Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides
- Authors: Bazzaz B.1, Goki N.1, Tehranizadeh Z.2, Saberi M.3, Khameneh B.1
-
Affiliations:
- Department of Pharmaceutical Control, School of Pharmacy,, Mashhad University of Medical Sciences
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences
- Department of Medicinal Chemistry, School of Pharmacy,, Mashhad University of Medical Sciences
- Issue: Vol 25, No 8 (2024)
- Pages: 1041-1057
- Section: Biotechnology
- URL: https://rjsocmed.com/1389-2010/article/view/644943
- DOI: https://doi.org/10.2174/0113892010194428231017051836
- ID: 644943
Cite item
Full Text
Abstract
Antimicrobial peptides (AMPs), a class of antimicrobial agents, possess considerable potential to treat various microbial ailments. The broad range of activity and rare complete bacterial resistance to AMPs make them ideal candidates for commercial development. These peptides with widely varying compositions and sources share recurrent structural and functional features in mechanisms of action. Studying the mechanisms of AMP activity against bacteria may lead to the development of new antimicrobial agents that are more potent. Generally, AMPs are effective against bacteria by forming pores or disrupting membrane barriers. The important structural aspects of cytoplasmic membranes of pathogens and host cells will also be outlined to understand the selective antimicrobial actions. The antimicrobial activities of AMPs are related to multiple physicochemical properties, such as length, sequence, helicity, charge, hydrophobicity, amphipathicity, polar angle, and also self-association. These parameters are interrelated and need to be considered in combination. So, gathering the most relevant available information will help to design and choose the most effective AMPs.
About the authors
Bibi Bazzaz
Department of Pharmaceutical Control, School of Pharmacy,, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Narjes Goki
Department of Pharmaceutical Control, School of Pharmacy,, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Zeinab Tehranizadeh
Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Mohammad Saberi
Department of Medicinal Chemistry, School of Pharmacy,, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Bahman Khameneh
Department of Pharmaceutical Control, School of Pharmacy,, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: An introduction. Methods Mol. Biol., 2017, 3-22. doi: 10.1007/978-1-4939-6737-7_1
- Dash, R.; Bhattacharjya, S. Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action. Int. J. Mol. Sci., 2021, 22(4), 1522. doi: 10.3390/ijms22041522 PMID: 33546369
- Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance. Curr. Med. Chem., 2017, 24(38), 4303-4314. PMID: 28814242
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57. doi: 10.1016/j.drup.2016.04.002 PMID: 27180309
- Sadelaji, S.; Ghaznavi-Rad, E.; Sadoogh Abbasian, S.; Fahimirad, S.; Abtahi, H. Ib-AMP4 antimicrobial peptide as a treatment for skin and systematic infection of methicillin-resistant Staphylococcus aureus (MRSA). Iran. J. Basic Med. Sci., 2022, 25(2), 232-238. PMID: 35655604
- Deslouches, B.; Montelaro, R.C.; Urish, K.L.; Di, Y.P. Engineered cationic antimicrobial peptides (eCAPs) to combat multidrug-resistant bacteria. Pharmaceutics, 2020, 12(6), 501. doi: 10.3390/pharmaceutics12060501 PMID: 32486228
- Fathizadeh, H.; Saffari, M.; Esmaeili, D.; Moniri, R.; Salimian, M. Evaluation of antibacterial activity of enterocin A-colicin E1 fusion peptide. Iran. J. Basic Med. Sci., 2020, 23(11), 1471-1479. PMID: 33235705
- Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. Mol. Biol., 2019, 431(18), 3547-3567. doi: 10.1016/j.jmb.2018.12.015 PMID: 30611750
- Magrone, T.; Russo, M.A.; Jirillo, E. Antimicrobial peptides: Phylogenic sources and biological activities. First of two parts. Curr. Pharm. Des., 2018, 24(10), 1043-1053. doi: 10.2174/1381612824666180403123736 PMID: 29611476
- Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 2012, 37(2), 207-215. doi: 10.1016/j.peptides.2012.07.001 PMID: 22800692
- Kaur-Boparai, J.; Sharma, P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett., 2020, 27(1), 4-16. doi: 10.2174/18755305MTAwENDE80 PMID: 31438824
- Wang, G.; Li, X.; Zasloff, M. A database view of naturally occurring antimicrobial peptides: Nomenclature, classification and amino acid sequence analysis. Antimicrobial peptides: Discovery, design and novel therapeutic strategies; Cabi digital library, 2010, pp. 1-21.
- Wang, G. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Antimicrobial peptides: Discovery, design and novel therapeutic strategies; Cabi digital library, 2017, p. 1.
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; Falabella, P. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol., 2021, 11, 668632. doi: 10.3389/fcimb.2021.668632 PMID: 34195099
- Ageitos, J.M. Sلnchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138. doi: 10.1016/j.bcp.2016.09.018 PMID: 27663838
- Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections. Med. Res. Rev., 2022, 42(4), 1377-1422. doi: 10.1002/med.21879 PMID: 34984699
- Drin, G.; Antonny, B. Amphipathic helices and membrane curvature. FEBS Lett., 2010, 584(9), 1840-1847. doi: 10.1016/j.febslet.2009.10.022 PMID: 19837069
- Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 2005, 280(13), 12316-12329. doi: 10.1074/jbc.M413406200 PMID: 15677462
- Xiang, N.; Lyu, Y.; Zhu, X.; Bhunia, A.K.; Narsimhan, G. Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity. Peptides, 2017, 94, 10-18. doi: 10.1016/j.peptides.2017.05.010 PMID: 28587835
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev., 2019, 39(3), 831-859. doi: 10.1002/med.21542 PMID: 30353555
- Stone, T.A.; Cole, G.B.; Ravamehr-Lake, D.; Nguyen, H.Q.; Khan, F.; Sharpe, S.; Deber, C.M. Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability. J. Med. Chem., 2019, 62(13), 6276-6286. doi: 10.1021/acs.jmedchem.9b00657 PMID: 31194548
- Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204. doi: 10.3389/fchem.2018.00204 PMID: 29922648
- Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res., 2021, 49(D1), D288-D297. doi: 10.1093/nar/gkaa991 PMID: 33151284
- Brady, D.; Grapputo, A.; Romoli, O.; Sandrelli, F. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci., 2019, 20(23), 5862. doi: 10.3390/ijms20235862 PMID: 31766730
- Sand, S.L.; Nissen-Meyer, J.; Sand, O.; Haug, T.M.; Plantaricin, A. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim. Biophys. Acta Biomembr., 2013, 1828(2), 249-259. doi: 10.1016/j.bbamem.2012.11.001 PMID: 23142566
- Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1551-1555. doi: 10.1016/j.bbamem.2009.01.004
- Hirano, M.; Saito, C.; Yokoo, H.; Goto, C.; Kawano, R.; Misawa, T.; Demizu, Y. Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules, 2021, 26(2), 444. doi: 10.3390/molecules26020444 PMID: 33466998
- Selsted, M.E.; Tang, Y.Q.; Morris, W.L.; McGuire, P.A.; Novotny, M.J.; Smith, W.; Henschen, A.H.; Cullor, J.S. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem., 1993, 268(9), 6641-6648. doi: 10.1016/S0021-9258(18)53298-1 PMID: 8454635
- Dhople, V.; Krukemeyer, A.; Ramamoorthy, A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1499-1512. doi: 10.1016/j.bbamem.2006.07.007 PMID: 16978580
- Samuelsen, ط.; Haukland, H.H.; Jenssen, H.; Krنmer, M.; Sandvik, K.; Ulvatne, H.; Vorland, L.H. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus. FEBS Lett., 2005, 579(16), 3421-3426. doi: 10.1016/j.febslet.2005.05.017 PMID: 15946666
- Fujikawa, K.; Suketa, Y.; Hayashi, K.; Suzuki, T. Chemical structure of circulin A. Experientia, 1965, 21(6), 307-308. doi: 10.1007/BF02144681 PMID: 4288271
- Lambert, J.; Keppi, E.; Dimarcq, J.L.; Wicker, C.; Reichhart, J.M.; Dunbar, B.; Lepage, P.; Van Dorsselaer, A.; Hoffmann, J.; Fothergill, J. Insect immunity: Isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci., 1989, 86(1), 262-266. doi: 10.1073/pnas.86.1.262 PMID: 2911573
- Lamberty, M.; Caille, A.; Landon, C.; Tassin-Moindrot, S.; Hetru, C.; Bulet, P.; Vovelle, F. Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry, 2001, 40(40), 11995-12003. doi: 10.1021/bi0103563 PMID: 11580275
- Tichaczek, P.S.; Vogel, R.F.; Hammes, W.P. Cloning and sequencing of cur A encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch. Microbiol., 1993, 160(4), 279-283. doi: 10.1007/BF00292077 PMID: 7694558
- Holck, A.L.; Axelsson, L.; Hühne, K. Krِckel, L. Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol. Lett., 1994, 115(2-3), 143-149. doi: 10.1111/j.1574-6968.1994.tb06629.x PMID: 8138128
- Zhu, Q.Z.; Hu, J.; Mulay, S.; Esch, F.; Shimasaki, S.; Solomon, S. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc. Natl. Acad. Sci., 1988, 85(2), 592-596. doi: 10.1073/pnas.85.2.592 PMID: 2829194
- Eisenhauer, P.B.; Harwig, S.S.; Lehrer, R.I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun., 1992, 60(9), 3556-3565. doi: 10.1128/iai.60.9.3556-3565.1992 PMID: 1500163
- Hara, S.; Yamakawa, M. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J., 1995, 310(2), 651-656. doi: 10.1042/bj3100651 PMID: 7654207
- Scheenstra, M.R.; van den Belt, M.; Tjeerdsma-van Bokhoven, J.L.M.; Schneider, V.A.F.; Ordonez, S.R.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci. Rep., 2019, 9(1), 4780. doi: 10.1038/s41598-019-41246-6 PMID: 30886247
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 281-296. doi: 10.1038/nrm.2017.138 PMID: 29410529
- Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci., 2019, 537, 163-185. doi: 10.1016/j.jcis.2018.10.103 PMID: 30439615
- Koppelman, C.M.; Den Blaauwen, T.; Duursma, M.C.; Heeren, R.M.A.; Nanninga, N. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol., 2001, 183(20), 6144-6147. doi: 10.1128/JB.183.20.6144-6147.2001 PMID: 11567016
- Sharma, S.; Sahoo, N.; Bhunia, A. Antimicrobial peptides and their pore/ion channel properties in neutralization of pathogenic microbes. Curr. Top. Med. Chem., 2015, 16(1), 46-53. doi: 10.2174/1568026615666150703115454 PMID: 26139119
- Parchebafi, A.; Tamanaee, F.; Ehteram, H.; Ahmad, E.; Nikzad, H.; Haddad Kashani, H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb. Cell Fact., 2022, 21(1), 118. doi: 10.1186/s12934-022-01848-8 PMID: 35717207
- Umnyakova, E.; Orlov, D.; Shamova, O. Peptides and antibiotic resistance, Peptide and Peptidomimetic Therapeutics; Elsevier, 2022, pp. 417-437. doi: 10.1016/B978-0-12-820141-1.00025-X
- Chou, H.T.; Wen, H.W.; Kuo, T.Y.; Lin, C.C.; Chen, W.J. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides, 2010, 31(10), 1811-1820. doi: 10.1016/j.peptides.2010.06.021 PMID: 20600422
- Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19. doi: 10.1016/j.cub.2015.11.017 PMID: 26766224
- Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767. doi: 10.1089/mdr.2017.0392 PMID: 29957118
- Zasloff, M. Antimicrobial peptides of multicellular organisms: My perspective; Antimicrobial Peptides, 2019, pp. 3-6. doi: 10.1007/978-981-13-3588-4_1
- Fillion, M.; Ouellet, M.; Auger, M. Solid-state NMR studies of the interactions and structure of antimicrobial peptides in model membranes, Modern Magnetic Resonance; Springer International Publishing: Cham, 2016, pp. 1-18.
- Soares, J.W.; Mello, C.M. Antimicrobial peptides: A review of how peptide structure impacts antimicrobial activity. Monit. Food. Saf. Agricul.Plant. Heal., 2004, 5271, 20-27. doi: 10.1117/12.516171
- Ye, Z.; Zhu, X.; Acosta, S.; Kumar, D.; Sang, T.; Aparicio, C. Self-assembly dynamics and antimicrobial activity of all L - and D -amino acid enantiomers of a designer peptide. Nanoscale, 2019, 11(1), 266-275. doi: 10.1039/C8NR07334A PMID: 30534763
- Panina, I.; Krylov, N.; Nolde, D.; Efremov, R.; Chugunov, A. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Sci. Rep., 2020, 10(1), 8821. doi: 10.1038/s41598-020-65522-y PMID: 32483218
- Singh, T.; Choudhary, P.; Singh, S. Antimicrobial Peptides: Mechanism of Action; Insights on Antimicrobial Peptides, 2022, p. 23.
- Cardoso, M.H.; Meneguetti, B.T.; Costa, B.O.; Buccini, D.F.; Oshiro, K.G.N.; Preza, S.L.E.; Carvalho, C.M.E.; Migliolo, L.; Franco, O.L. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int. J. Mol. Sci., 2019, 20(19), 4877. doi: 10.3390/ijms20194877 PMID: 31581426
- Grein, F.; Schneider, T.; Sahl, H.G. Docking on lipid IIa widespread mechanism for potent bactericidal activities of antibiotic peptides. J. Mol. Biol., 2019, 431(18), 3520-3530. doi: 10.1016/j.jmb.2019.05.014 PMID: 31100388
- Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Blaskovich, M.A.T.; Cooper, M.A. Structureactivity and− toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect. Dis., 2017, 3(12), 917-926. doi: 10.1021/acsinfecdis.7b00123 PMID: 28960954
- Ayoub Moubareck, C. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance. Membranes, 2020, 10(8), 181. doi: 10.3390/membranes10080181 PMID: 32784516
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55. doi: 10.1124/pr.55.1.2 PMID: 12615953
- Holdbrook, D.A.; Singh, S.; Choong, Y.K.; Petrlova, J.; Malmsten, M.; Bond, P.J.; Verma, N.K.; Schmidtchen, A.; Saravanan, R. Influence of pH on the activity of thrombin-derived antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2018, 1860(11), 2374-2384. doi: 10.1016/j.bbamem.2018.06.002 PMID: 29885294
- Huang, H.W. Molecular mechanism of antimicrobial peptides: The origin of cooperativity. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1292-1302. doi: 10.1016/j.bbamem.2006.02.001 PMID: 16542637
- Hall, K.; Lee, T.H.; Daly, N.L.; Craik, D.J.; Aguilar, M.I. Gly6 of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. Biochim. Biophys. Acta Biomembr., 2012, 1818(9), 2354-2361. doi: 10.1016/j.bbamem.2012.04.007 PMID: 22538355
- Holthuis, J.C.M.; Menon, A.K. Lipid landscapes and pipelines in membrane homeostasis. Nature, 2014, 510(7503), 48-57. doi: 10.1038/nature13474 PMID: 24899304
- Breukink, E.; de Kruijff, B. The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 223-234. doi: 10.1016/S0005-2736(99)00208-4
- Wang, W.; Smith, D.K.; Moulding, K.; Chen, H.M. The dependence of membrane permeability by the antibacterial peptide cecropin B and its analogs, CB-1 and CB-3, on liposomes of different composition. J. Biol. Chem., 1998, 273(42), 27438-27448. doi: 10.1074/jbc.273.42.27438 PMID: 9765273
- Bala, P.; Kumar, J. Antimicrobial peptides: A review. Pharmaceuticals, 2014, 3, 62-71.
- Travkova, O.G.; Moehwald, H.; Brezesinski, G. The interaction of antimicrobial peptides with membranes. Adv. Colloid Interface Sci., 2017, 247, 521-532. doi: 10.1016/j.cis.2017.06.001 PMID: 28606715
- Lee, T-H.; Hall, K.N.; Aguilar, M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39. doi: 10.2174/1568026615666150703121700 PMID: 26139112
- Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M.; Managadze, G. Physicochemical features and peculiarities of interaction of AMP with the membrane. Pharmaceuticals, 2021, 14(5), 471. doi: 10.3390/ph14050471 PMID: 34067510
- Juretić, D.; Simunić, J. Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opin. Drug Discov., 2019, 14(10), 1053-1063. doi: 10.1080/17460441.2019.1642322 PMID: 31311351
- Hu, H.; Di, B.; Tolbert, W.D.; Gohain, N.; Yuan, W.; Gao, P.; Ma, B.; He, Q.; Pazgier, M.; Zhao, L.; Lu, W. Systematic mutational analysis of human neutrophil α-defensin HNP4. Biochim. Biophys. Acta Biomembr., 2019, 1861(4), 835-844. doi: 10.1016/j.bbamem.2019.01.007 PMID: 30658057
- Gerlach, S.; Chandra, P.; Roy, U.; Gunasekera, S. Gِransson, U.; Wimley, W.; Braun, S.; Mondal, D. The membrane-active phytopeptide cycloviolacin O2 simultaneously targets HIV-1-infected cells and infectious viral particles to potentiate the efficacy of antiretroviral drugs. Medicines, 2019, 6(1), 33. doi: 10.3390/medicines6010033 PMID: 30823453
- Carnicelli, V.; Lizzi, A.; Ponzi, A.; Amicosante, G.; Bozzi, A.; Di Giulio, A. Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes, Microbial pathogens and strategies for combating them: Science. Technology and Education, 2013, 2, 1123-1134.
- Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959. doi: 10.1586/14787210.5.6.951 PMID: 18039080
- Luo, Y.; Song, Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci., 2021, 22(21), 11401. doi: 10.3390/ijms222111401 PMID: 34768832
- Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia , 2019, 8, 100494. doi: 10.1016/j.mtla.2019.100494
- Matsuzaki, K. Membrane permeabilization mechanisms. Adv. Exp. Med. Biol., 2019, 1117, 9-16.
- Eisenberg, M.; Hall, J.E.; Mead, C.A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J. Membr. Biol., 1973, 14(1), 143-176. doi: 10.1007/BF01868075 PMID: 4774545
- Wu, Y.; He, K.; Ludtke, S.J.; Huang, H.W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: Diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys. J., 1995, 68(6), 2361-2369. doi: 10.1016/S0006-3495(95)80418-2 PMID: 7647240
- Lee, H. Heterodimer and pore formation of magainin 2 and PGLa: The anchoring and tilting of peptides in lipid bilayers. Biochim. Biophys. Acta Biomembr., 2020, 1862(7), 183305. doi: 10.1016/j.bbamem.2020.183305 PMID: 32298679
- Perrin, B.S., Jr; Pastor, R.W. Simulations of membrane-disrupting peptides I: Alamethicin pore stability and spontaneous insertion. Biophys. J., 2016, 111(6), 1248-1257. doi: 10.1016/j.bpj.2016.08.014 PMID: 27653483
- Perrin, B.S., Jr; Fu, R.; Cotten, M.L.; Pastor, R.W. Simulations of membrane-disrupting peptides II: AMP piscidin 1 favors surface defects over pores. Biophys. J., 2016, 111(6), 1258-1266. doi: 10.1016/j.bpj.2016.08.015 PMID: 27653484
- Avci, F.G.; Akbulut, B.S.; Ozkirimli, E. Membrane active peptides and their biophysical characterization. Biomolecules, 2018, 8(3), 77. doi: 10.3390/biom8030077 PMID: 30135402
- Pino-Angeles, A.; Lazaridis, T. Effects of peptide charge, orientation, and concentration on melittin transmembrane pores. Biophys. J., 2018, 114(12), 2865-2874. doi: 10.1016/j.bpj.2018.05.006 PMID: 29925023
- Zhao, L.; Cao, Z.; Bian, Y.; Hu, G.; Wang, J.; Zhou, Y. Molecular dynamics simulations of human antimicrobial peptide LL-37 in model POPC and POPG lipid bilayers. Int. J. Mol. Sci., 2018, 19(4), 1186. doi: 10.3390/ijms19041186 PMID: 29652823
- Henzler Wildman, K.A.; Lee, D.K.; Ramamoorthy, A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 2003, 42(21), 6545-6558. doi: 10.1021/bi0273563 PMID: 12767238
- Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4. doi: 10.3390/biom8010004 PMID: 29351202
- Nielsen, J.E.; Lind, T.K.; Lone, A.; Gerelli, Y.; Hansen, P.R.; Jenssen, H. Cلrdenas, M.; Lund, R. A biophysical study of the interactions between the antimicrobial peptide indolicidin and lipid model systems. Biochim. Biophys. Acta Biomembr., 2019, 1861(7), 1355-1364. doi: 10.1016/j.bbamem.2019.04.003 PMID: 30978313
- Takahashi, T.; Kulkarni, N.N.; Lee, E.Y.; Zhang, L.; Wong, G.C.L.; Gallo, R.L. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci. Rep., 2018, 8(1), 4032. doi: 10.1038/s41598-018-22409-3 PMID: 29507358
- Ciumac, D. Investigation of Interaction of Antimicrobial Peptides with Lipid Monolayers; University of Manchester, 2018.
- Sierra, J.M. Viٌas, M. Future prospects for Antimicrobial peptide development: Peptidomimetics and antimicrobial combinations. Expert Opin. Drug Discov., 2021, 16(6), 601-604. doi: 10.1080/17460441.2021.1892072 PMID: 33626997
- Santos, J.C.P.; Sousa, R.C.S.; Otoni, C.G.; Moraes, A.R.F.; Souza, V.G.L.; Medeiros, E.A.A.; Espitia, P.J.P.; Pires, A.C.S.; Coimbra, J.S.R.; Soares, N.F.F. Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov. Food Sci. Emerg. Technol., 2018, 48, 179-194. doi: 10.1016/j.ifset.2018.06.008
- Cardoso, M.H.; Oshiro, K.G.N.; Rezende, S.B.; Cândido, E.S.; Franco, O.L. The structure/function relationship in antimicrobial peptides: What can we obtain from structural data?Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press Inc., 2018, pp. 359-384.
- Velasco-Bolom, J.L. Garduٌo-Juلrez, R. Computational studies of membrane pore formation induced by Pin2. J. Biomol. Struct. Dyn., 2022, 40(11), 5060-5068. doi: 10.1080/07391102.2020.1867640 PMID: 33397200
- Leontiadou, H.; Mark, A.E.; Marrink, S.J. Antimicrobial peptides in action. J. Am. Chem. Soc., 2006, 128(37), 12156-12161. doi: 10.1021/ja062927q PMID: 16967965
- Cardoso, M.H.; Ribeiro, S.M.; Nolasco, D.O. de la Fuente-Nٌْez, C.; Felيcio, M.R.; Gonçalves, S.; Matos, C.O.; Liao, L.M.; Santos, N.C.; Hancock, R.E.W.; Franco, O.L.; Migliolo, L. A polyalanine peptide derived from polar fish with anti-infectious activities. Sci. Rep., 2016, 6(1), 21385. doi: 10.1038/srep21385 PMID: 26916401
- Aronica, P.G.A.; Reid, L.M.; Desai, N.; Li, J.; Fox, S.J.; Yadahalli, S.; Essex, J.W.; Verma, C.S. Computational methods and tools in antimicrobial peptide research. J. Chem. Inf. Model., 2021, 61(7), 3172-3196. doi: 10.1021/acs.jcim.1c00175 PMID: 34165973
- Poger, D.; Caron, B.; Mark, A.E. Validating lipid force fields against experimental data: Progress, challenges and perspectives. Biochim. Biophys. Acta Biomembr., 2016, 1858(7), 1556-1565. doi: 10.1016/j.bbamem.2016.01.029 PMID: 26850737
- Bennett, W.F.D.; Hong, C.K.; Wang, Y.; Tieleman, D.P. Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. J. Chem. Theory Comput., 2016, 12(9), 4524-4533. doi: 10.1021/acs.jctc.6b00265 PMID: 27529120
- Zhou, L.; Narsimhan, G.; Wu, X.; Du, F. Pore formation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin. Colloids Surf. B Biointerfaces, 2014, 123, 419-428. doi: 10.1016/j.colsurfb.2014.09.037 PMID: 25306255
- Bechinger, B. Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin. J. Membr. Biol., 1997, 156(3), 197-211. doi: 10.1007/s002329900201 PMID: 9096062
- Koller, D.; Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta Biomembr., 2014, 1838(9), 2250-2259. doi: 10.1016/j.bbamem.2014.05.013 PMID: 24853655
- Strِmstedt, A.A.; Ringstad, L.; Schmidtchen, A.; Malmsten, M. Interaction between amphiphilic peptides and phospholipid membranes. Curr. Opin. Colloid Interface Sci., 2010, 15(6), 467-478. doi: 10.1016/j.cocis.2010.05.006
- Cardoso, M.H.; Oshiro, K.G.N.; Rezende, S.B.; Cândido, E.S.; Franco, O.L. Chapter Ten: The structure/function relationship in antimicrobial peptides: What can we obtain from structural data?Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press, 2018, pp. 359-384.
- Shagaghi, N.; Palombo, E.A.; Clayton, A.H.A.; Bhave, M. Antimicrobial peptides: Biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J. Microbiol. Biotechnol., 2018, 34(4), 62. doi: 10.1007/s11274-018-2444-5 PMID: 29651655
- Abbas, N.; Tan, H.D.; Goh, B.H.; Yap, W.H.; Tang, Y.Q. In Silico study of anticancer and antimicrobial peptides derived from cycloviolacin O2 (CyO2). Biointerface Res. Appl. Chem., 2023, 13.
- Aliste, M.P.; MacCallum, J.L.; Tieleman, D.P. Molecular dynamics simulations of pentapeptides at interfaces: Salt bridge and cation-pi interactions. Biochemistry, 2003, 42(30), 8976-8987. doi: 10.1021/bi027001j PMID: 12885230
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1184-1202. doi: 10.1016/j.bbamem.2006.04.006 PMID: 16756942
- Sd, S.; Le, C.F.; Mohd Yusof, M.Y.; Sekaran, S.D. Net charge, hydrophobicity and specific amino acids contribute to the activity of antimicrobial peptides. J. Heal. Translat. Med., 2014, 17(1), 1-7. doi: 10.22452/jummec.vol17no1.1
- Borah, A.; Deb, B.; Chakraborty, S. A crosstalk on antimicrobial peptides. Int. J. Pept. Res. Ther., 2021, 27(1), 229-244. doi: 10.1007/s10989-020-10075-x
- Koehbach, J.; Craik, D.J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci., 2019, 40(7), 517-528. doi: 10.1016/j.tips.2019.04.012 PMID: 31230616
- Lequin, O.; Ladram, A.; Chabbert, L.; Bruston, F.; Convert, O.; Vanhoye, D.; Chassaing, G.; Nicolas, P.; Amiche, M. Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry, 2006, 45(2), 468-480. doi: 10.1021/bi051711i PMID: 16401077
- Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1687-1692. doi: 10.1016/j.bbamem.2008.09.013
- Toke, O. Antimicrobial peptides: New candidates in the fight against bacterial infections. Biopolymers, 2005, 80(6), 717-735. doi: 10.1002/bip.20286 PMID: 15880793
- Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther., 2020, 26(3), 1451-1463. doi: 10.1007/s10989-019-09946-9
- Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171. doi: 10.3109/07388551.2011.594423 PMID: 22074402
- Rotem, S.; Mor, A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1582-1592. doi: 10.1016/j.bbamem.2008.10.020 PMID: 19028449
- Dathe, M.; Wieprecht, T.; Nikolenko, H.; Handel, L.; Maloy, W.L.; MacDonald, D.L.; Beyermann, M.; Bienert, M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett., 1997, 403(2), 208-212. doi: 10.1016/S0014-5793(97)00055-0 PMID: 9042968
- Dathe, M.; Schümann, M.; Wieprecht, T.; Winkler, A.; Beyermann, M.; Krause, E.; Matsuzaki, K.; Murase, O.; Bienert, M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35(38), 12612-12622. doi: 10.1021/bi960835f PMID: 8823199
- Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic α helical antimicrobial peptides. Eur. J. Biochem., 2001, 268(21), 5589-5600. doi: 10.1046/j.1432-1033.2001.02494.x PMID: 11683882
- Luo, X.; Ouyang, J.; Wang, Y.; Zhang, M.; Fu, L.; Xiao, N.; Gao, L.; Zhang, P.; Zhou, J.; Wang, Y. A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis. Biochimie, 2021, 191, 37-50. doi: 10.1016/j.biochi.2021.08.007 PMID: 34438004
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res., 2021, 8(1), 48. doi: 10.1186/s40779-021-00343-2 PMID: 34496967
- Fry, D.E. Antimicrobial peptides. Surg. Infect., 2018, 19(8), 804-811. doi: 10.1089/sur.2018.194 PMID: 30265592
- Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73. doi: 10.3389/fnins.2017.00073 PMID: 28261050
- Matsuzaki, K.; Nakamura, A.; Murase, O.; Sugishita, K.; Fujii, N.; Miyajima, K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry, 1997, 36(8), 2104-2111. doi: 10.1021/bi961870p PMID: 9047309
- Bechinger, B. Structure and function of membrane-lytic peptides. Crit. Rev. Plant Sci., 2004, 23(3), 271-292. doi: 10.1080/07352680490452825
- Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol., 2017, 38, 87-96. doi: 10.1016/j.cbpa.2017.03.014 PMID: 28399505
- Maturana, P.; Martinez, M.; Noguera, M.E.; Santos, N.C.; Disalvo, E.A.; Semorile, L.; Maffia, P.C.; Hollmann, A. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Colloids Surf. B Biointerfaces, 2017, 153, 152-159. doi: 10.1016/j.colsurfb.2017.02.003 PMID: 28236791
- White, S.H.; Wimley, W.C. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta Rev. Biomembr., 1998, 1376(3), 339-352. doi: 10.1016/S0304-4157(98)00021-5 PMID: 9804985
- Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406. doi: 10.1128/AAC.00925-06 PMID: 17158938
- Leal, E. Mْnera, M.; Suescْn-Bolيvar, L.P. In silico characterization of Cnidarians antimicrobial peptides. Front. Mar. Sci., 2022, 9, 1065717. doi: 10.3389/fmars.2022.1065717
- Bobone, S.; Stella, L. Selectivity of antimicrobial peptides: A complex interplay of multiple equilibria Antimicrob. peptid., 2019, 175-214.
- Andreev, K.; Martynowycz, M.W.; Huang, M.L.; Kuzmenko, I.; Bu, W.; Kirshenbaum, K.; Gidalevitz, D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1414-1423. doi: 10.1016/j.bbamem.2018.03.021 PMID: 29621496
- Domingues, T.M.; Perez, K.R.; Riske, K.A. Revealing the mode of action of halictine antimicrobial peptides: A comprehensive study with model membranes. Langmuir, 2020, 36(19), 5145-5155. doi: 10.1021/acs.langmuir.0c00282 PMID: 32336099
- Uematsu, N.; Matsuzaki, K. Polar angle as a determinant of amphipathic α-helix-lipid interactions: A model peptide study. Biophys. J., 2000, 79(4), 2075-2083. doi: 10.1016/S0006-3495(00)76455-1 PMID: 11023911
- Yount, N.; Yeaman, M. Immunocontinuum: Perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept. Lett., 2005, 12(1), 49-67. doi: 10.2174/0929866053405959 PMID: 15638803
- Gomes, I.P.; Santos, T.L.; de Souza, A.N.; Nunes, L.O.; Cardoso, G.A.; Matos, C.O.; Costa, L.M.F. Liمo, L.M.; Resende, J.M.; Verly, R.M. Membrane interactions of the anuran antimicrobial peptide HSP1-NH2: Different aspects of the association to anionic and zwitterionic biomimetic systems. Biochim. Biophys. Acta Biomembr., 2021, 1863(1), 183449. doi: 10.1016/j.bbamem.2020.183449 PMID: 32828849
- Pedron, C.N.; Torres, M.D.T.; Lima, J.A.S.; Silva, P.I.; Silva, F.D.; Oliveira, V.X. Novel designed VmCT1 analogs with increased antimicrobial activity. Eur. J. Med. Chem., 2017, 126, 456-463. doi: 10.1016/j.ejmech.2016.11.040 PMID: 27912176
- Abraham, P.; Sundaram, A. A.R, R. V; George, S.; Kumar, K.S. Structure-activity relationship and mode of action of a frog secreted antibacterial peptide B1CTcu5 using synthetically and modularly modified or deleted (SMMD) peptides. PLoS One, 2015, 10, e0124210. doi: 10.1371/journal.pone.0124210 PMID: 25997127
- Cashman-Kadri, S.; Lagüe, P.; Fliss, I.; Beaulieu, L. Determination of the relationships between the chemical structure and antimicrobial activity of a GAPDH-related fish antimicrobial peptide and analogs thereof. Antibiotics , 2022, 11(3), 297. doi: 10.3390/antibiotics11030297 PMID: 35326761
- Lorin, C.; Saidi, H.; Belaid, A.; Zairi, A.; Baleux, F.; Hocini, H.; Bélec, L.; Hani, K.; Tangy, F. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology, 2005, 334(2), 264-275. doi: 10.1016/j.virol.2005.02.002 PMID: 15780876
- Liu, Y.; Du, Q.; Ma, C.; Xi, X.; Wang, L.; Zhou, M.; Burrows, J.F.; Chen, T.; Wang, H. Structureactivity relationship of an antimicrobial peptide, Phylloseptin-PHa: Balance of hydrophobicity and charge determines the selectivity of bioactivities. Drug Des. Devel. Ther., 2019, 13, 447-458. doi: 10.2147/DDDT.S191072 PMID: 30774309
- Hollmann, A. Martيnez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffيa, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptidemembrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces, 2016, 141, 528-536. doi: 10.1016/j.colsurfb.2016.02.003 PMID: 26896660
- Mihajlovic, M.; Lazaridis, T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2012, 1818(5), 1274-1283. doi: 10.1016/j.bbamem.2012.01.016 PMID: 22290189
- Schweigardt, F.; Strandberg, E.; Wadhwani, P.; Reichert, J.; Bürck, J.; Cravo, H.L.P.; Burger, L.; Ulrich, A.S. Membranolytic mechanism of amphiphilic antimicrobial β-stranded KLn Peptides. Biomedicines, 2022, 10(9), 2071. doi: 10.3390/biomedicines10092071 PMID: 36140173
- Wang, G. Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics, 2020, 9(8), 491. doi: 10.3390/antibiotics9080491 PMID: 32784626
- Chou, H.T.; Kuo, T.Y.; Chiang, J.C.; Pei, M.J.; Yang, W.T.; Yu, H.C.; Lin, S.B.; Chen, W.J. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int. J. Antimicrob. Agents, 2008, 32(2), 130-138. doi: 10.1016/j.ijantimicag.2008.04.003 PMID: 18586467
- Strandberg, E.; Bentz, D.; Wadhwani, P.; Bürck, J.; Ulrich, A.S. Terminal charges modulate the pore forming activity of cationic amphipathic helices. Biochim. Biophys. Acta Biomembr., 2020, 1862(4), 183243. doi: 10.1016/j.bbamem.2020.183243 PMID: 32126225
- Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Ulrich, A.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry, 2017, 56(11), 1680-1695. doi: 10.1021/acs.biochem.6b01071 PMID: 28282123
- Yan, H.; Li, S.; Sun, X.; Mi, H.; He, B. Individual substitution analogs of Mel(12-26), melittins C-terminal 15-residue peptide: Their antimicrobial and hemolytic actions. FEBS Lett., 2003, 554(1-2), 100-104. doi: 10.1016/S0014-5793(03)01113-X PMID: 14596922
- Mangmee, S.; Reamtong, O.; Kalambaheti, T.; Roytrakul, S.; Sonthayanon, P. Antimicrobial peptide modifications against clinically isolated antibiotic-resistant salmonella. Molecules, 2021, 26(15), 4654. doi: 10.3390/molecules26154654 PMID: 34361810
- Ma, L.; Ye, X.; Sun, P.; Xu, P.; Wang, L.; Liu, Z.; Huang, X.; Bai, Z.; Zhou, C. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine, 2020, 55, 102775. doi: 10.1016/j.ebiom.2020.102775 PMID: 32403086
- Krause, E.; Bienert, M.; Schmieder, P.; Wenschuh, H. The helix-destabilizing propensity scale of D -amino acids: The influence of side chain steric effects. J. Am. Chem. Soc., 2000, 122(20), 4865-4870. doi: 10.1021/ja9940524
Supplementary files
