The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies
- Authors: Bahmani M.1, Mehrtabar S.2, Jafarizadeh A.3, Zoghi S.4, Heravi F.5, Abbasi A.1, Sanaie S.6, Rahnemayan S.3, Leylabadlo H.1
-
Affiliations:
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences
- Student Research Committee, Tabriz University of Medical Science
- Student Research Committee, Tabriz University of Medical Sciences
- Liver and Gastrointestinal Diseases Research Cente, Tabriz University of Medical Sciences
- Macquarie Medical School, Macquarie University
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences
- Issue: Vol 25, No 16 (2024)
- Pages: 2089-2107
- Section: Biotechnology
- URL: https://rjsocmed.com/1389-2010/article/view/645297
- DOI: https://doi.org/10.2174/0113892010281892240116081031
- ID: 645297
Cite item
Full Text
Abstract
:Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
About the authors
Mohaddeseh Bahmani
Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Saba Mehrtabar
Student Research Committee, Tabriz University of Medical Science
Email: info@benthamscience.net
Ali Jafarizadeh
Student Research Committee, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Sevda Zoghi
Liver and Gastrointestinal Diseases Research Cente, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Fatemah Heravi
Macquarie Medical School, Macquarie University
Email: info@benthamscience.net
Amin Abbasi
Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Sarvin Sanaie
Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Sama Rahnemayan
Student Research Committee, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Hamed Leylabadlo
Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Zhang, Q.; Yun, Y.; An, H.; Zhao, W.; Ma, T.; Wang, Z.; Yang, F. Gut microbiome composition associated with major depressive disorder and sleep quality. Front. Psychiatry, 2021, 12, 645045. doi: 10.3389/fpsyt.2021.645045 PMID: 34093266
- Belmaker, R.H.; Agam, G. Major depressive disorder. N. Engl. J. Med., 2008, 358(1), 55-68. doi: 10.1056/NEJMra073096 PMID: 18172175
- Chen, J.; Zheng, P.; Liu, Y.; Zhong, X.; Wang, H.; Guo, Y.; Xie, P. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr. Dis. Treat., 2018, 14, 647-655. doi: 10.2147/NDT.S159322 PMID: 29520144
- Lopez Molina, M.A.; Jansen, K.; Drews, C.; Pinheiro, R.; Silva, R.; Souza, L. Major depressive disorder symptoms in male and female young adults. Psychol. Health Med., 2014, 19(2), 136-145. doi: 10.1080/13548506.2013.793369 PMID: 23651450
- Ebrahimzadeh, L.H.; Ghotaslou, R.; Samadi, K.H.; Feizabadi, M.M.; Moaddab, S.Y.; Farajnia, S.; Sheykhsaran, E.; Sanaie, S.; Shanehbandi, D.; Bannazadeh Baghi, H. Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(4), 613-627. doi: 10.1007/s10096-019-03746-1 PMID: 31828683
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell, 2012, 148(6), 1258-1270. doi: 10.1016/j.cell.2012.01.035 PMID: 22424233
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar, R.D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803. doi: 10.3748/wjg.v21.i29.8787 PMID: 26269668
- McGuinness, A.J.; Davis, J.A.; Dawson, S.L.; Loughman, A.; Collier, F.; OHely, M.; Simpson, C.A.; Green, J.; Marx, W.; Hair, C.; Guest, G.; Mohebbi, M.; Berk, M.; Stupart, D.; Watters, D.; Jacka, F.N. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry, 2022, 27(4), 1920-1935. doi: 10.1038/s41380-022-01456-3 PMID: 35194166
- Slyepchenko, A.; Maes, M.; Jacka, F.N. Kِhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; Carvalho, A.F. Gut microbiota, bacterial translocation, and interactions with diet: Pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother. Psychosom., 2017, 86(1), 31-46. doi: 10.1159/000448957 PMID: 27884012
- Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol., 2020, 13(2), 423-434. doi: 10.1111/1751-7915.13479 PMID: 31448542
- Zhuang, Z.; Yang, R.; Wang, W.; Qi, L.; Huang, T. Associations between gut microbiota and Alzheimers disease, major depressive disorder, and schizophrenia. J. Neuroinflammation, 2020, 17(1), 288. doi: 10.1186/s12974-020-01961-8 PMID: 33008395
- Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol., 2015, 23(1), 1-21. doi: 10.1037/a0038550 PMID: 25643025
- Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in major depressive disorder. Eur. Neuropsychopharmacol., 2016, 26(3), 397-410. doi: 10.1016/j.euroneuro.2015.12.039 PMID: 26851834
- Haleem, D.J.; Haider, S. Food restriction decreases serotonin and its synthesis rate in the hypothalamus. Neuroreport, 1996, 7(6), 1153-1156. doi: 10.1097/00001756-199604260-00011 PMID: 8817522
- Badawy, A.A.B. Tryptophan: The key to boosting brain serotonin synthesis in depressive illness. J. Psychopharmacol., 2013, 27(10), 878-893. doi: 10.1177/0269881113499209 PMID: 23904410
- Hou, C.; Jia, F.; Liu, Y.; Li, L. CSF serotonin, 5-hydroxyindolacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res., 2006, 1095(1), 154-158. doi: 10.1016/j.brainres.2006.04.026 PMID: 16713589
- Albert, P.R.; Le François, B.; Vahid-Ansari, F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: The 5-HT1A receptor gene as a paradigm. J. Psychiatry Neurosci., 2019, 44(3), 164-176. doi: 10.1503/jpn.180209 PMID: 30807072
- Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain, 2017, 10(1), 28. doi: 10.1186/s13041-017-0306-y PMID: 28646910
- Stockmeier, C.A.; Shapiro, L.A.; Dilley, G.E.; Kolli, T.N.; Friedman, L.; Rajkowska, G. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J. Neurosci., 1998, 18(18), 7394-7401. doi: 10.1523/JNEUROSCI.18-18-07394.1998 PMID: 9736659
- Ślifirski, G.; Król, M.; Turło, J. 5-HT receptors and the development of new antidepressants. Int. J. Mol. Sci., 2021, 22(16), 9015. doi: 10.3390/ijms22169015 PMID: 34445721
- Moret, C.; Briley, M. The importance of norepinephrine in depression. Neuropsych. Dis. Treat., 2011, 7(S1), 9-13.
- Cottingham, C.; Wang, Q. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy. Neurosci. Biobehav. Rev., 2012, 36(10), 2214-2225. doi: 10.1016/j.neubiorev.2012.07.011 PMID: 22910678
- Rivero, G.; Gabilondo, A.M.; García-Sevilla, J.A. La Harpe, R.; Callado, L.F.; Meana, J.J. Increased α2- and β1-adrenoceptor densities in postmortem brain of subjects with depression: Differential effect of antidepressant treatment. J. Affect. Disord., 2014, 167, 343-350. doi: 10.1016/j.jad.2014.06.016 PMID: 25020269
- Xu, Y.; Li, F.; Huang, X.; Sun, N.; Zhang, F.; Liu, P.; Yang, H.; Luo, J.; Sun, Y.; Zhang, K. The norepinephrine transporter gene modulates the relationship between urban/rural residency and major depressive disorder in a Chinese population. Psychiatry Res., 2009, 168(3), 213-217. doi: 10.1016/j.psychres.2009.03.015 PMID: 19564048
- Haenisch, B.; Bilkei-Gorzo, A.; Caron, M.G.; Bönisch, H Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J. Neurochem., 2009, 111(2), 403-416. doi: 10.1111/j.1471-4159.2009.06345.x PMID: 19694905
- Vishnuram, P. Study of high dose Vitamin-C in anxity & depression cases. Indian J. Basic Appl. Med. Res., 2020, 101, 374-378.
- Li, Y.; Zhang, B.; Pan, X.; Wang, Y.; Xu, X.; Wang, R.; Liu, Z. Dopamine-mediated major depressive disorder in the neural circuit of ventral tegmental area-nucleus accumbens-medial prefrontal cortex: from biological evidence to computational models. Front. Cell. Neurosci., 2022, 16, 923039. doi: 10.3389/fncel.2022.923039 PMID: 35966208
- Der-Avakian, A.; Markou, A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci., 2012, 35(1), 68-77. doi: 10.1016/j.tins.2011.11.005 PMID: 22177980
- Belujon, P.; Grace, A.A. Dopamine system dysregulation in major depressive disorders. Int. J. Neuropsychopharmacol., 2017, 20(12), 1036-1046. doi: 10.1093/ijnp/pyx056 PMID: 29106542
- Pittenger, C.; Duman, R.S. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 2008, 33(1), 88-109. doi: 10.1038/sj.npp.1301574 PMID: 17851537
- Trullas, R.; Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol., 1990, 185(1), 1-10. doi: 10.1016/0014-2999(90)90204-J PMID: 2171955
- Chandley, M.J.; Szebeni, A.; Szebeni, K.; Crawford, J.D.; Stockmeier, C.A.; Turecki, G.; Kostrzewa, R.M.; Ordway, G.A. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int. J. Neuropsychopharmacol., 2014, 17(10), 1569-1578. doi: 10.1017/S1461145714000662 PMID: 24925192
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354. doi: 10.1016/S0006-3223(99)00230-9 PMID: 10686270
- Berk, M.; Plein, H.; Ferreira, D. Platelet glutamate receptor supersensitivity in major depressive disorder. Clin. Neuropharmacol., 2001, 24(3), 129-132. doi: 10.1097/00002826-200105000-00002 PMID: 11391122
- Brambilla, P.; Perez, J.; Barale, F.; Schettini, G.; Soares, J.C. GABAergic dysfunction in mood disorders. Mol. Psychiatry, 2003, 8(8), 721-737. 715 doi: 10.1038/sj.mp.4001362 PMID: 12888801
- Abdallah, C.G.; Jackowski, A.; Sato, J.R.; Mao, X.; Kang, G.; Cheema, R.; Coplan, J.D.; Mathew, S.J.; Shungu, D.C. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. Eur. Neuropsychopharmacol., 2015, 25(8), 1082-1090. doi: 10.1016/j.euroneuro.2015.04.025 PMID: 25983019
- Croarkin, P.E.; Levinson, A.J.; Daskalakis, Z.J. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci. Biobehav. Rev., 2011, 35(3), 818-825. doi: 10.1016/j.neubiorev.2010.10.002 PMID: 20946914
- Sanacora, G.; Mason, G.F.; Rothman, D.L.; Hyder, F.; Ciarcia, J.J.; Ostroff, R.B.; Berman, R.M.; Krystal, J.H. Increased cortical GABA concentrations in depressed patients receiving ECT. Am. J. Psychiatry, 2003, 160(3), 577-579. doi: 10.1176/appi.ajp.160.3.577 PMID: 12611844
- Hosie, A.M.; Wilkins, M.E.; da Silva, H.M.A.; Smart, T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature, 2006, 444(7118), 486-489. doi: 10.1038/nature05324 PMID: 17108970
- Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; Jonas, J.; Kanes, S. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 2018, 392(10152), 1058-1070. doi: 10.1016/S0140-6736(18)31551-4 PMID: 30177236
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621. doi: 10.1002/cphy.c150015 PMID: 27065163
- Shea, A.; Walsh, C.; MacMillan, H.; Steiner, M. Child maltreatment and HPA axis dysregulation: Relationship to major depressive disorder and post traumatic stress disorder in females. Psychoneuroendocrinology, 2005, 30(2), 162-178. doi: 10.1016/j.psyneuen.2004.07.001 PMID: 15471614
- Young, E.A.; Altemus, M.; Lopez, J.F.; Kocsis, J.H.; Schatzberg, A.F.; deBattista, C.; Zubieta, J.K. HPA axis activation in major depression and response to fluoxetine: A pilot study. Psychoneuroendocrinology, 2004, 29(9), 1198-1204. doi: 10.1016/j.psyneuen.2004.02.002 PMID: 15219644
- Vreeburg, S.A.; Hoogendijk, W.J.G.; van Pelt, J.; DeRijk, R.H.; Verhagen, J.C.M.; van Dyck, R.; Smit, J.H.; Zitman, F.G.; Penninx, B.W.J.H. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: Results from a large cohort study. Arch. Gen. Psychiatry, 2009, 66(6), 617-626. doi: 10.1001/archgenpsychiatry.2009.50 PMID: 19487626
- Papiol, S.; Arias, B.; Gastó, C.; Gutiérrez, B.; Catalán, R.; Fañanás, L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J. Affect. Disord., 2007, 104(1-3), 83-90. doi: 10.1016/j.jad.2007.02.017 PMID: 17467808
- Holsboer-Trachsler, E.; Stohler, R.; Hatzinger, M. Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res., 1991, 38(2), 163-171. doi: 10.1016/0165-1781(91)90041-M PMID: 1661430
- Kunugi, H.; Urushibara, T.; Nanko, S. Combined DEX/CRH test among Japanese patients with major depression. J. Psychiatr. Res., 2004, 38(2), 123-128. doi: 10.1016/S0022-3956(03)00103-1 PMID: 14757325
- Kunugi, H.; Hori, H.; Adachi, N.; Numakawa, T. Interface between hypothalamic‐pituitary‐adrenal axis and brain‐derived neurotrophic factor in depression. Psychiatry Clin. Neurosci., 2010, 64(5), 447-459. doi: 10.1111/j.1440-1819.2010.02135.x PMID: 20923424
- Lee, B.H.; Kim, Y.K. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig., 2010, 7(4), 231-235. doi: 10.4306/pi.2010.7.4.231 PMID: 21253405
- Lee, B.H.; Kim, H.; Park, S.H.; Kim, Y.K. Decreased plasma BDNF level in depressive patients. J. Affect. Disord., 2007, 101(1-3), 239-244. doi: 10.1016/j.jad.2006.11.005 PMID: 17173978
- Gonul, A.S.; Akdeniz, F.; Taneli, F.; Donat, O. Eker, Ç.; Vahip, S. Effect of treatment on serum brainderived neurotrophic factor levels in depressed patients. Eur. Arch. Psychiatry Clin. Neurosci., 2005, 255(6), 381-386. doi: 10.1007/s00406-005-0578-6 PMID: 15809771
- Kumamaru, E.; Numakawa, T.; Adachi, N.; Yagasaki, Y.; Izumi, A.; Niyaz, M.; Kudo, M.; Kunugi, H. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol. Endocrinol., 2008, 22(3), 546-558. doi: 10.1210/me.2007-0264 PMID: 18096693
- Numakawa, T.; Kumamaru, E.; Adachi, N.; Yagasaki, Y.; Izumi, A.; Kunugi, H. Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-γ signaling for glutamate release via a glutamate transporter. Proc. Natl. Acad. Sci., 2009, 106(2), 647-652. doi: 10.1073/pnas.0800888106 PMID: 19126684
- Patel, A. Review: The role of inflammation in depression. Psychiatr. Danub., 2013, 25(Suppl. 2), S216-S223. PMID: 23995180
- Krogh, J.; Benros, M.E. Jørgensen, M.B.; Vesterager, L.; Elfving, B.; Nordentoft, M. The association between depressive symptoms, cognitive function, and inflammation in major depression. Brain Behav. Immun., 2014, 35, 70-76. doi: 10.1016/j.bbi.2013.08.014 PMID: 24016864
- Dantzer, R.; Wollman, E.E.; Yirmiya, R. Cytokines, stress, and depression; Springer, 1999. doi: 10.1007/b102345
- Enache, D.; Pariante, C.M.; Mondelli, V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav. Immun., 2019, 81, 24-40. doi: 10.1016/j.bbi.2019.06.015 PMID: 31195092
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med., 2009, 71(2), 171-186. doi: 10.1097/PSY.0b013e3181907c1b PMID: 19188531
- Opel, N.; Cearns, M.; Clark, S.; Toben, C.; Grotegerd, D.; Heindel, W.; Kugel, H.; Teuber, A.; Minnerup, H.; Berger, K.; Dannlowski, U.; Baune, B.T. Large-scale evidence for an association between low-grade peripheral inflammation and brain structural alterations in major depression in the BiDirect study. J. Psychiatry Neurosci., 2019, 44(6), 423-431. doi: 10.1503/jpn.180208 PMID: 31304733
- Schiepers, O.J.G.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(2), 201-217. doi: 10.1016/j.pnpbp.2004.11.003 PMID: 15694227
- Capuron, L.; Ravaud, A.; Neveu, P.J.; Miller, A.H.; Maes, M.; Dantzer, R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry, 2002, 7(5), 468-473. doi: 10.1038/sj.mp.4000995 PMID: 12082564
- Doolin, K.; Farrell, C.; Tozzi, L.; Harkin, A.; Frodl, T.; OKeane, V. Diurnal hypothalamic-pituitary-adrenal axis measures and inflammatory marker correlates in major depressive disorder. Int. J. Mol. Sci., 2017, 18(10), 2226. doi: 10.3390/ijms18102226 PMID: 29064428
- Malhi, G.S.; Moore, J.; McGuffin, P. The genetics of major depressive disorder. Curr. Psychiatry Rep., 2000, 2(2), 165-169. doi: 10.1007/s11920-000-0062-y PMID: 11122950
- Kendler, K.S.; Gatz, M.; Gardner, C.O.; Pedersen, N.L. A Swedish national twin study of lifetime major depression. Am. J. Psychiatry, 2006, 163(1), 109-114. doi: 10.1176/appi.ajp.163.1.109 PMID: 16390897
- Lohoff, F.W. Overview of the genetics of major depressive disorder. Curr. Psychiatry Rep., 2010, 12(6), 539-546. doi: 10.1007/s11920-010-0150-6 PMID: 20848240
- Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry, 2003, 160(4), 636-645. doi: 10.1176/appi.ajp.160.4.636 PMID: 12668349
- Hasler, G.; Drevets, W.C.; Manji, H.K.; Charney, D.S. Discovering endophenotypes for major depression. Neuropsychopharmacology, 2004, 29(10), 1765-1781. doi: 10.1038/sj.npp.1300506 PMID: 15213704
- Frodl, T. Möller, H.J.; Meisenzahl, E. Neuroimaging genetics: New perspectives in research on major depression? Acta Psychiatr. Scand., 2008, 118(5), 363-372. doi: 10.1111/j.1600-0447.2008.01225.x PMID: 18644006
- Zhang, J.; Chen, Y.; Zhang, K.; Yang, H.; Sun, Y.; Fang, Y.; Shen, Y.; Xu, Q. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder. Biol. Psychiatry, 2010, 68(9), 795-800. doi: 10.1016/j.biopsych.2010.06.004 PMID: 20691428
- Fratelli, C.; Siqueira, J.; Silva, C.; Ferreira, E.; Silva, I. 5HTTLPR genetic variant and major depressive disorder: A review. Genes, 2020, 11(11), 1260. doi: 10.3390/genes11111260 PMID: 33114535
- Smythies, L.E.; Smythies, J.R. Microbiota, the immune system, black moods and the brainâ"melancholia updated. Front. Hum. Neurosci., 2014, 8, 720. doi: 10.3389/fnhum.2014.00720 PMID: 25309394
- Capuco, A.; Urits, I.; Hasoon, J.; Chun, R.; Gerald, B.; Wang, J.K.; Kassem, H.; Ngo, A.L.; Abd-Elsayed, A.; Simopoulos, T.; Kaye, A.D.; Viswanath, O. Current perspectives on gut microbiome dysbiosis and depression. Adv. Ther., 2020, 37(4), 1328-1346. doi: 10.1007/s12325-020-01272-7 PMID: 32130662
- Kelly, J.R.; Borre, Y.; O Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118. doi: 10.1016/j.jpsychires.2016.07.019 PMID: 27491067
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F. Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 2010, 5(3), e9836. doi: 10.1371/journal.pone.0009836 PMID: 20352091
- Shen, Y.; Yang, X.; Li, G.; Gao, J.; Liang, Y. The change of gut microbiota in MDD patients under SSRIs treatment. Sci. Rep., 2021, 11(1), 14918. doi: 10.1038/s41598-021-94481-1 PMID: 34290352
- Zoghi, S.; Sadeghpour, H.F.; Nikniaz, Z.; Shirmohamadi, M.; Moaddab, S.Y.; Ebrahimzadeh, L.H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng. Life Sci., 2023, e2300070. doi: 10.1002/elsc.202300070
- Macedo, D.; Filho, A.J.M.C.; Soares de Sousa, C.N.; Quevedo, J.; Barichello, T. Júnior, H.V.N.; Freitas de Lucena, D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord., 2017, 208, 22-32. doi: 10.1016/j.jad.2016.09.012 PMID: 27744123
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; Li, L.; Ruan, B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun., 2015, 48, 186-194. doi: 10.1016/j.bbi.2015.03.016 PMID: 25882912
- Zhong, Q.; Chen, J.; Wang, Y.; Shao, W.; Zhou, C.; Xie, P. Differential gut microbiota compositions related with the severity of major depressive disorder. Front. Cell. Infect. Microbiol., 2022, 12, 907239. doi: 10.3389/fcimb.2022.907239 PMID: 35899051
- Galley, J.D.; Nelson, M.C.; Yu, Z.; Dowd, S.E.; Walter, J.; Kumar, P.S.; Lyte, M.; Bailey, M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol., 2014, 14(1), 189. doi: 10.1186/1471-2180-14-189 PMID: 25028050
- Aoki-Yoshida, A.; Aoki, R.; Moriya, N.; Goto, T.; Kubota, Y.; Toyoda, A.; Takayama, Y.; Suzuki, C. Omics studies of the murine intestinal ecosystem exposed to subchronic and mild social defeat stress. J. Proteome Res., 2016, 15(9), 3126-3138. doi: 10.1021/acs.jproteome.6b00262 PMID: 27482843
- Lai, W.; Deng, W.; Xu, S.; Zhao, J.; Xu, D.; Liu, Y.; Guo, Y.; Wang, M.; He, F.; Ye, S.; Yang, Q.; Liu, T.; Zhang, Y.; Wang, S.; Li, M.; Yang, Y.; Xie, X.; Rong, H. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol. Med., 2021, 51(1), 90-101. doi: 10.1017/S0033291719003027 PMID: 31685046
- Chen, Y.; Xue, F.; Yu, S.; Li, X.; Liu, L.; Jia, Y.; Yan, W.; Tan, Q.; Wang, H.; Peng, Z. Gut microbiota dysbiosis in depressed women: The association of symptom severity and microbiota function. J. Affect. Disord., 2021, 282, 391-400. doi: 10.1016/j.jad.2020.12.143 PMID: 33421868
- Zheng, S.; Zhu, Y.; Wu, W.; Zhang, Q.; Wang, Y.; Wang, Z.; Yang, F. A correlation study of intestinal microflora and first‐episode depression in Chinese patients and healthy volunteers. Brain Behav., 2021, 11(8), e02036. doi: 10.1002/brb3.2036 PMID: 33960717
- Ye, X.; Wang, D.; Zhu, H.; Wang, D.; Li, J.; Tang, Y.; Wu, J. Gut microbiota changes in patients with major depressive disorder treated with vortioxetine. Front. Psychiatry, 2021, 12, 641491. doi: 10.3389/fpsyt.2021.641491 PMID: 34025474
- Rong, H.; Xie, X.; Zhao, J.; Lai, W.; Wang, M.; Xu, D.; Liu, Y.; Guo, Y.; Xu, S.; Deng, W.; Yang, Q.; Xiao, L.; Zhang, Y.; He, F.; Wang, S.; Liu, T. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J. Psychiatr. Res., 2019, 113, 90-99. doi: 10.1016/j.jpsychires.2019.03.017 PMID: 30927646
- Liu, R.T.; Rowan-Nash, A.D.; Sheehan, A.E.; Walsh, R.F.L.; Sanzari, C.M.; Korry, B.J.; Belenky, P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav. Immun., 2020, 88, 308-324. doi: 10.1016/j.bbi.2020.03.026 PMID: 32229219
- Chen, J.J.; He, S.; Fang, L.; Wang, B.; Bai, S.J.; Xie, J.; Zhou, C.J.; Wang, W.; Xie, P. Age-specific differential changes on gut microbiota composition in patients with major depressive disorder. Aging, 2020, 12(3), 2764-2776. doi: 10.18632/aging.102775 PMID: 32040443
- Dong, Z.; Shen, X.; Hao, Y.; Li, J.; Li, H.; Xu, H.; Yin, L.; Kuang, W. Gut microbiome: A potential indicator for differential diagnosis of major depressive disorder and general anxiety disorder. Front. Psychiatry, 2021, 12, 651536. doi: 10.3389/fpsyt.2021.651536 PMID: 34589003
- Zheng, P.; Yang, J.; Li, Y.; Wu, J.; Liang, W.; Yin, B.; Tan, X.; Huang, Y.; Chai, T.; Zhang, H.; Duan, J.; Zhou, J.; Sun, Z.; Chen, X.; Marwari, S.; Lai, J.; Huang, T.; Du, Y.; Zhang, P.; Perry, S.W.; Wong, M.L.; Licinio, J.; Hu, S.; Xie, P.; Wang, G. Gut microbial signatures can discriminate unipolar from bipolar depression. Adv. Sci., 2020, 7(7), 1902862. doi: 10.1002/advs.201902862 PMID: 32274300
- Foster, J.A.; Baker, G.B.; Dursun, S.M. The relationship between the gut microbiome-immune system-brain axis and major depressive disorder. Front. Neurol., 2021, 12, 721126. doi: 10.3389/fneur.2021.721126 PMID: 34650506
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712. doi: 10.1038/nrn3346 PMID: 22968153
- Waclawiková, B.; El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals, 2018, 11(3), 63. doi: 10.3390/ph11030063 PMID: 29941795
- Liu, S.; Guo, R.; Liu, F.; Yuan, Q.; Yu, Y.; Ren, F. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr. Dis. Treat., 2020, 16, 859-869. doi: 10.2147/NDT.S243551 PMID: 32280227
- Kundu, P.; Blacher, E.; Elinav, E.; Pettersson, S. Our gut microbiome: The evolving inner self. Cell, 2017, 171(7), 1481-1493. doi: 10.1016/j.cell.2017.11.024 PMID: 29245010
- Lu, J. Herbal formula fo shou san attenuates Alzheimers diseaserelated pathologies via the gut-liver-brain axis in APP/PS1 mouse model of Alzheimers disease. Evid.-based Complem. Altern. Med., 2019, 2019
- Dantzer, R.; OConnor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56. doi: 10.1038/nrn2297 PMID: 18073775
- Gritti, D.; Delvecchio, G.; Ferro, A.; Bressi, C.; Brambilla, P. Neuroinflammation in major depressive disorder: A review of PET imaging studies examining the 18-kDa translocator protein. J. Affect. Disord., 2021, 292, 642-651. doi: 10.1016/j.jad.2021.06.001 PMID: 34153835
- Canli, T. Reconceptualizing major depressive disorder as an infectious disease. Biol. Mood Anxiety Disord., 2014, 4(1), 10. doi: 10.1186/2045-5380-4-10 PMID: 25364500
- de Castro-Silva, K.M.; Carvalho, A.C.; Cavalcanti, M.T.; Martins, P.S.; França, J.R.; Oquendo, M.; Kritski, A.L.; Sweetland, A. Prevalence of depression among patients with presumptive pulmonary tuberculosis in Rio de Janeiro, Brazil. Br. J. Psychiatry, 2019, 41(4), 316-323. doi: 10.1590/1516-4446-2018-0076 PMID: 30365672
- Moss, M.E.; Beck, J.D.; Kaplan, B.H.; Offenbacher, S.; Weintraub, J.A.; Koch, G.G.; Genco, R.J.; Machtei, E.E.; Tedesco, L.A. Exploratory case‐control analysis of psychosocial factors and adult periodontitis. J. Periodontol., 1996, 67(10S), 1060-1069. doi: 10.1902/jop.1996.67.10s.1060
- Dachew, B.A.; Scott, J.G.; Alati, R. Gestational urinary tract infections and the risk of antenatal and postnatal depressive and anxiety symptoms: A longitudinal population-based study. J. Psychosom. Res., 2021, 150, 110600. doi: 10.1016/j.jpsychores.2021.110600 PMID: 34547662
- Rivera Rivera, Y. Vázquez Santiago, F.J.; Albino, E.; Sánchez, M.D.; Rivera-Amill, V. Impact of depression and inflammation on the progression of HIV disease. J. Clin. Cell. Immunol., 2016, 7(3), 423. doi: 10.4172/2155-9899.1000423 PMID: 27478681
- Zürcher, S.J.; Banzer, C.; Adamus, C.; Lehmann, A.I.; Richter, D.; Kerksieck, P. Post-viral mental health sequelae in infected persons associated with COVID-19 and previous epidemics and pandemics: Systematic review and meta-analysis of prevalence estimates. J. Infect. Public Health, 2022, 15(5), 599-608. doi: 10.1016/j.jiph.2022.04.005 PMID: 35490117
- Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun., 2020, 89, 594-600. doi: 10.1016/j.bbi.2020.07.037 PMID: 32738287
- Lester, D. Brain parasites and suicide. Psychol. Rep., 2010, 107(2), 424-424. doi: 10.2466/12.13.PR0.107.5.424 PMID: 21117467
- Pires, M.; Wright, B.; Kaye, P.M. da Conceição, V.; Churchill, R.C. The impact of leishmaniasis on mental health and psychosocial well-being: A systematic review. PLoS One, 2019, 14(10), e0223313. doi: 10.1371/journal.pone.0223313 PMID: 31622369
- Averina, O.V.; Zorkina, Y.A.; Yunes, R.A.; Kovtun, A.S.; Ushakova, V.M.; Morozova, A.Y.; Kostyuk, G.P.; Danilenko, V.N.; Chekhonin, V.P. Bacterial metabolites of human gut microbiota correlating with depression. Int. J. Mol. Sci., 2020, 21(23), 9234. doi: 10.3390/ijms21239234 PMID: 33287416
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell, 2019, 6(10), 454-481. doi: 10.15698/mic2019.10.693 PMID: 31646148
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P. Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345. doi: 10.1016/j.cell.2016.05.041 PMID: 27259147
- DeCastro, M.; Nankova, B.B.; Shah, P.; Patel, P.; Mally, P.V.; Mishra, R.; La Gamma, E.F. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res. Mol. Brain Res., 2005, 142(1), 28-38. doi: 10.1016/j.molbrainres.2005.09.002 PMID: 16219387
- Fuchikami, M.; Yamamoto, S.; Morinobu, S.; Okada, S.; Yamawaki, Y.; Yamawaki, S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 320-324. doi: 10.1016/j.pnpbp.2015.03.010 PMID: 25818247
- Nankova, B.B.; Agarwal, R.; MacFabe, D.F.; La Gamma, E.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders. PLoS One, 2014, 9(8), e103740. doi: 10.1371/journal.pone.0103740 PMID: 25170769
- Skonieczna-Żydecka, K.; Grochans, E.; Maciejewska, D.; Szkup, M.; Schneider-Matyka, D.; Jurczak, A.; Łoniewski, I.; Kaczmarczyk, M.; Marlicz, W.; Czerwińska-Rogowska, M.; Pełka-Wysiecka, J.; Dec, K.; Stachowska, E. Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients, 2018, 10(12), 1939. doi: 10.3390/nu10121939 PMID: 30544489
- Ortega, M.A.; Alvarez-Mon, M.A. García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; Quintero, J.; Álvarez-Mon, M. Gut microbiota metabolites in major depressive disorder-Deep insights into their pathophysiological role and potential translational applications. Metabolites, 2022, 12(1), 50. doi: 10.3390/metabo12010050 PMID: 35050172
- Tang, C.F.; Wang, C.Y.; Wang, J.H.; Wang, Q.N.; Li, S.J.; Wang, H.O.; Zhou, F.; Li, J.M. Short-chain fatty acids ameliorate depressive-like behaviors of high fructose-fed mice by rescuing hippocampal neurogenesis decline and blood-brain barrier damage. Nutrients, 2022, 14(9), 1882. doi: 10.3390/nu14091882 PMID: 35565849
- Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M. Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil., 2014, 26(8), 1155-1162. doi: 10.1111/nmo.12378 PMID: 24888394
- Wu, M.; Tian, T.; Mao, Q.; Zou, T.; Zhou, C.; Xie, J.; Chen, J. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Transl. Psychiatry, 2020, 10(1), 350. doi: 10.1038/s41398-020-01038-3 PMID: 33067412
- Müller, B.; Rasmusson, A.J.; Just, D.; Jayarathna, S.; Moazzami, A.; Novicic, Z.K.; Cunningham, J.L. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom. Med., 2021, 83(7), 693-699. doi: 10.1097/PSY.0000000000000965 PMID: 34267089
- Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab., 2016, 24(1), 41-50. doi: 10.1016/j.cmet.2016.05.005 PMID: 27320064
- Peng, Y.F.; Xiang, Y.; Wei, Y.S. The significance of routine biochemical markers in patients with major depressive disorder. Sci. Rep., 2016, 6(1), 34402. doi: 10.1038/srep34402 PMID: 27683078
- Boston, P.F.; Dursun, S.M.; Reveley, M.A. Cholesterol and mental disorder. Br. J. Psychiatry, 1996, 169(6), 682-689. doi: 10.1192/bjp.169.6.682 PMID: 8968624
- Mahmoudian Dehkordi, S.; Bhattacharyya, S.; Brydges, C.R.; Jia, W.; Fiehn, O.; Rush, A.J.; Dunlop, B.W.; Kaddurah-Daouk, R. Gut microbiome-linked metabolites in the pathobiology of major depression with or without anxiety-A role for bile acids. Front. Neurosci., 2022, 16, 937906. doi: 10.3389/fnins.2022.937906 PMID: 35937867
- Monteiro-Cardoso, V.F. Corlianò, M.; Singaraja, R.R. Bile acids: A communication channel in the gut-brain axis. Neuromolecular Med., 2021, 23(1), 99-117. doi: 10.1007/s12017-020-08625-z PMID: 33085065
- Huang, C.; Wang, J.; Hu, W.; Wang, C.; Lu, X.; Tong, L.; Wu, F.; Zhang, W. Identification of functional farnesoid X receptors in brain neurons. FEBS Lett., 2016, 590(18), 3233-3242. doi: 10.1002/1873-3468.12373 PMID: 27545319
- Kimmel, M.; Jin, W.; Xia, K.; Lun, K.; Azcarate-Peril, A.; Plantinga, A.; Wu, M.; Ataei, S.; Rackers, H.; Carroll, I.; Meltzer-Brody, S.; Fransson, E.; Knickmeyer, R. Metabolite trajectories across the perinatal period and mental health: A preliminary study of tryptophan-related metabolites, bile acids and microbial composition. Behav. Brain Res., 2022, 418, 113635. doi: 10.1016/j.bbr.2021.113635 PMID: 34755640
- Tung, T.H.; Chen, Y.C.; Lin, Y.T.; Huang, S.Y. N-3 PUFA ameliorates the gut microbiota, bile acid profiles, and neuropsychiatric behaviours in a rat model of geriatric depression. Biomedicines, 2022, 10(7), 1594. doi: 10.3390/biomedicines10071594 PMID: 35884899
- Li, H.; Zhu, X.; Xu, J.; Li, L.; Kan, W.; Bao, H.; Xu, J.; Wang, W.; Yang, Y.; Chen, P.; Zou, Y.; Feng, Y.; Yang, J.; Du, J.; Wang, G. The FXR mediated anti-depression effect of CDCA underpinned its therapeutic potentiation for MDD. Int. Immunopharmacol., 2023, 115, 109626. doi: 10.1016/j.intimp.2022.109626 PMID: 36584576
- Chen, W.G.; Zheng, J.X.; Xu, X.; Hu, Y.M.; Ma, Y.M. Hippocampal FXR plays a role in the pathogenesis of depression: A preliminary study based on lentiviral gene modulation. Psychiatry Res., 2018, 264, 374-379. doi: 10.1016/j.psychres.2018.04.025 PMID: 29677620
- Lu, X.; Yang, R.R.; Zhang, J.L.; Wang, P.; Gong, Y.; Hu, W.; Wu, Y.; Gao, M.; Huang, C. Tauroursodeoxycholic acid produces antidepressant‐like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido‐nitrosative stress, and endoplasmic reticulum stress. Fundam. Clin. Pharmacol., 2018, 32(4), 363-377. doi: 10.1111/fcp.12367 PMID: 29578616
- Yanguas-Casás, N.; Barreda-Manso, M.A.; Nieto-Sampedro, M.; Romero-Ramيrez, L. TUDCA: An agonist of the bile acid receptor GPBAR1/TGR5 with anti‐inflammatory effects in microglial cells. J. Cell. Physiol., 2017, 232(8), 2231-2245. doi: 10.1002/jcp.25742 PMID: 27987324
- Hashioka, S.; Inoue, K.; Hayashida, M.; Wake, R.; Oh-Nishi, A.; Miyaoka, T. Implications of systemic inflammation and periodontitis for major depression. Front. Neurosci., 2018, 12, 483. doi: 10.3389/fnins.2018.00483 PMID: 30072865
- Kéri, S. Szabَ, C.; Kelemen, O. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav. Immun., 2014, 40, 235-243. doi: 10.1016/j.bbi.2014.03.020 PMID: 24726793
- Yirmiya, R. Endotoxin produces a depressive-like episode in rats. Brain Res., 1996, 711(1-2), 163-174. doi: 10.1016/0006-8993(95)01415-2 PMID: 8680860
- He, Y.; Li, W.; Wang, Y.; Tian, Y.; Chen, X.; Wu, Z.; Lan, T.; Li, Y.; Bai, M.; Liu, J.; Cheng, K.; Xie, P. Major depression accompanied with inflammation and multiple cytokines alterations: Evidences from clinical patients to macaca fascicularis and LPS-induced depressive mice model. J. Affect. Disord., 2020, 271, 262-271. doi: 10.1016/j.jad.2020.03.131 PMID: 32479325
- Wu, Y.; Fu, Y.; Rao, C.; Li, W.; Liang, Z.; Zhou, C.; Shen, P.; Cheng, P.; Zeng, L.; Zhu, D.; Zhao, L.; Xie, P. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav. Brain Res., 2016, 308, 115-127. doi: 10.1016/j.bbr.2016.04.032 PMID: 27102340
- Rahman, S.; Alzarea, S. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities. Prog. Mol. Biol. Transl. Sci., 2019, 167, 159-178. doi: 10.1016/bs.pmbts.2019.06.010 PMID: 31601403
- Wang, H.; He, Y.; Sun, Z.; Ren, S.; Liu, M.; Wang, G.; Yang, J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J. Neuroinflammation, 2022, 19(1), 132. doi: 10.1186/s12974-022-02492-0 PMID: 35668399
- Qiu, T.; Guo, J.; Wang, L.; Shi, L.; Ai, M.; Zhu, X.; Peng, Z.; Kuang, L. Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice: An 18F DPA-714 PET imaging study. Bosn. J. Basic Med. Sci., 2022, 22(4), 649-659. doi: 10.17305/bjbms.2021.6825 PMID: 35113011
- Zhang, L.; Zhang, J.; You, Z. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front. Cell. Neurosci., 2018, 12, 306. doi: 10.3389/fncel.2018.00306 PMID: 30459555
- Maes, M.; Kubera, M.; Leunis, J-C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett., 2008, 29(1), 117-124. PMID: 18283240
- Cordeiro, R.C.; Chaves Filho, A.J.M.; Gomes, N.S.; Tomaz, V.S.; Medeiros, C.D.; Queiroz, A.I.G.; Maes, M.; Macedo, D.S.; Carvalho, A.F. Leptin prevents lipopolysaccharide-induced depressive-like behaviors in mice: involvement of dopamine receptors. Front. Psychiatry, 2019, 10, 125. doi: 10.3389/fpsyt.2019.00125 PMID: 30949073
- Cheng, L.; Huang, C.; Chen, Z. Tauroursodeoxycholic acid ameliorates lipopolysaccharide-induced depression like behavior in mice via the inhibition of neuroinflammation and oxido-nitrosative stress. Pharmacology, 2019, 103(1-2), 93-100. doi: 10.1159/000494139 PMID: 30517939
- Brydges, C.R.; Fiehn, O.; Mayberg, H.S.; Schreiber, H.; Dehkordi, S.M.; Bhattacharyya, S.; Cha, J.; Choi, K.S.; Craighead, W.E.; Krishnan, R.R.; Rush, A.J.; Dunlop, B.W.; Kaddurah-Daouk, R.; Penninx, B.; Binder, E.; Kastenmüller, G.; Arnold, M.; Nevado-Helgado, A.; Blach, C.; Milaneschi, Y.; Knauer-Arloth, J.; Jansen, R.; Mook-Kanamori, D.; Han, X.; Baillie, R.; Rinaldo, P. Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychic anxiety and its functional magnetic resonance imaging-based neurologic signature. Sci. Rep., 2021, 11(1), 21011. doi: 10.1038/s41598-021-99845-1 PMID: 34697401
- Lee, J.H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 2010, 34(4), 426-444. doi: 10.1111/j.1574-6976.2009.00204.x PMID: 20070374
- Delgado, I.; Cussotto, S.; Anesi, A.; Dexpert, S.; Aubert, A.; Aouizerate, B.; Beau, C.; Forestier, D.; Ledaguenel, P.; Magne, E.; Mattivi, F.; Capuron, L. Association between the indole pathway of tryptophan metabolism and subclinical depressive symptoms in obesity: A preliminary study. Int. J. Obes., 2022, 46(4), 885-888. doi: 10.1038/s41366-021-01049-0 PMID: 35001078
- Merchak, A.; Gaultier, A. Microbial metabolites and immune regulation: New targets for major depressive disorder. Brain, Behavior, Immunity - Health, 2020, 9, 100169. doi: 10.1016/j.bbih.2020.100169 PMID: 34589904
- Chen, Y.; Tian, P.; Wang, Z.; Pan, R.; Shang, K.; Wang, G.; Zhao, J.; Chen, W. Indole acetic acid exerts anti-depressive effects on an animal model of chronic mild stress. Nutrients, 2022, 14(23), 5019. doi: 10.3390/nu14235019 PMID: 36501051
- Liu, J.C.; Yu, H.; Li, R.; Zhou, C.H.; Shi, Q.Q.; Guo, L.; He, H. A preliminary comparison of plasma tryptophan metabolites and medium-and long-chain fatty acids in adult patients with major depressive disorder and schizophrenia. Medicina, 2023, 59(2), 413. doi: 10.3390/medicina59020413 PMID: 36837614
- Chen, J.; Zhou, C.; Zheng, P.; Cheng, K.; Wang, H.; Li, J.; Zeng, L.; Xie, P. Differential urinary metabolites related with the severity of major depressive disorder. Behav. Brain Res., 2017, 332, 280-287. doi: 10.1016/j.bbr.2017.06.012 PMID: 28624318
- Mir, H.D.; Milman, A.; Monnoye, M.; Douard, V.; Philippe, C.; Aubert, A.; Castanon, N.; Vancassel, S.; Guérineau, N.C.; Naudon, L.; Rabot, S. The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology, 2020, 119, 104750. doi: 10.1016/j.psyneuen.2020.104750 PMID: 32569990
- Zhang, X.; Hou, Y.; Li, Y.; Wei, W.; Cai, X.; Shao, H.; Yuan, Y.; Zheng, X. Taxonomic and metabolic signatures of gut microbiota for assessing the severity of depression and anxiety in major depressive disorder patients. Neuroscience, 2022, 496, 179-189. doi: 10.1016/j.neuroscience.2022.06.024 PMID: 35750110
- Naudon, L.; Philippe, C.; Monnoye, M.; Rhimi, M.; Rabot, S.; Calarge, C. Gut microbiota indole production and depressive-like symptoms: A fecal transplantation study in mice. Biol. Psychiatry, 2019, 85(10), S89-S90. doi: 10.1016/j.biopsych.2019.03.230
- Bampi, S.R.; Casaril, A.M.; Fronza, M.G.; Domingues, M.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V. Lenardão, E.J.; Savegnago, L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull., 2020, 161, 158-165. doi: 10.1016/j.brainresbull.2020.05.008 PMID: 32470357
- Kaiser, J.C.; Heinrichs, D.E. Branching out: Alterations in bacterial physiology and virulence due to branched-chain amino acid deprivation. MBio, 2018, 9(5), e01188-e18. doi: 10.1128/mBio.01188-18 PMID: 30181248
- Fellendorf, F.T. Branched-chain amino acids are associated with metabolic parameters in bipolar disorder. World J. Biol. Psychiatry, 2019, 20(10), 821-826. PMID: 29898625
- Layman, D.K. Role of leucine in protein metabolism during exercise and recovery. Can. J. Appl. Physiol., 2002, 27(6), 646-662. doi: 10.1139/h02-038 PMID: 12501002
- Scarnà, A.; Gijsman, H.J.; Mctavish, S.F.B.; Harmer, C.J.; Cowen, P.J.; Goodwin, G.M. Effects of a branched-chain amino acid drink in mania. Br. J. Psychiatry, 2003, 182(3), 210-213. doi: 10.1192/bjp.182.3.210 PMID: 12611783
- Baranyi, A.; Meinitzer, A.; Stepan, A.; Putz-Bankuti, C.; Breitenecker, R.J.; Stauber, R.; Kapfhammer, H.P. Rothenhäusler, H.B. A biopsychosocial model of interferon-alpha-induced depression in patients with chronic hepatitis C infection. Psychother. Psychosom., 2013, 82(5), 332-340. doi: 10.1159/000348587 PMID: 23942342
- Baranyi, A.; Amouzadeh-Ghadikolai, O.; von Lewinski, D. Rothenhäusler, H.B.; Theokas, S.; Robier, C.; Mangge, H.; Reicht, G.; Hlade, P.; Meinitzer, A. Branched-chain amino acids as new biomarkers of major depression-a novel neurobiology of mood disorder. PLoS One, 2016, 11(8), e0160542. doi: 10.1371/journal.pone.0160542 PMID: 27490818
- Jernigan, C.S.; Goswami, D.B.; Austin, M.C.; Iyo, A.H.; Chandran, A.; Stockmeier, C.A.; Karolewicz, B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(7), 1774-1779. doi: 10.1016/j.pnpbp.2011.05.010 PMID: 21635931
- Aquilani, R.; Boselli, M.; Boschi, F.; Viglio, S.; Iadarola, P.; Dossena, M.; Pastoris, O.; Verri, M. Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: A pilot study. Arch. Phys. Med. Rehabil., 2008, 89(9), 1642-1647. doi: 10.1016/j.apmr.2008.02.023 PMID: 18760149
- Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Dietary intake of branched-chain amino acids in relation to depression, anxiety and psychological distress. Nutr. J., 2021, 20(1), 11. doi: 10.1186/s12937-021-00670-z PMID: 33514378
- Robles, A.V.; Guarner, F. Linking the gut microbiota to human health. Br. J. Nutr., 2013, 109(S2), S21-S26. doi: 10.1017/S0007114512005235 PMID: 23360877
- Ebrahimzadeh, L.H.; Sanaie, S.; Sadeghpour, H.F.; Ahmadian, Z.; Ghotaslou, R. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infect. Genet. Evol., 2020, 81, 104268. doi: 10.1016/j.meegid.2020.104268 PMID: 32126303
- Tian, P.; Zou, R.; Wang, L.; Chen, Y.; Qian, X.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; Wang, G.; Chen, W. Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J. Adv. Res., 2023, 45, 117-125. doi: 10.1016/j.jare.2022.05.003 PMID: 35618633
- Goh, K.K.; Liu, Y.W.; Kuo, P.H.; Chung, Y.C.E.; Lu, M.L.; Chen, C.H. Effect of probiotics on depressive symptoms: A meta-analysis of human studies. Psychiatry Res., 2019, 282, 112568. doi: 10.1016/j.psychres.2019.112568 PMID: 31563280
- Yong, S.J.; Tong, T.; Chew, J.; Lim, W.L. Antidepressive mechanisms of probiotics and their therapeutic potential. Front. Neurosci., 2020, 13, 1361. doi: 10.3389/fnins.2019.01361 PMID: 32009871
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord., 2018, 228, 13-19. doi: 10.1016/j.jad.2017.11.063 PMID: 29197739
- Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry, 2017, 82(7), 472-487. doi: 10.1016/j.biopsych.2016.12.031 PMID: 28242013
- Paiva, I.H.R.; Duarte-Silva, E.; Peixoto, C.A. The role of prebiotics in cognition, anxiety, and depression. Eur. Neuropsychopharmacol., 2020, 34, 1-18. doi: 10.1016/j.euroneuro.2020.03.006 PMID: 32241688
- Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 2015, 232(10), 1793-1801. doi: 10.1007/s00213-014-3810-0 PMID: 25449699
- Vaghef-Mehrabany, E.; Ranjbar, F.; Asghari-Jafarabadi, M.; Hosseinpour-Arjmand, S.; Ebrahimi-Mameghani, M. Calorie restriction in combination with prebiotic supplementation in obese women with depression: Effects on metabolic and clinical response. Nutr. Neurosci., 2021, 24(5), 339-353. doi: 10.1080/1028415X.2019.1630985 PMID: 31241002
- Chudzik, A.; Orzyłowska, A.; Rola, R.; Stanisz, G.J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis. Biomolecules, 2021, 11(7), 1000. doi: 10.3390/biom11071000 PMID: 34356624
- Chi, L.; Khan, I.; Lin, Z.; Zhang, J.; Lee, M.Y.S.; Leong, W.; Hsiao, W.L.W.; Zheng, Y. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model. Phytomedicine, 2020, 67, 153157. doi: 10.1016/j.phymed.2019.153157 PMID: 31896054
- Kazemi, A.; Noorbala, A.A.; Azam, K.; Eskandari, M.H.; Djafarian, K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr., 2019, 38(2), 522-528. doi: 10.1016/j.clnu.2018.04.010 PMID: 29731182
- Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016, 32(3), 315-320. doi: 10.1016/j.nut.2015.09.003 PMID: 26706022
- Rudzki, L.; Ostrowska, L.; Pawlak, D.; Małus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology, 2019, 100, 213-222. doi: 10.1016/j.psyneuen.2018.10.010 PMID: 30388595
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021. doi: 10.3390/nu9091021 PMID: 28914794
- Ghorbani, Z.; Nazari, S.; Etesam, F.; Nourimajd, S.; Ahmadpanah, M.; Razeghi Jahromi, S. The effect of synbiotic as an adjuvant therapy to fluoxetine in moderate depression: A randomized multicenter trial. Arch. Neurosci., 2018, 5(2) doi: 10.5812/archneurosci.60507
- Louzada, E.R.; Ribeiro, S.M.L. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr. Neurosci., 2020, 23(2), 93-100. doi: 10.1080/1028415X.2018.1477349 PMID: 29788823
- Lalitsuradej, E.; Sirilun, S.; Sittiprapaporn, P.; Sivamaruthi, B.S.; Pintha, K.; Tantipaiboonwong, P.; Khongtan, S.; Fukngoen, P.; Peerajan, S.; Chaiyasut, C. The effects of synbiotics administration on stress-related parameters in thai subjects-a preliminary study. Foods, 2022, 11(5), 759. doi: 10.3390/foods11050759 PMID: 35267392
- Haghighat, N.; Rajabi, S.; Mohammadshahi, M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: A randomized, double-blinded, clinical trial. Nutr. Neurosci., 2021, 24(6), 490-499. doi: 10.1080/1028415X.2019.1646975 PMID: 31379269
- Lopez, K.M. Lynchburg. J. Med. Sci., 2022, 4(2), 46.
- Nandwana, V.; Debbarma, S. Fecal microbiota transplantation: A microbiome modulation technique for Alzheimers disease. Cureus, 2021, 13(7), e16503. doi: 10.7759/cureus.16503 PMID: 34430117
- Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol., 2012, 107(11), 1755. doi: 10.1038/ajg.2012.251 PMID: 23160295
- Cooke, N.C.A.; Bala, A.; Allard, J.P.; Hota, S.; Poutanen, S.; Taylor, V.H. The safety and efficacy of fecal microbiota transplantation in a population with bipolar disorder during depressive episodes: Study protocol for a pilot randomized controlled trial. Pilot Feasibility Stud., 2021, 7(1), 142. doi: 10.1186/s40814-021-00882-4 PMID: 34261526
- de Groot, P.F.; Frissen, M.N.; de Clercq, N.C.; Nieuwdorp, M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes, 2017, 8(3), 253-267. doi: 10.1080/19490976.2017.1293224 PMID: 28609252
- Zhang, F.; Chen, H.; Zhang, R.; Liu, Y.; Kong, N.; Guo, Y.; Xu, M. 5-Fluorouracil induced dysregulation of the microbiome-gut-brain axis manifesting as depressive like behaviors in rats. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165884. doi: 10.1016/j.bbadis.2020.165884 PMID: 32574836
- Kurokawa, S.; Kishimoto, T.; Mizuno, S.; Masaoka, T.; Naganuma, M.; Liang, K.; Kitazawa, M.; Nakashima, M.; Shindo, C.; Suda, W.; Hattori, M.; Kanai, T.; Mimura, M. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. J. Affect. Disord., 2018, 235, 506-512. doi: 10.1016/j.jad.2018.04.038 PMID: 29684865
- Zhang, Y.; Huang, R.; Cheng, M.; Wang, L.; Chao, J.; Li, J.; Zheng, P.; Xie, P.; Zhang, Z.; Yao, H. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome, 2019, 7(1), 116. doi: 10.1186/s40168-019-0733-3 PMID: 31439031
- Antushevich, H. Fecal microbiota transplantation in disease therapy. Clin. Chim. Acta, 2020, 503, 90-98. doi: 10.1016/j.cca.2019.12.010 PMID: 31968211
- Chevalier, G.; Siopi, E.; Guenin-Macé, L.; Pascal, M.; Laval, T.; Rifflet, A.; Boneca, I.G.; Demangel, C.; Colsch, B.; Pruvost, A.; Chu-Van, E.; Messager, A.; Leulier, F.; Lepousez, G.; Eberl, G.; Lledo, P.M. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun., 2020, 11(1), 6363. doi: 10.1038/s41467-020-19931-2 PMID: 33311466
- Li, Y. Microbiota-gut-brain axis and major depressive disorder: Implications for fecal microbiota transplantation therapy. Trad. Med. Res., 2021, 4(4), 35. doi: 10.53388/life2021-0824-338
- Petrof, E.O.; Khoruts, A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology, 2014, 146(6), 1573-1582. doi: 10.1053/j.gastro.2014.01.004 PMID: 24412527
- Chinna Meyyappan, A.; Sgarbossa, C.; Vazquez, G.; Bond, D.J.; Müller, D.J.; Milev, R. The safety and efficacy of microbial ecosystem therapeutic-2 in people with major depression: Protocol for a phase 2, double-blind, placebo-controlled study. JMIR Res. Protoc., 2021, 10(9), e31439. doi: 10.2196/31439 PMID: 34550085
- Meyyappan, A.C.; Forth, E.; Milev, R. The safety, efficacy, and tolerability of microbial ecosystem therapeutic-2 in people with major depressive disorder and/or generalized anxiety disorder: A Phase 1, Open-label study. JMIR Res. Protoc., 2021, 9(6), e17223.
- Chinna Meyyappan, A.; Forth, E.; Milev, R. Microbial ecosystem therapeutic-2 intervention in people with major depressive disorder and generalized anxiety disorder: Phase 1, Open-Label Study. Interact. J. Med. Res., 2022, 11(1), e32234. doi: 10.2196/32234 PMID: 35060914
- Inserra, A.; Rogers, G.B.; Licinio, J.; Wong, M.L. The microbiota‐inflammasome hypothesis of major depression. BioEssays, 2018, 40(9), 1800027. doi: 10.1002/bies.201800027 PMID: 30004130
- Włodarczyk, A.; Cubała, W.J.; Stawicki, M. Ketogenic diet for depression: A potential dietary regimen to maintain euthymia? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 109, 110257. doi: 10.1016/j.pnpbp.2021.110257 PMID: 33497756
- Aly, J.; Engmann, O. The way to a humans brain goes through their stomach: dietary factors in major depressive disorder. Front. Neurosci., 2020, 14, 582853. doi: 10.3389/fnins.2020.582853 PMID: 33364919
- Ernst, C.; Olson, A.K.; Pinel, J.P.; Lam, R.W.; Christie, B.R. Antidepressant effects of exercise: Evidence for an adult-neurogenesis hypothesis? J. Psychiatry Neurosci., 2006, 31(2), 84-92. PMID: 16575423
- Dey, S.; Singh, R.H.; Dey, P.K. Exercise training: Significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav., 1992, 52(6), 1095-1099. doi: 10.1016/0031-9384(92)90465-E PMID: 1283013
- Meeusen, R.; Thorré, K.; Chaouloff, F.; Sarre, S.; De Meirleir, K.; Ebinger, G.; Michotte, Y. Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Res., 1996, 740(1-2), 245-252. doi: 10.1016/S0006-8993(96)00872-4 PMID: 8973821
- Wilson, W.M.; Marsden, C.A. In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behav. Pharmacol., 1996, 7(1), 101-104. doi: 10.1097/00008877-199601000-00011 PMID: 11224400
- Banasr, M.; Hery, M.; Printemps, R.; Daszuta, A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology, 2004, 29(3), 450-460. doi: 10.1038/sj.npp.1300320 PMID: 14872203
- Schuch, F.B.; Deslandes, A.C.; Stubbs, B.; Gosmann, N.P.; Silva, C.T.B.; Fleck, M.P.A. Neurobiological effects of exercise on major depressive disorder: A systematic review. Neurosci. Biobehav. Rev., 2016, 61, 1-11. doi: 10.1016/j.neubiorev.2015.11.012 PMID: 26657969
Supplementary files
