Enhancement in Biological Availability of Vitamins by Nano-engineering and its Applications: An Update


Citar

Texto integral

Resumo

:Vitamin nano-engineering has been accomplished by synthesizing various nanostructures to improve their stability, bioavailability, shelf life, and functioning. This review provides a detailed description of recent advances in the art of encapsulation with high efficiency through the use of practical and logistic nano-engineering techniques such as nanofibres, nanogels, nanobeads, nanotubes, nanoparticles, nanoliposomes, and many other nanostructures. To demonstrate the interaction of molecules with nano-forms, the bioavailability of several vitamins such as B, C, E, A, D, and others in the form of nanostructures is explored. This review will provide a thorough understanding of how to improve bioavailability and nanostructure selection to extend the utility, shelf life, and structural stability of vitamins. While nanoencapsulation can improve vitamin stability and distribution, the materials employed in nanotechnologies may offer concerns if they are not sufficiently tested for safety. If nanoparticles are not adequately designed and evaluated, they may cause inflammation, oxidative stress, or other unwanted effects. Researchers and makers of nanomaterials and medication delivery systems should adhere to established rules and regulations. Furthermore, long-term studies are required to monitor any negative consequences that may result from the use of nanostructure.

Sobre autores

Sadhna Mishra

Faculty of Agricultural Sciences, GLA University

Autor responsável pela correspondência
Email: info@benthamscience.net

Shalini Sahani

School of Chemical Engineering,, Yeungnam University

Autor responsável pela correspondência
Email: info@benthamscience.net

Shikha Pandhi

Department of Dairy Science and Food Technology, Banaras Hindu University

Email: info@benthamscience.net

Arvind Kumar

Department of Dairy Science and Food Technology, Banaras Hindu University

Email: info@benthamscience.net

Dipendra Mahato

School of Energy Science and Engineering,, Indian Institute of Technology Guwahati

Email: info@benthamscience.net

Pradeep Kumar

Department of Botany, University of Lucknow

Email: info@benthamscience.net

Kaustubh Khaire

CASS Food Research Centre, School of Exercise and Nutrition Sciences,, Deakin University

Email: info@benthamscience.net

Ashutosh Rai

Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology

Email: info@benthamscience.net

Bibliografia

  1. Graulet, B.; Girard, C.L. Chapter 15 - B Vitamins in cow milk: Their relevance to human health. In: Dairy in Human Health and Disease Across the Lifespan; , 2017; pp. 211-224. doi: 10.1016/B978-0-12-809868-4.00015-7
  2. Gamboa, O.D.; Gonçalves, L.G.; Grosso, C.F. Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci., 2011, 1, 1732-1739. doi: 10.1016/j.profoo.2011.09.255
  3. Dhakal, S.P.; He, J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res. Int., 2020, 137, 109326. doi: 10.1016/j.foodres.2020.109326 PMID: 33233045
  4. Donsì, F. Chapter 11 - Applications of nanoemulsions in foods. In: Nanoemulsions, Formulation, Applications, and Characterization; , 2018; pp. 349-377. doi: 10.1016/B978-0-12-811838-2.00011-4
  5. Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol., 2013, 6(3), 628-647. doi: 10.1007/s11947-012-0944-0
  6. Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. In: Trends Food Sci. Technol., 2016, 53, 34-48. doi: 10.1016/j.tifs.2016.05.002
  7. Yang, P.; Wang, H.; Li, L.; Zhang, N.; Ma, Y. Determination and evaluation of bioavailability of vitamins from different multivitamin supplements using a pig model. Agriculture, 2021, 11(5), 418. doi: 10.3390/agriculture11050418
  8. Mishra, S.; Sahani, S.; Arvind, V. Encapsulation of herbal extracts. In: Sustainable Agriculture Reviews 55, Micro and Nano Engineering in Food Science; , 2021; 1, pp. 115-133. doi: 10.1007/978-3-030-76813-3_5
  9. Zeichner, L.O.; Shoham, S.; Vazquez, J.; Reboli, A.; Betts, R. (2014) 1–26.
  10. Borthakur, P.; Boruah, P.K.; Sharma, B.; Das, M.R. 5 - Nanoemulsion: preparation and its application in food industry. In: Emulsions Nanotechnology in the Agri-Food Industry Volume 3 Nanotechnology in the Agri-Food Industry; , 2016; pp. 153-191. doi: 10.1016/B978-0-12-804306-6.00005-2
  11. Bartusik, D.; Aebisher, D.; Tomanek, B. 15 - The synthesis and application of vitamins in nanoemulsion delivery systems. In: Emulsions Nanotechnology in the Agri-Food Industry Volume 3 Nanotechnology in the Agri-Food Industry; , 2016; pp. 519-555. doi: 10.1016/B978-0-12-804306-6.00015-5
  12. Sahani, S.; Sharma, Y.C. Advancements in applications of nanotechnology in global food industry. Food Chem., 2021, 342, 128318. doi: 10.1016/j.foodchem.2020.128318 PMID: 33189478
  13. Walia, N.; Dasgupta, N.; Ranjan, S.; Ramalingam, C.; Gandhi, M. Food-grade nanoencapsulation of vitamins. Environ. Chem. Lett., 2019, 17(2), 991-1002. doi: 10.1007/s10311-018-00855-9
  14. Panigrahi, S.S.; Syed, I.; Sivabalan, S.; Sarkar, P. Nanoencapsulation strategies for lipid-soluble vitamins. Chem. Pap., 2019, 73(1), 1-16. doi: 10.1007/s11696-018-0559-7
  15. Muscogiuri, G.; Barrea, L. Nutritional recommendations for CoVID-19 quarantine. Eur. J. Clin. Nutr., 2020, 74(6), 850-851. doi: 10.1038/s41430-020-0635-2
  16. Melse-Boonstra, A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr., 2020, 7, 101. doi: 10.3389/fnut.2020.00101 PMID: 32793622
  17. Methods, A.; Kaushik, R.; Sachdeva, B.; Arora, S.; Kapila, S.; Wadhwa, K. Manuscript, 2013.
  18. Meijer, G.W.; Lähteenmäki, L.; Stadler, R.H.; Weiss, J. Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Crit. Rev. Food Sci. Nutr., 2021, 61(1), 97-115. doi: 10.1080/10408398.2020.1718597 PMID: 32003225
  19. Jiménez-carvelo, A.M.; González-casado, A.; Gracia, M.; Cuadros-rodríguez, L. 2019.
  20. Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int., 2018, 110, 42-51. doi: 10.1016/j.foodres.2017.03.045 PMID: 30029705
  21. Shurson, G.C.; Salzer, T.M.; Koehler, D.D.; Whitney, M.H. Effect of metal specific amino acid complexes and inorganic trace minerals on vitamin stability in premixes. Anim. Feed Sci. Technol., 2011, 163(2-4), 200-206. doi: 10.1016/j.anifeedsci.2010.11.001
  22. Narwal, S.; Gupta, O.P.; Pandey, V.; Kumar, D.; Ram, S. Effect of storage and processing conditions on nutrient composition of wheat and barley; Wheat and Barley Grain Biofortification, 2020, pp. 229-256. doi: 10.1016/B978-0-12-818444-8.00009-2
  23. Elliott, C.T.; Connolly, L.; Kolawole, O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res., 2020, 36(1), 115-126. doi: 10.1007/s12550-019-00375-7 PMID: 31515765
  24. Tanyıldız, S.N.; Yıldırım, H.; Cengiz, S.; Burak, B.; Ozgür, B. Trends in food science & technology the bioaccessibility of water-soluble vitamins. RE:view, 2021, 109, 552-563.
  25. Deng, L.Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.H.; Wang, J.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – a comprehensive review. Crit. Rev. Food Sci. Nutr., 2019, 59(9), 1408-1432. doi: 10.1080/10408398.2017.1409192 PMID: 29261333
  26. Knecht, K.; Sandfuchs, K.; Kulling, S.E.; Bunzel, D. Tocopherol and tocotrienol analysis in raw and cooked vegetables: A validated method with emphasis on sample preparation. Food Chem., 2015, 169, 20-27. doi: 10.1016/j.foodchem.2014.07.099 PMID: 25236193
  27. Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Effects of thermal treatment on polysaccharide degradation during black garlic processing. Lebensm. Wiss. Technol., 2018, 95, 223-229. doi: 10.1016/j.lwt.2018.04.059
  28. Arshad, R.; Gulshad, L.; Haq, I.U.; Farooq, M.A.; Al-Farga, A.; Siddique, R.; Manzoor, M.F.; Karrar, E. Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci. Nutr., 2021, 9(6), 3354-3361. doi: 10.1002/fsn3.2311 PMID: 34136200
  29. Maurya, V.K.; Aggarwal, M. Enhancing bio-availability of vitamin d by nano-engineered based delivery systems- an overview. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6(7), 340-353. doi: 10.20546/ijcmas.2017.607.040
  30. McClements, D.J. Nanotechnology approaches for improving the healthiness and sustainability of the modern food supply. ACS Omega, 2020, 5(46), 29623-29630. doi: 10.1021/acsomega.0c04050 PMID: 33251398
  31. Aman Mohamadi, M.; Farshi, P.; Ahmadi, P.; Ahmadi, A.; Yousefi, M.; Ghorbani, M.; Hosseini, S.M. Encapsulation of vitamins using nanoliposome: Recent advances and perspectives. Adv. Pharm. Bull., 2021, 13(1), 48-68. doi: 10.34172/apb.2023.005 PMID: 36721823
  32. Maurya, V.K.; Aggarwal, M. Factors influencing the absorption of vitamin D in GIT: an overview. J. Food Sci. Technol., 2017, 54(12), 3753-3765. doi: 10.1007/s13197-017-2840-0 PMID: 29085118
  33. Singh, A.R.; Desu, P.K.; Nakkala, R.K.; Kondi, V.; Devi, S.; Alam, M.S.; Hamid, H.; Athawale, R.B.; Kesharwani, P. Nanotechnology-based approaches applied to nutraceuticals. Drug Deliv. Transl. Res., 2022, 12(3), 485-499. doi: 10.1007/s13346-021-00960-3 PMID: 33738677
  34. Olloqui, E.J.; Castañeda-Ovando, A.; Contreras-López, E.; Hernandez-Sanchez, D.; Tapia-Maruri, D.; Piloni-Martini, J.; Añorve-Morga, J. Encapsulation of fish oil into low-cost alginate beads and EPA-DHA release in a rumino-intestinal in vitro digestion model. Eur. J. Lipid Sci. Technol., 2018, 120(9), 1800036. doi: 10.1002/ejlt.201800036
  35. Zhang, J.; Zhang, R.; Zhang, Y.; Pan, Y.; Shum, H.C.; Jiang, Z. Alginate-gelatin emulsion droplets for encapsulation of vitamin A by 3D printed microfluidics. Particuology, 2022, 64, 164-170. doi: 10.1016/j.partic.2021.09.004
  36. McClements, D.J. Recent advances in the production and application of nano-enabled bioactive food ingredients. Curr. Opin. Food Sci., 2020, 33, 85-90. doi: 10.1016/j.cofs.2020.02.004
  37. Shah, B.R.; Xu, W.; Mráz, J. Fabrication, stability and rheological properties of zein/chitosan particles stabilized Pickering emulsions with antioxidant activities of the encapsulated vit-D3. Int. J. Biol. Macromol., 2021, 191, 803-810. doi: 10.1016/j.ijbiomac.2021.09.159 PMID: 34597693
  38. Baek, J.; Ramasamy, M.; Willis, N.C.; Kim, D.S.; Anderson, W.A.; Tam, K.C. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Current Research in Food Science, 2021, 4, 215-223. doi: 10.1016/j.crfs.2021.03.010 PMID: 33937869
  39. Coelho, S.C.; Laget, S.; Benaut, P.; Rocha, F.; Estevinho, B.N. A new approach to the production of zein microstructures with vitamin B12, by electrospinning and spray drying techniques. Powder Technol., 2021, 392, 47-57. doi: 10.1016/j.powtec.2021.06.056
  40. Hsu, C.Y.; Wang, P.W.; Alalaiwe, A.; Lin, Z.C.; Fang, J.Y. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients, 2019, 11(1), 68. doi: 10.3390/nu11010068 PMID: 30609658
  41. Cimino, R.; Bhangu, S.K.; Baral, A.; Ashokkumar, M.; Cavalieri, F. Vitamin D using bare glycogen nanoparticles, 2021.
  42. Mohammed, A.S.Y.; Dyab, A.K.F.; Taha, F.; Abd El-Mageed, A.I.A. Encapsulation of folic acid (vitamin B9) into sporopollenin microcapsules: Physico-chemical characterisation, in vitro controlled release and photoprotection study. Mater. Sci. Eng. C, 2021, 128, 112271. doi: 10.1016/j.msec.2021.112271 PMID: 34474830
  43. Resende, D.; Costa Lima, S.A.; Reis, S. Nanoencapsulation approaches for oral delivery of vitamin A. Colloids Surf. B Biointerfaces, 2020, 193, 111121. doi: 10.1016/j.colsurfb.2020.111121 PMID: 32464354
  44. Liang, L.; Qiu, L. Vitamin E succinate with multiple functions: A versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int. J. Pharm., 2021, 600, 120457. doi: 10.1016/j.ijpharm.2021.120457 PMID: 33676991
  45. Campos-Cerqueira, M.; Aide, T.M. Changes in the acoustic structure and composition along a tropical elevational gradient. Journal of Ecoacoustics, 2017, 1(1), 1-1. doi: 10.22261/JEA.PNCO7I
  46. Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon, 2022, 8(1), e08674. doi: 10.1016/j.heliyon.2021.e08674 PMID: 35028457
  47. Muhamad, I.I.; Abang Zaidel, D.N.; Hashim, Z.; Mohammad, N.A.; Abu Bakar, N.F. 10 - Improving the delivery system and bioavailability of beverages through nanoencapsulation. In: Nanoengineering in the Beverage Industry Volume 20: the Science of Beverages; , 2020; pp. 301-332. doi: 10.1016/B978-0-12-816677-2.00010-7
  48. Zhu, H.; Mettu, S.; Cavalieri, F.; Ashokkumar, M. Ultrasonic microencapsulation of oil-soluble vitamins by hen egg white and green tea for fortification of food. Food Chem., 2021, 353, 129432. doi: 10.1016/j.foodchem.2021.129432 PMID: 33714120
  49. Chaves, M.A.; Baldino, L.; Pinho, S.C.; Reverchon, E. Supercritical CO2 assisted process for the production of mixed phospholipid nanoliposomes: Unloaded and vitamin D3-loaded vesicles. J. Food Eng., 2022, 316, 110851. doi: 10.1016/j.jfoodeng.2021.110851
  50. Chaves, M.A.; Baldino, L.; Pinho, S.C.; Reverchon, E. Co-encapsulation of curcumin and vitamin D3 in mixed phospholipid nanoliposomes using a continuous supercritical CO2 assisted process. J. Taiwan Inst. Chem. Eng., 2022, 132, 104120. doi: 10.1016/j.jtice.2021.10.020
  51. Walia, N.; Dasgupta, N.; Ranjan, S.; Chen, L.; Ramalingam, C. Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason. Sonochem., 2017, 39, 623-635. doi: 10.1016/j.ultsonch.2017.05.021 PMID: 28732987
  52. Mehmood, T.; Ahmed, A.; Ahmad, A.; Ahmad, M.S.; Sandhu, M.A. Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: An ultrasonic homogenization approach. Food Chem., 2018, 253, 179-184. doi: 10.1016/j.foodchem.2018.01.136 PMID: 29502819
  53. Chapeau, A.L.; Tavares, G.M.; Hamon, P.; Croguennec, T.; Poncelet, D.; Bouhallab, S. Spontaneous co-assembly of lactoferrin and β-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocoll., 2016, 57, 280-290. doi: 10.1016/j.foodhyd.2016.02.003
  54. Patel, M.R.; San Martin-Gonzalez, M.F. Characterization of ergocalciferol loaded solid lipid nanoparticles. J. Food Sci., 2012, 77(1), N8-N13. doi: 10.1111/j.1750-3841.2011.02517.x PMID: 22260120
  55. Hejri, A.; Khosravi, A.; Gharanjig, K.; Hejazi, M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem., 2013, 141(1), 117-123. doi: 10.1016/j.foodchem.2013.02.080 PMID: 23768336
  56. Bochicchio, S.; Barba, A.A.; Grassi, G.; Lamberti, G. Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. In: LWT - Food Science and Technology; , 2016; 69, pp. 9-16.
  57. Comunian, T.; Babazadeh, A.; Rehman, A.; Shaddel, R.; Akbari-Alavijeh, S.; Boostani, S.; Jafari, S.M. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit. Rev. Food Sci. Nutr., 2020. doi: 10.1080/10408398.2020.1865258 PMID: 33350318
  58. de Melo, A.P.Z.; da Rosa, C.G.; Noronha, C.M.; Machado, M.H.; Sganzerla, W.G.; Bellinati, N.V.C.; Nunes, M.R.; Verruck, S.; Prudêncio, E.S.; Barreto, P.L.M. Nanoencapsulation of vitamin D3 and fortification in an experimental jelly model of Acca sellowiana: Bioaccessibility in a simulated gastrointestinal system. Lebensm. Wiss. Technol., 2021, 145, 111287. doi: 10.1016/j.lwt.2021.111287
  59. Groo, A.C.; Matougui, N.; Umerska, A.; Saulnier, P. Reverse micelle-lipid nanocapsules: a novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int. J. Nanomedicine, 2018, 13, 7565-7574. doi: 10.2147/IJN.S180040 PMID: 30532539
  60. Akbari Alavijeh, M.; Sarvi, M.N.; Ramazani Afarani, Z. Properties of adsorption of vitamin B12 on nanoclay as a versatile carrier. Food Chem., 2017, 219, 207-214. doi: 10.1016/j.foodchem.2016.09.140 PMID: 27765218
  61. Santos, M.B.; Wanderlei, C.; De Carvalho, P.; Elard, E.; De Carvalho, W.P.; Garcia-rojas, E. carboxymethyl tara gum ( C aesalpinia spinosa ) and gelatin A. 2020.
  62. Mahdi Jafari, S.; Masoudi, S.; Bahrami, A. A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D 3. Dry. Technol., 2019, 37(16), 2059-2071. doi: 10.1080/07373937.2018.1552598
  63. Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Prog. Org. Coat., 2020, 138, 105383. doi: 10.1016/j.porgcoat.2019.105383
  64. Schoonjans, R.; Eryasa, B. Annual report of the EFSA Scientific Network of Risk Assessment of Nanotechnologies in Food and Feed for 2018. EFSA Support. Publ., 2019, 16(4), 1-11. doi: 10.2903/sp.efsa.2019.EN-1626
  65. More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambré, C.; Machera, K.; Naegeli, H.; Nielsen, S.; Schlatter, J.; Schrenk, D.; Silano Deceased, V.; Turck, D.; Younes, M.; Castenmiller, J.; Chaudhry, Q.; Cubadda, F.; Franz, R.; Gott, D.; Mast, J.; Mortensen, A.; Oomen, A.G.; Weigel, S.; Barthelemy, E.; Rincon, A.; Tarazona, J.; Schoonjans, R. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J., 2021, 19(8), e06768. doi: 10.2903/j.efsa.2021.6768 PMID: 34377190
  66. Maiorova, L.A.; Erokhina, S.I.; Pisani, M.; Barucca, G.; Marcaccio, M.; Koifman, O.I.; Salnikov, D.S.; Gromova, O.A.; Astolfi, P.; Ricci, V.; Erokhin, V. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf. B Biointerfaces, 2019, 182, 110366. doi: 10.1016/j.colsurfb.2019.110366 PMID: 31351273
  67. Bedhiafi, T.; Idoudi, S.; Fernandes, Q.; Al-Zaidan, L.; Uddin, S.; Dermime, S.; Billa, N.; Merhi, M.; Nano-vitamin, C. Nano-vitamin C: A promising candidate for therapeutic applications. Biomed. Pharmacother., 2023, 158, 114093. doi: 10.1016/j.biopha.2022.114093 PMID: 36495664
  68. Genç, L.; Kutlu, H.M.; Güney, G. Vitamin B 12 -loaded solid lipid nanoparticles as a drug carrier in cancer therapy. Pharm. Dev. Technol., 2015, 20(3), 337-344. doi: 10.3109/10837450.2013.867447 PMID: 24344935
  69. Zhang, J.; Xu, W.; Xu, F.; Lu, W.; Hu, L.; Zhou, J.; Zhang, C.; Jiang, Z. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing. J. Food Eng., 2021, 290, 110212. doi: 10.1016/j.jfoodeng.2020.110212
  70. Chaves, M.A.; Ferreira, L.S.; Baldino, L.; Pinho, S.C.; Reverchon, E. Current applications of liposomes for the delivery of vitamins: A systematic review. Nanomaterials (Basel), 2023, 13(9), 1557. doi: 10.3390/nano13091557 PMID: 37177102
  71. Nejatian, M.; Darabzadeh, N.; Bodbodak, S.; Saberian, H.; Rafiee, Z.; Kharazmi, M.S.; Jafari, S.M. Practical application of nanoencapsulated nutraceuticals in real food products; a systematic review. Adv. Colloid Interface Sci., 2022, 305, 102690. doi: 10.1016/j.cis.2022.102690 PMID: 35525089
  72. Misra, S.; Pandey, P.; Mishra, H.N. Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends Food Sci. Technol., 2021, 109, 340-351. doi: 10.1016/j.tifs.2021.01.039
  73. Stavis, S.M.; Fagan, J.A.; Stopa, M.; Liddle, J.A. Nanoparticle manufacturing – heterogeneity through processes to products. ACS Appl. Nano Mater., 2018, 1(9), 4358-4385. doi: 10.1021/acsanm.8b01239
  74. Jagtiani, E. Advancements in nanotechnology for food science and industry. Food Front., 2022, 3(1), 56-82. doi: 10.1002/fft2.104

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024