Capuron, L.; Ravaud, A.; Neveu, P.J.; Miller, A.H.; Maes, M.; Dantzer, R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry, 2002, 7(5), 468-473. doi: 10.1038/sj.mp.4000995 PMID: 12082564
  62. Doolin, K.; Farrell, C.; Tozzi, L.; Harkin, A.; Frodl, T.; O’Keane, V. Diurnal hypothalamic-pituitary-adrenal axis measures and inflammatory marker correlates in major depressive disorder. Int. J. Mol. Sci., 2017, 18(10), 2226. doi: 10.3390/ijms18102226 PMID: 29064428
  63. Malhi, G.S.; Moore, J.; McGuffin, P. The genetics of major depressive disorder. Curr. Psychiatry Rep., 2000, 2(2), 165-169. doi: 10.1007/s11920-000-0062-y PMID: 11122950
  64. Kendler, K.S.; Gatz, M.; Gardner, C.O.; Pedersen, N.L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry, 2006, 163(1), 109-114. doi: 10.1176/appi.ajp.163.1.109 PMID: 16390897
  65. Lohoff, F.W. Overview of the genetics of major depressive disorder. Curr. Psychiatry Rep., 2010, 12(6), 539-546. doi: 10.1007/s11920-010-0150-6 PMID: 20848240
  66. Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry, 2003, 160(4), 636-645. doi: 10.1176/appi.ajp.160.4.636 PMID: 12668349
  67. Hasler, G.; Drevets, W.C.; Manji, H.K.; Charney, D.S. Discovering endophenotypes for major depression. Neuropsychopharmacology, 2004, 29(10), 1765-1781. doi: 10.1038/sj.npp.1300506 PMID: 15213704
  68. Frodl, T. Möller, H.J.; Meisenzahl, E. Neuroimaging genetics: New perspectives in research on major depression? Acta Psychiatr. Scand., 2008, 118(5), 363-372. doi: 10.1111/j.1600-0447.2008.01225.x PMID: 18644006
  69. Zhang, J.; Chen, Y.; Zhang, K.; Yang, H.; Sun, Y.; Fang, Y.; Shen, Y.; Xu, Q. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Biol. Psychiatry, 2010, 68(9), 795-800. doi: 10.1016/j.biopsych.2010.06.004 PMID: 20691428
  70. Fratelli, C.; Siqueira, J.; Silva, C.; Ferreira, E.; Silva, I. 5HTTLPR genetic variant and major depressive disorder: A review. Genes, 2020, 11(11), 1260. doi: 10.3390/genes11111260 PMID: 33114535
  71. Smythies, L.E.; Smythies, J.R. Microbiota, the immune system, black moods and the brainâ€"melancholia updated. Front. Hum. Neurosci., 2014, 8, 720. doi: 10.3389/fnhum.2014.00720 PMID: 25309394
  72. Capuco, A.; Urits, I.; Hasoon, J.; Chun, R.; Gerald, B.; Wang, J.K.; Kassem, H.; Ngo, A.L.; Abd-Elsayed, A.; Simopoulos, T.; Kaye, A.D.; Viswanath, O. Current perspectives on gut microbiome dysbiosis and depression. Adv. Ther., 2020, 37(4), 1328-1346. doi: 10.1007/s12325-020-01272-7 PMID: 32130662
  73. Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118. doi: 10.1016/j.jpsychires.2016.07.019 PMID: 27491067
  74. Jakobsson, H.E.; Jernberg, C.; Andersson, A.F. Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 2010, 5(3), e9836. doi: 10.1371/journal.pone.0009836 PMID: 20352091
  75. Shen, Y.; Yang, X.; Li, G.; Gao, J.; Liang, Y. The change of gut microbiota in MDD patients under SSRIs treatment. Sci. Rep., 2021, 11(1), 14918. doi: 10.1038/s41598-021-94481-1 PMID: 34290352
  76. Zoghi, S.; Sadeghpour, H.F.; Nikniaz, Z.; Shirmohamadi, M.; Moaddab, S.Y.; Ebrahimzadeh, L.H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng. Life Sci., 2023, e2300070. doi: 10.1002/elsc.202300070
  77. Macedo, D.; Filho, A.J.M.C.; Soares de Sousa, C.N.; Quevedo, J.; Barichello, T. Júnior, H.V.N.; Freitas de Lucena, D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord., 2017, 208, 22-32. doi: 10.1016/j.jad.2016.09.012 PMID: 27744123
  78. Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; Li, L.; Ruan, B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun., 2015, 48, 186-194. doi: 10.1016/j.bbi.2015.03.016 PMID: 25882912
  79. Zhong, Q.; Chen, J.; Wang, Y.; Shao, W.; Zhou, C.; Xie, P. Differential gut microbiota compositions related with the severity of major depressive disorder. Front. Cell. Infect. Microbiol., 2022, 12, 907239. doi: 10.3389/fcimb.2022.907239 PMID: 35899051
  80. Galley, J.D.; Nelson, M.C.; Yu, Z.; Dowd, S.E.; Walter, J.; Kumar, P.S.; Lyte, M.; Bailey, M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol., 2014, 14(1), 189. doi: 10.1186/1471-2180-14-189 PMID: 25028050
  81. Aoki-Yoshida, A.; Aoki, R.; Moriya, N.; Goto, T.; Kubota, Y.; Toyoda, A.; Takayama, Y.; Suzuki, C. Omics studies of the murine intestinal ecosystem exposed to subchronic and mild social defeat stress. J. Proteome Res., 2016, 15(9), 3126-3138. doi: 10.1021/acs.jproteome.6b00262 PMID: 27482843
  82. Lai, W.; Deng, W.; Xu, S.; Zhao, J.; Xu, D.; Liu, Y.; Guo, Y.; Wang, M.; He, F.; Ye, S.; Yang, Q.; Liu, T.; Zhang, Y.; Wang, S.; Li, M.; Yang, Y.; Xie, X.; Rong, H. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol. Med., 2021, 51(1), 90-101. doi: 10.1017/S0033291719003027 PMID: 31685046
  83. Chen, Y.; Xue, F.; Yu, S.; Li, X.; Liu, L.; Jia, Y.; Yan, W.; Tan, Q.; Wang, H.; Peng, Z. Gut microbiota dysbiosis in depressed women: The association of symptom severity and microbiota function. J. Affect. Disord., 2021, 282, 391-400. doi: 10.1016/j.jad.2020.12.143 PMID: 33421868
  84. Zheng, S.; Zhu, Y.; Wu, W.; Zhang, Q.; Wang, Y.; Wang, Z.; Yang, F. A correlation study of intestinal microflora and first‐episode depression in Chinese patients and healthy volunteers. Brain Behav., 2021, 11(8), e02036. doi: 10.1002/brb3.2036 PMID: 33960717
  85. Ye, X.; Wang, D.; Zhu, H.; Wang, D.; Li, J.; Tang, Y.; Wu, J. Gut microbiota changes in patients with major depressive disorder treated with vortioxetine. Front. Psychiatry, 2021, 12, 641491. doi: 10.3389/fpsyt.2021.641491 PMID: 34025474
  86. Rong, H.; Xie, X.; Zhao, J.; Lai, W.; Wang, M.; Xu, D.; Liu, Y.; Guo, Y.; Xu, S.; Deng, W.; Yang, Q.; Xiao, L.; Zhang, Y.; He, F.; Wang, S.; Liu, T. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J. Psychiatr. Res., 2019, 113, 90-99. doi: 10.1016/j.jpsychires.2019.03.017 PMID: 30927646
  87. Liu, R.T.; Rowan-Nash, A.D.; Sheehan, A.E.; Walsh, R.F.L.; Sanzari, C.M.; Korry, B.J.; Belenky, P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun., 2020, 88, 308-324. doi: 10.1016/j.bbi.2020.03.026 PMID: 32229219
  88. Chen, J.J.; He, S.; Fang, L.; Wang, B.; Bai, S.J.; Xie, J.; Zhou, C.J.; Wang, W.; Xie, P. Age-specific differential changes on gut microbiota composition in patients with major depressive disorder. Aging, 2020, 12(3), 2764-2776. doi: 10.18632/aging.102775 PMID: 32040443
  89. Dong, Z.; Shen, X.; Hao, Y.; Li, J.; Li, H.; Xu, H.; Yin, L.; Kuang, W. Gut microbiome: A potential indicator for differential diagnosis of major depressive disorder and general anxiety disorder. Front. Psychiatry, 2021, 12, 651536. doi: 10.3389/fpsyt.2021.651536 PMID: 34589003
  90. Zheng, P.; Yang, J.; Li, Y.; Wu, J.; Liang, W.; Yin, B.; Tan, X.; Huang, Y.; Chai, T.; Zhang, H.; Duan, J.; Zhou, J.; Sun, Z.; Chen, X.; Marwari, S.; Lai, J.; Huang, T.; Du, Y.; Zhang, P.; Perry, S.W.; Wong, M.L.; Licinio, J.; Hu, S.; Xie, P.; Wang, G. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv. Sci., 2020, 7(7), 1902862. doi: 10.1002/advs.201902862 PMID: 32274300
  91. Foster, J.A.; Baker, G.B.; Dursun, S.M. The relationship between the gut microbiome-immune system-brain axis and major depressive disorder. Front. Neurol., 2021, 12, 721126. doi: 10.3389/fneur.2021.721126 PMID: 34650506
  92. Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712. doi: 10.1038/nrn3346 PMID: 22968153
  93. Waclawiková, B.; El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals, 2018, 11(3), 63. doi: 10.3390/ph11030063 PMID: 29941795
  94. Liu, S.; Guo, R.; Liu, F.; Yuan, Q.; Yu, Y.; Ren, F. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr. Dis. Treat., 2020, 16, 859-869. doi: 10.2147/NDT.S243551 PMID: 32280227
  95. Kundu, P.; Blacher, E.; Elinav, E.; Pettersson, S. Our gut microbiome: The evolving inner self. Cell, 2017, 171(7), 1481-1493. doi: 10.1016/j.cell.2017.11.024 PMID: 29245010
  96. Lu, J. Herbal formula fo shou san attenuates Alzheimer’s diseaserelated pathologies via the gut-liver-brain axis in APP/PS1 mouse model of Alzheimer’s disease. Evid.-based Complem. Altern. Med., 2019, 2019
  97. Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56. doi: 10.1038/nrn2297 PMID: 18073775
  98. Gritti, D.; Delvecchio, G.; Ferro, A.; Bressi, C.; Brambilla, P. Neuroinflammation in major depressive disorder: A review of PET imaging studies examining the 18-kDa translocator protein. J. Affect. Disord., 2021, 292, 642-651. doi: 10.1016/j.jad.2021.06.001 PMID: 34153835
  99. Canli, T. Reconceptualizing major depressive disorder as an infectious disease. Biol. Mood Anxiety Disord., 2014, 4(1), 10. doi: 10.1186/2045-5380-4-10 PMID: 25364500
  100. de Castro-Silva, K.M.; Carvalho, A.C.; Cavalcanti, M.T.; Martins, P.S.; França, J.R.; Oquendo, M.; Kritski, A.L.; Sweetland, A. Prevalence of depression among patients with presumptive pulmonary tuberculosis in Rio de Janeiro, Brazil. Br. J. Psychiatry, 2019, 41(4), 316-323. doi: 10.1590/1516-4446-2018-0076 PMID: 30365672
  101. Moss, M.E.; Beck, J.D.; Kaplan, B.H.; Offenbacher, S.; Weintraub, J.A.; Koch, G.G.; Genco, R.J.; Machtei, E.E.; Tedesco, L.A. Exploratory case‐control analysis of psychosocial factors and adult periodontitis. J. Periodontol., 1996, 67(10S), 1060-1069. doi: 10.1902/jop.1996.67.10s.1060
  102. Dachew, B.A.; Scott, J.G.; Alati, R. Gestational urinary tract infections and the risk of antenatal and postnatal depressive and anxiety symptoms: A longitudinal population-based study. J. Psychosom. Res., 2021, 150, 110600. doi: 10.1016/j.jpsychores.2021.110600 PMID: 34547662
  103. Rivera Rivera, Y. Vázquez Santiago, F.J.; Albino, E.; Sánchez, M.D.; Rivera-Amill, V. Impact of depression and inflammation on the progression of HIV disease. J. Clin. Cell. Immunol., 2016, 7(3), 423. doi: 10.4172/2155-9899.1000423 PMID: 27478681
  104. Zürcher, S.J.; Banzer, C.; Adamus, C.; Lehmann, A.I.; Richter, D.; Kerksieck, P. Post-viral mental health sequelae in infected persons associated with COVID-19 and previous epidemics and pandemics: Systematic review and meta-analysis of prevalence estimates. J. Infect. Public Health, 2022, 15(5), 599-608. doi: 10.1016/j.jiph.2022.04.005 PMID: 35490117
  105. Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun., 2020, 89, 594-600. doi: 10.1016/j.bbi.2020.07.037 PMID: 32738287
  106. Lester, D. Brain parasites and suicide. Psychol. Rep., 2010, 107(2), 424-424. doi: 10.2466/12.13.PR0.107.5.424 PMID: 21117467
  107. Pires, M.; Wright, B.; Kaye, P.M. da Conceição, V.; Churchill, R.C. The impact of leishmaniasis on mental health and psychosocial well-being: A systematic review. PLoS One, 2019, 14(10), e0223313. doi: 10.1371/journal.pone.0223313 PMID: 31622369
  108. Averina, O.V.; Zorkina, Y.A.; Yunes, R.A.; Kovtun, A.S.; Ushakova, V.M.; Morozova, A.Y.; Kostyuk, G.P.; Danilenko, V.N.; Chekhonin, V.P. Bacterial metabolites of human gut microbiota correlating with depression. Int. J. Mol. Sci., 2020, 21(23), 9234. doi: 10.3390/ijms21239234 PMID: 33287416
  109. Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell, 2019, 6(10), 454-481. doi: 10.15698/mic2019.10.693 PMID: 31646148
  110. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P. Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345. doi: 10.1016/j.cell.2016.05.041 PMID: 27259147
  111. DeCastro, M.; Nankova, B.B.; Shah, P.; Patel, P.; Mally, P.V.; Mishra, R.; La Gamma, E.F. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res. Mol. Brain Res., 2005, 142(1), 28-38. doi: 10.1016/j.molbrainres.2005.09.002 PMID: 16219387
  112. Fuchikami, M.; Yamamoto, S.; Morinobu, S.; Okada, S.; Yamawaki, Y.; Yamawaki, S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 320-324. doi: 10.1016/j.pnpbp.2015.03.010 PMID: 25818247
  113. Nankova, B.B.; Agarwal, R.; MacFabe, D.F.; La Gamma, E.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One, 2014, 9(8), e103740. doi: 10.1371/journal.pone.0103740 PMID: 25170769
  114. Skonieczna-Żydecka, K.; Grochans, E.; Maciejewska, D.; Szkup, M.; Schneider-Matyka, D.; Jurczak, A.; Łoniewski, I.; Kaczmarczyk, M.; Marlicz, W.; Czerwińska-Rogowska, M.; Pełka-Wysiecka, J.; Dec, K.; Stachowska, E. Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients, 2018, 10(12), 1939. doi: 10.3390/nu10121939 PMID: 30544489
  115. Ortega, M.A.; Alvarez-Mon, M.A. García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; Quintero, J.; Álvarez-Mon, M. Gut microbiota metabolites in major depressive disorder-Deep insights into their pathophysiological role and potential translational applications. Metabolites, 2022, 12(1), 50. doi: 10.3390/metabo12010050 PMID: 35050172
  116. Tang, C.F.; Wang, C.Y.; Wang, J.H.; Wang, Q.N.; Li, S.J.; Wang, H.O.; Zhou, F.; Li, J.M. Short-chain fatty acids ameliorate depressive-like behaviors of high fructose-fed mice by rescuing hippocampal neurogenesis decline and blood-brain barrier damage. Nutrients, 2022, 14(9), 1882. doi: 10.3390/nu14091882 PMID: 35565849
  117. Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M. Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil., 2014, 26(8), 1155-1162. doi: 10.1111/nmo.12378 PMID: 24888394
  118. Wu, M.; Tian, T.; Mao, Q.; Zou, T.; Zhou, C.; Xie, J.; Chen, J. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Transl. Psychiatry, 2020, 10(1), 350. doi: 10.1038/s41398-020-01038-3 PMID: 33067412
  119. Müller, B.; Rasmusson, A.J.; Just, D.; Jayarathna, S.; Moazzami, A.; Novicic, Z.K.; Cunningham, J.L. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom. Med., 2021, 83(7), 693-699. doi: 10.1097/PSY.0000000000000965 PMID: 34267089
  120. Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab., 2016, 24(1), 41-50. doi: 10.1016/j.cmet.2016.05.005 PMID: 27320064
  121. Peng, Y.F.; Xiang, Y.; Wei, Y.S. The significance of routine biochemical markers in patients with major depressive disorder. Sci. Rep., 2016, 6(1), 34402. doi: 10.1038/srep34402 PMID: 27683078
  122. Boston, P.F.; Dursun, S.M.; Reveley, M.A. Cholesterol and mental disorder. Br. J. Psychiatry, 1996, 169(6), 682-689. doi: 10.1192/bjp.169.6.682 PMID: 8968624
  123. Mahmoudian Dehkordi, S.; Bhattacharyya, S.; Brydges, C.R.; Jia, W.; Fiehn, O.; Rush, A.J.; Dunlop, B.W.; Kaddurah-Daouk, R. Gut microbiome-linked metabolites in the pathobiology of major depression with or without anxiety-A role for bile acids. Front. Neurosci., 2022, 16, 937906. doi: 10.3389/fnins.2022.937906 PMID: 35937867
  124. Monteiro-Cardoso, V.F. Corlianò, M.; Singaraja, R.R. Bile acids: A communication channel in the gut-brain axis. Neuromolecular Med., 2021, 23(1), 99-117. doi: 10.1007/s12017-020-08625-z PMID: 33085065
  125. Huang, C.; Wang, J.; Hu, W.; Wang, C.; Lu, X.; Tong, L.; Wu, F.; Zhang, W. Identification of functional farnesoid X receptors in brain neurons. FEBS Lett., 2016, 590(18), 3233-3242. doi: 10.1002/1873-3468.12373 PMID: 27545319
  126. Kimmel, M.; Jin, W.; Xia, K.; Lun, K.; Azcarate-Peril, A.; Plantinga, A.; Wu, M.; Ataei, S.; Rackers, H.; Carroll, I.; Meltzer-Brody, S.; Fransson, E.; Knickmeyer, R. Metabolite trajectories across the perinatal period and mental health: A preliminary study of tryptophan-related metabolites, bile acids and microbial composition. Behav. Brain Res., 2022, 418, 113635. doi: 10.1016/j.bbr.2021.113635 PMID: 34755640
  127. Tung, T.H.; Chen, Y.C.; Lin, Y.T.; Huang, S.Y. N-3 PUFA ameliorates the gut microbiota, bile acid profiles, and neuropsychiatric behaviours in a rat model of geriatric depression. Biomedicines, 2022, 10(7), 1594. doi: 10.3390/biomedicines10071594 PMID: 35884899
  128. Li, H.; Zhu, X.; Xu, J.; Li, L.; Kan, W.; Bao, H.; Xu, J.; Wang, W.; Yang, Y.; Chen, P.; Zou, Y.; Feng, Y.; Yang, J.; Du, J.; Wang, G. The FXR mediated anti-depression effect of CDCA underpinned its therapeutic potentiation for MDD. Int. Immunopharmacol., 2023, 115, 109626. doi: 10.1016/j.intimp.2022.109626 PMID: 36584576
  129. Chen, W.G.; Zheng, J.X.; Xu, X.; Hu, Y.M.; Ma, Y.M. Hippocampal FXR plays a role in the pathogenesis of depression: A preliminary study based on lentiviral gene modulation. Psychiatry Res., 2018, 264, 374-379. doi: 10.1016/j.psychres.2018.04.025 PMID: 29677620
  130. Lu, X.; Yang, R.R.; Zhang, J.L.; Wang, P.; Gong, Y.; Hu, W.; Wu, Y.; Gao, M.; Huang, C. Tauroursodeoxycholic acid produces antidepressant‐like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido‐nitrosative stress, and endoplasmic reticulum stress. Fundam. Clin. Pharmacol., 2018, 32(4), 363-377. doi: 10.1111/fcp.12367 PMID: 29578616
  131. Yanguas-Casás, N.; Barreda-Manso, M.A.; Nieto-Sampedro, M.; Romero-Ramيrez, L. TUDCA: An agonist of the bile acid receptor GPBAR1/TGR5 with anti‐inflammatory effects in microglial cells. J. Cell. Physiol., 2017, 232(8), 2231-2245. doi: 10.1002/jcp.25742 PMID: 27987324
  132. Hashioka, S.; Inoue, K.; Hayashida, M.; Wake, R.; Oh-Nishi, A.; Miyaoka, T. Implications of systemic inflammation and periodontitis for major depression. Front. Neurosci., 2018, 12, 483. doi: 10.3389/fnins.2018.00483 PMID: 30072865
  133. Kéri, S. Szabَ, C.; Kelemen, O. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav. Immun., 2014, 40, 235-243. doi: 10.1016/j.bbi.2014.03.020 PMID: 24726793
  134. Yirmiya, R. Endotoxin produces a depressive-like episode in rats. Brain Res., 1996, 711(1-2), 163-174. doi: 10.1016/0006-8993(95)01415-2 PMID: 8680860
  135. He, Y.; Li, W.; Wang, Y.; Tian, Y.; Chen, X.; Wu, Z.; Lan, T.; Li, Y.; Bai, M.; Liu, J.; Cheng, K.; Xie, P. Major depression accompanied with inflammation and multiple cytokines alterations: Evidences from clinical patients to macaca fascicularis and LPS-induced depressive mice model. J. Affect. Disord., 2020, 271, 262-271. doi: 10.1016/j.jad.2020.03.131 PMID: 32479325
  136. Wu, Y.; Fu, Y.; Rao, C.; Li, W.; Liang, Z.; Zhou, C.; Shen, P.; Cheng, P.; Zeng, L.; Zhu, D.; Zhao, L.; Xie, P. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav. Brain Res., 2016, 308, 115-127. doi: 10.1016/j.bbr.2016.04.032 PMID: 27102340
  137. Rahman, S.; Alzarea, S. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities. Prog. Mol. Biol. Transl. Sci., 2019, 167, 159-178. doi: 10.1016/bs.pmbts.2019.06.010 PMID: 31601403
  138. Wang, H.; He, Y.; Sun, Z.; Ren, S.; Liu, M.; Wang, G.; Yang, J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J. Neuroinflammation, 2022, 19(1), 132. doi: 10.1186/s12974-022-02492-0 PMID: 35668399
  139. Qiu, T.; Guo, J.; Wang, L.; Shi, L.; Ai, M.; Zhu, X.; Peng, Z.; Kuang, L. Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice: An 18F DPA-714 PET imaging study. Bosn. J. Basic Med. Sci., 2022, 22(4), 649-659. doi: 10.17305/bjbms.2021.6825 PMID: 35113011
  140. Zhang, L.; Zhang, J.; You, Z. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front. Cell. Neurosci., 2018, 12, 306. doi: 10.3389/fncel.2018.00306 PMID: 30459555
  141. Maes, M.; Kubera, M.; Leunis, J-C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett., 2008, 29(1), 117-124. PMID: 18283240
  142. Cordeiro, R.C.; Chaves Filho, A.J.M.; Gomes, N.S.; Tomaz, V.S.; Medeiros, C.D.; Queiroz, A.I.G.; Maes, M.; Macedo, D.S.; Carvalho, A.F. Leptin prevents lipopolysaccharide-induced depressive-like behaviors in mice: involvement of dopamine receptors. Front. Psychiatry, 2019, 10, 125. doi: 10.3389/fpsyt.2019.00125 PMID: 30949073
  143. Cheng, L.; Huang, C.; Chen, Z. Tauroursodeoxycholic acid ameliorates lipopolysaccharide-induced depression like behavior in mice via the inhibition of neuroinflammation and oxido-nitrosative stress. Pharmacology, 2019, 103(1-2), 93-100. doi: 10.1159/000494139 PMID: 30517939
  144. Brydges, C.R.; Fiehn, O.; Mayberg, H.S.; Schreiber, H.; Dehkordi, S.M.; Bhattacharyya, S.; Cha, J.; Choi, K.S.; Craighead, W.E.; Krishnan, R.R.; Rush, A.J.; Dunlop, B.W.; Kaddurah-Daouk, R.; Penninx, B.; Binder, E.; Kastenmüller, G.; Arnold, M.; Nevado-Helgado, A.; Blach, C.; Milaneschi, Y.; Knauer-Arloth, J.; Jansen, R.; Mook-Kanamori, D.; Han, X.; Baillie, R.; Rinaldo, P. Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychic anxiety and its functional magnetic resonance imaging-based neurologic signature. Sci. Rep., 2021, 11(1), 21011. doi: 10.1038/s41598-021-99845-1 PMID: 34697401
  145. Lee, J.H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 2010, 34(4), 426-444. doi: 10.1111/j.1574-6976.2009.00204.x PMID: 20070374
  146. Delgado, I.; Cussotto, S.; Anesi, A.; Dexpert, S.; Aubert, A.; Aouizerate, B.; Beau, C.; Forestier, D.; Ledaguenel, P.; Magne, E.; Mattivi, F.; Capuron, L. Association between the indole pathway of tryptophan metabolism and subclinical depressive symptoms in obesity: A preliminary study. Int. J. Obes., 2022, 46(4), 885-888. doi: 10.1038/s41366-021-01049-0 PMID: 35001078
  147. Merchak, A.; Gaultier, A. Microbial metabolites and immune regulation: New targets for major depressive disorder. Brain, Behavior, Immunity - Health, 2020, 9, 100169. doi: 10.1016/j.bbih.2020.100169 PMID: 34589904
  148. Chen, Y.; Tian, P.; Wang, Z.; Pan, R.; Shang, K.; Wang, G.; Zhao, J.; Chen, W. Indole acetic acid exerts anti-depressive effects on an animal model of chronic mild stress. Nutrients, 2022, 14(23), 5019. doi: 10.3390/nu14235019 PMID: 36501051
  149. Liu, J.C.; Yu, H.; Li, R.; Zhou, C.H.; Shi, Q.Q.; Guo, L.; He, H. A preliminary comparison of plasma tryptophan metabolites and medium-and long-chain fatty acids in adult patients with major depressive disorder and schizophrenia. Medicina, 2023, 59(2), 413. doi: 10.3390/medicina59020413 PMID: 36837614
  150. Chen, J.; Zhou, C.; Zheng, P.; Cheng, K.; Wang, H.; Li, J.; Zeng, L.; Xie, P. Differential urinary metabolites related with the severity of major depressive disorder. Behav. Brain Res., 2017, 332, 280-287. doi: 10.1016/j.bbr.2017.06.012 PMID: 28624318
  151. Mir, H.D.; Milman, A.; Monnoye, M.; Douard, V.; Philippe, C.; Aubert, A.; Castanon, N.; Vancassel, S.; Guérineau, N.C.; Naudon, L.; Rabot, S. The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology, 2020, 119, 104750. doi: 10.1016/j.psyneuen.2020.104750 PMID: 32569990
  152. Zhang, X.; Hou, Y.; Li, Y.; Wei, W.; Cai, X.; Shao, H.; Yuan, Y.; Zheng, X. Taxonomic and metabolic signatures of gut microbiota for assessing the severity of depression and anxiety in major depressive disorder patients. Neuroscience, 2022, 496, 179-189. doi: 10.1016/j.neuroscience.2022.06.024 PMID: 35750110
  153. Naudon, L.; Philippe, C.; Monnoye, M.; Rhimi, M.; Rabot, S.; Calarge, C. Gut microbiota indole production and depressive-like symptoms: A fecal transplantation study in mice. Biol. Psychiatry, 2019, 85(10), S89-S90. doi: 10.1016/j.biopsych.2019.03.230
  154. Bampi, S.R.; Casaril, A.M.; Fronza, M.G.; Domingues, M.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V. Lenardão, E.J.; Savegnago, L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull., 2020, 161, 158-165. doi: 10.1016/j.brainresbull.2020.05.008 PMID: 32470357
  155. Kaiser, J.C.; Heinrichs, D.E. Branching out: Alterations in bacterial physiology and virulence due to branched-chain amino acid deprivation. MBio, 2018, 9(5), e01188-e18. doi: 10.1128/mBio.01188-18 PMID: 30181248
  156. Fellendorf, F.T. Branched-chain amino acids are associated with metabolic parameters in bipolar disorder. World J. Biol. Psychiatry, 2019, 20(10), 821-826. PMID: 29898625
  157. Layman, D.K. Role of leucine in protein metabolism during exercise and recovery. Can. J. Appl. Physiol., 2002, 27(6), 646-662. doi: 10.1139/h02-038 PMID: 12501002
  158. Scarnà, A.; Gijsman, H.J.; Mctavish, S.F.B.; Harmer, C.J.; Cowen, P.J.; Goodwin, G.M. Effects of a branched-chain amino acid drink in mania. Br. J. Psychiatry, 2003, 182(3), 210-213. doi: 10.1192/bjp.182.3.210 PMID: 12611783
  159. Baranyi, A.; Meinitzer, A.; Stepan, A.; Putz-Bankuti, C.; Breitenecker, R.J.; Stauber, R.; Kapfhammer, H.P. Rothenhäusler, H.B. A biopsychosocial model of interferon-alpha-induced depression in patients with chronic hepatitis C infection. Psychother. Psychosom., 2013, 82(5), 332-340. doi: 10.1159/000348587 PMID: 23942342
  160. Baranyi, A.; Amouzadeh-Ghadikolai, O.; von Lewinski, D. Rothenhäusler, H.B.; Theokas, S.; Robier, C.; Mangge, H.; Reicht, G.; Hlade, P.; Meinitzer, A. Branched-chain amino acids as new biomarkers of major depression-a novel neurobiology of mood disorder. PLoS One, 2016, 11(8), e0160542. doi: 10.1371/journal.pone.0160542 PMID: 27490818
  161. Jernigan, C.S.; Goswami, D.B.; Austin, M.C.; Iyo, A.H.; Chandran, A.; Stockmeier, C.A.; Karolewicz, B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(7), 1774-1779. doi: 10.1016/j.pnpbp.2011.05.010 PMID: 21635931
  162. Aquilani, R.; Boselli, M.; Boschi, F.; Viglio, S.; Iadarola, P.; Dossena, M.; Pastoris, O.; Verri, M. Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: A pilot study. Arch. Phys. Med. Rehabil., 2008, 89(9), 1642-1647. doi: 10.1016/j.apmr.2008.02.023 PMID: 18760149
  163. Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Dietary intake of branched-chain amino acids in relation to depression, anxiety and psychological distress. Nutr. J., 2021, 20(1), 11. doi: 10.1186/s12937-021-00670-z PMID: 33514378
  164. Robles, A.V.; Guarner, F. Linking the gut microbiota to human health. Br. J. Nutr., 2013, 109(S2), S21-S26. doi: 10.1017/S0007114512005235 PMID: 23360877
  165. Ebrahimzadeh, L.H.; Sanaie, S.; Sadeghpour, H.F.; Ahmadian, Z.; Ghotaslou, R. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infect. Genet. Evol., 2020, 81, 104268. doi: 10.1016/j.meegid.2020.104268 PMID: 32126303
  166. Tian, P.; Zou, R.; Wang, L.; Chen, Y.; Qian, X.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; Wang, G.; Chen, W. Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J. Adv. Res., 2023, 45, 117-125. doi: 10.1016/j.jare.2022.05.003 PMID: 35618633
  167. Goh, K.K.; Liu, Y.W.; Kuo, P.H.; Chung, Y.C.E.; Lu, M.L.; Chen, C.H. Effect of probiotics on depressive symptoms: A meta-analysis of human studies. Psychiatry Res., 2019, 282, 112568. doi: 10.1016/j.psychres.2019.112568 PMID: 31563280
  168. Yong, S.J.; Tong, T.; Chew, J.; Lim, W.L. Antidepressive mechanisms of probiotics and their therapeutic potential. Front. Neurosci., 2020, 13, 1361. doi: 10.3389/fnins.2019.01361 PMID: 32009871
  169. Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord., 2018, 228, 13-19. doi: 10.1016/j.jad.2017.11.063 PMID: 29197739
  170. Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry, 2017, 82(7), 472-487. doi: 10.1016/j.biopsych.2016.12.031 PMID: 28242013
  171. Paiva, I.H.R.; Duarte-Silva, E.; Peixoto, C.A. The role of prebiotics in cognition, anxiety, and depression. Eur. Neuropsychopharmacol., 2020, 34, 1-18. doi: 10.1016/j.euroneuro.2020.03.006 PMID: 32241688
  172. Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 2015, 232(10), 1793-1801. doi: 10.1007/s00213-014-3810-0 PMID: 25449699
  173. Vaghef-Mehrabany, E.; Ranjbar, F.; Asghari-Jafarabadi, M.; Hosseinpour-Arjmand, S.; Ebrahimi-Mameghani, M. Calorie restriction in combination with prebiotic supplementation in obese women with depression: Effects on metabolic and clinical response. Nutr. Neurosci., 2021, 24(5), 339-353. doi: 10.1080/1028415X.2019.1630985 PMID: 31241002
  174. Chudzik, A.; Orzyłowska, A.; Rola, R.; Stanisz, G.J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis. Biomolecules, 2021, 11(7), 1000. doi: 10.3390/biom11071000 PMID: 34356624
  175. Chi, L.; Khan, I.; Lin, Z.; Zhang, J.; Lee, M.Y.S.; Leong, W.; Hsiao, W.L.W.; Zheng, Y. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model. Phytomedicine, 2020, 67, 153157. doi: 10.1016/j.phymed.2019.153157 PMID: 31896054
  176. Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr., 2019, 38(2), 522-528. doi: 10.1016/j.clnu.2018.04.010 PMID: 29731182
  177. Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016, 32(3), 315-320. doi: 10.1016/j.nut.2015.09.003 PMID: 26706022
  178. Rudzki, L.; Ostrowska, L.; Pawlak, D.; Małus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology, 2019, 100, 213-222. doi: 10.1016/j.psyneuen.2018.10.010 PMID: 30388595
  179. Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021. doi: 10.3390/nu9091021 PMID: 28914794
  180. Ghorbani, Z.; Nazari, S.; Etesam, F.; Nourimajd, S.; Ahmadpanah, M.; Razeghi Jahromi, S. The effect of synbiotic as an adjuvant therapy to fluoxetine in moderate depression: A randomized multicenter trial. Arch. Neurosci., 2018, 5(2) doi: 10.5812/archneurosci.60507
  181. Louzada, E.R.; Ribeiro, S.M.L. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr. Neurosci., 2020, 23(2), 93-100. doi: 10.1080/1028415X.2018.1477349 PMID: 29788823
  182. Lalitsuradej, E.; Sirilun, S.; Sittiprapaporn, P.; Sivamaruthi, B.S.; Pintha, K.; Tantipaiboonwong, P.; Khongtan, S.; Fukngoen, P.; Peerajan, S.; Chaiyasut, C. The effects of synbiotics administration on stress-related parameters in thai subjects-a preliminary study. Foods, 2022, 11(5), 759. doi: 10.3390/foods11050759 PMID: 35267392
  183. Haghighat, N.; Rajabi, S.; Mohammadshahi, M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: A randomized, double-blinded, clinical trial. Nutr. Neurosci., 2021, 24(6), 490-499. doi: 10.1080/1028415X.2019.1646975 PMID: 31379269
  184. Lopez, K.M. Lynchburg. J. Med. Sci., 2022, 4(2), 46.
  185. Nandwana, V.; Debbarma, S. Fecal microbiota transplantation: A microbiome modulation technique for Alzheimer’s disease. Cureus, 2021, 13(7), e16503. doi: 10.7759/cureus.16503 PMID: 34430117
  186. Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol., 2012, 107(11), 1755. doi: 10.1038/ajg.2012.251 PMID: 23160295
  187. Cooke, N.C.A.; Bala, A.; Allard, J.P.; Hota, S.; Poutanen, S.; Taylor, V.H. The safety and efficacy of fecal microbiota transplantation in a population with bipolar disorder during depressive episodes: Study protocol for a pilot randomized controlled trial. Pilot Feasibility Stud., 2021, 7(1), 142. doi: 10.1186/s40814-021-00882-4 PMID: 34261526
  188. de Groot, P.F.; Frissen, M.N.; de Clercq, N.C.; Nieuwdorp, M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes, 2017, 8(3), 253-267. doi: 10.1080/19490976.2017.1293224 PMID: 28609252
  189. Zhang, F.; Chen, H.; Zhang, R.; Liu, Y.; Kong, N.; Guo, Y.; Xu, M. 5-Fluorouracil induced dysregulation of the microbiome-gut-brain axis manifesting as depressive like behaviors in rats. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165884. doi: 10.1016/j.bbadis.2020.165884 PMID: 32574836
  190. Kurokawa, S.; Kishimoto, T.; Mizuno, S.; Masaoka, T.; Naganuma, M.; Liang, K.; Kitazawa, M.; Nakashima, M.; Shindo, C.; Suda, W.; Hattori, M.; Kanai, T.; Mimura, M. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. J. Affect. Disord., 2018, 235, 506-512. doi: 10.1016/j.jad.2018.04.038 PMID: 29684865
  191. Zhang, Y.; Huang, R.; Cheng, M.; Wang, L.; Chao, J.; Li, J.; Zheng, P.; Xie, P.; Zhang, Z.; Yao, H. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome, 2019, 7(1), 116. doi: 10.1186/s40168-019-0733-3 PMID: 31439031
  192. Antushevich, H. Fecal microbiota transplantation in disease therapy. Clin. Chim. Acta, 2020, 503, 90-98. doi: 10.1016/j.cca.2019.12.010 PMID: 31968211
  193. Chevalier, G.; Siopi, E.; Guenin-Macé, L.; Pascal, M.; Laval, T.; Rifflet, A.; Boneca, I.G.; Demangel, C.; Colsch, B.; Pruvost, A.; Chu-Van, E.; Messager, A.; Leulier, F.; Lepousez, G.; Eberl, G.; Lledo, P.M. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun., 2020, 11(1), 6363. doi: 10.1038/s41467-020-19931-2 PMID: 33311466
  194. Li, Y. Microbiota-gut-brain axis and major depressive disorder: Implications for fecal microbiota transplantation therapy. Trad. Med. Res., 2021, 4(4), 35. doi: 10.53388/life2021-0824-338
  195. Petrof, E.O.; Khoruts, A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology, 2014, 146(6), 1573-1582. doi: 10.1053/j.gastro.2014.01.004 PMID: 24412527
  196. Chinna Meyyappan, A.; Sgarbossa, C.; Vazquez, G.; Bond, D.J.; Müller, D.J.; Milev, R. The safety and efficacy of microbial ecosystem therapeutic-2 in people with major depression: Protocol for a phase 2, double-blind, placebo-controlled study. JMIR Res. Protoc., 2021, 10(9), e31439. doi: 10.2196/31439 PMID: 34550085
  197. Meyyappan, A.C.; Forth, E.; Milev, R. The safety, efficacy, and tolerability of microbial ecosystem therapeutic-2 in people with major depressive disorder and/or generalized anxiety disorder: A Phase 1, Open-label study. JMIR Res. Protoc., 2021, 9(6), e17223.
  198. Chinna Meyyappan, A.; Forth, E.; Milev, R. Microbial ecosystem therapeutic-2 intervention in people with major depressive disorder and generalized anxiety disorder: Phase 1, Open-Label Study. Interact. J. Med. Res., 2022, 11(1), e32234. doi: 10.2196/32234 PMID: 35060914
  199. Inserra, A.; Rogers, G.B.; Licinio, J.; Wong, M.L. The microbiota‐inflammasome hypothesis of major depression. BioEssays, 2018, 40(9), 1800027. doi: 10.1002/bies.201800027 PMID: 30004130
  200. Włodarczyk, A.; Cubała, W.J.; Stawicki, M. Ketogenic diet for depression: A potential dietary regimen to maintain euthymia? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 109, 110257. doi: 10.1016/j.pnpbp.2021.110257 PMID: 33497756
  201. Aly, J.; Engmann, O. The way to a human’s brain goes through their stomach: dietary factors in major depressive disorder. Front. Neurosci., 2020, 14, 582853. doi: 10.3389/fnins.2020.582853 PMID: 33364919
  202. Ernst, C.; Olson, A.K.; Pinel, J.P.; Lam, R.W.; Christie, B.R. Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? J. Psychiatry Neurosci., 2006, 31(2), 84-92. PMID: 16575423
  203. Dey, S.; Singh, R.H.; Dey, P.K. Exercise training: Significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav., 1992, 52(6), 1095-1099. doi: 10.1016/0031-9384(92)90465-E PMID: 1283013
  204. Meeusen, R.; Thorré, K.; Chaouloff, F.; Sarre, S.; De Meirleir, K.; Ebinger, G.; Michotte, Y. Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Res., 1996, 740(1-2), 245-252. doi: 10.1016/S0006-8993(96)00872-4 PMID: 8973821
  205. Wilson, W.M.; Marsden, C.A. In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behav. Pharmacol., 1996, 7(1), 101-104. doi: 10.1097/00008877-199601000-00011 PMID: 11224400
  206. Banasr, M.; Hery, M.; Printemps, R.; Daszuta, A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology, 2004, 29(3), 450-460. doi: 10.1038/sj.npp.1300320 PMID: 14872203
  207. Schuch, F.B.; Deslandes, A.C.; Stubbs, B.; Gosmann, N.P.; Silva, C.T.B.; Fleck, M.P.A. Neurobiological effects of exercise on major depressive disorder: A systematic review. Neurosci. Biobehav. Rev., 2016, 61, 1-11. doi: 10.1016/j.neubiorev.2015.11.012 PMID: 26657969

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers