Medicinal Plants for the Treatment of Neuropathic Pain: A Review of Randomized Controlled Trials


Cite item

Full Text

Abstract

Neuropathic pain is a disabling condition caused by various diseases and can profoundly impact the quality of life. Unfortunately, current treatments often do not produce complete amelioration and can be associated with potential side effects. Recently, herbal drugs have garnered more attention as an alternative or a complementary treatment. In this article, we summarized the results of randomized clinical trials to evaluate the effects of various phytomedicines on neuropathic pain. In addition, we discussed their main bioactive components and potential mechanisms of action to provide a better view of the application of herbal drugs for treating neuropathic pain.

About the authors

Amir Ahmadzadeh

Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Ghazaleh Pourali

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Seyed Mirheidari

Department of Medicine, Golestan University of Medical Sciences

Email: info@benthamscience.net

Matin Shirazinia

Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mahdieh Hamedi

Faculty of Medicine, Mashhad University of Medical Sciences,

Email: info@benthamscience.net

Ali Mehri

Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Hesam Amirbeik

Faculty of Medicine, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Sajjad Saghebdoust

Department of Neurosurgery, Razavi Hospital

Email: info@benthamscience.net

Zahra Tayarani-Najaran

Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Thozhukat Sathyapalan

Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre Hull Royal Infirmary Anlaby

Email: info@benthamscience.net

Fatemeh Forouzanfar

Neuroscience Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S. The revised IASP definition of pain: Concepts, challenges, and compromises. Pain, 2020, 161(9), 1976. doi: 10.1097/j.pain.0000000000001939 PMID: 32694387
  2. Luo, Y.; Wang, C.Z.; Sawadogo, R.; Tan, T.; Yuan, C.S. Effects of herbal medicines on pain management. Am. J. Chin. Med., 2020, 48(1), 1-16. doi: 10.1142/S0192415X20500019 PMID: 32054304
  3. Woolf, C.J. What is this thing called pain? J. Clin. Invest., 2010, 120(11), 3742-3744. doi: 10.1172/JCI45178 PMID: 21041955
  4. Asgharzade, S.; Talaei, A.; Farkhondeh, T.; Forouzanfar, F. A review on stem cell therapy for neuropathic pain. Curr. Stem Cell Res. Ther., 2020, 15(4), 349-361. doi: 10.2174/1574888X15666200214112908 PMID: 32056531
  5. Smith, B.H.; Hébert, H.L.; Veluchamy, A. Neuropathic pain in the community: Prevalence, impact, and risk factors. Pain, 2020, 161(S1), S127-S137. doi: 10.1097/j.pain.0000000000001824 PMID: 33090746
  6. Bozorgi, H.; Ghahremanfard, F.; Motaghi, E.; Zamaemifard, M.; Zamani, M.; Izadi, A. Effectiveness of crocin of saffron (Crocus sativus L.) against chemotherapy-induced peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial. J. Ethnopharmacol., 2021, 281, 114511. doi: 10.1016/j.jep.2021.114511 PMID: 34390797
  7. Negah, S.S.; Ghazavi, H.; Vafaee, F.; Rashidi, R.; Aminian, A.R.; Forouzanfar, F. The potential role of green tea and its main constituent (epigallocatechin-3-gallate) in pain relief: A mechanistic review. Curr. Drug Discov. Technol., 2021, 18(6), 5-11. doi: 10.2174/1570163817666201229121033 PMID: 33372878
  8. Lowy, D.B.; Makker, P.G.S.; Moalem-Taylor, G. Cutaneous neuroimmune interactions in peripheral neuropathic pain states. Front. Immunol., 2021, 12, 660203. doi: 10.3389/fimmu.2021.660203 PMID: 33912189
  9. Dosenovic, S.; Jelicic Kadic, A.; Miljanovic, M.; Biocic, M.; Boric, K.; Cavar, M.; Markovina, N.; Vucic, K.; Puljak, L. Interventions for neuropathic pain: An overview of systematic reviews. Anesth. Analg., 2017, 125(2), 643-652. doi: 10.1213/ANE.0000000000001998 PMID: 28731977
  10. Moon, J-Y.; Lee, P-B.; Kim, Y.C.; Lee, S-C.; Nahm, F.S.; Choi, E. Efficacy and safety of 0.625% and 1.25% capsaicin patch in peripheral neuropathic pain: Multi-center, randomized, and semi-double blind controlled study. Pain Physician, 2017, 20(2), 27-35. PMID: 28158151
  11. Alam, U.; Sloan, G.; Tesfaye, S. Treating pain in diabetic neuropathy: Current and developmental drugs. Drugs, 2020, 80(4), 363-384. doi: 10.1007/s40265-020-01259-2 PMID: 32040849
  12. Xu, D.H.; Cullen, B.D.; Tang, M.; Fang, Y. The effectiveness of topical cannabidiol oil in symptomatic relief of peripheral neuropathy of the lower extremities. Curr. Pharm. Biotechnol., 2020, 21(5), 390-402. doi: 10.2174/1389201020666191202111534 PMID: 31793418
  13. Abrams, R.M.C.; Pedowitz, E.J.; Simpson, D.M. A critical review of the capsaicin 8% patch for the treatment of neuropathic pain associated with diabetic peripheral neuropathy of the feet in adults. Expert Rev. Neurother., 2021, 21(3), 259-266. doi: 10.1080/14737175.2021.1874920 PMID: 33428495
  14. Rivaz, M.; Rahpeima, M.; Khademian, Z.; Dabbaghmanesh, M.H. The effects of aromatherapy massage with lavender essential oil on neuropathic pain and quality of life in diabetic patients: A randomized clinical trial. Complement. Ther. Clin. Pract., 2021, 44, 101430. doi: 10.1016/j.ctcp.2021.101430 PMID: 34217127
  15. Hosein Farzaei, M.; Bahramsoltani, R.; Rahimi, R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr. Pharm. Des., 2016, 22(27), 4201-4218. doi: 10.2174/1381612822666160601100823 PMID: 27262332
  16. Farzaei, M.H.; Shahpiri, Z.; Bahramsoltani, R. nia, M.M.; Najafi, F.; Rahimi, R. Efficacy and tolerability of phytomedicines in multiple sclerosis patients: A review. CNS Drugs, 2017, 31(10), 867-889. doi: 10.1007/s40263-017-0466-4 PMID: 28948486
  17. Rakhshandeh, H.; Asgharzade, S.; Khorrami, MB.; Forouzanfar, F. Protective effect of capparis spinosa extract against focal cerebral ischemia-reperfusion injury in rats. Cent. Nerv. Syst. Agents Med. Chem., 2021, 21(2), 148-153. doi: 10.2174/1871524921666210625112356 PMID: 34176463
  18. Jahromi, B.; Pirvulescu, I.; Candido, K.D.; Knezevic, N.N. Herbal medicine for pain management: Efficacy and drug interactions. Pharmaceutics, 2021, 13(2), 251. doi: 10.3390/pharmaceutics13020251 PMID: 33670393
  19. Rakhshandeh, H.; Ghorbanzadeh, A.; Negah, S.S.; Akaberi, M.; Rashidi, R.; Forouzanfar, F. Pain-relieving effects of Lawsonia inermis on neuropathic pain induced by chronic constriction injury. Metab. Brain Dis., 2021, 36(7), 1709-1716. doi: 10.1007/s11011-021-00773-w PMID: 34169409
  20. Rakhshandeh, H.; Pourbagher-Shahri, A.M.; Hasanpour, M.; Iranshahi, M.; Forouzanfar, F. Effects of Capparis Spinosa extract on the neuropathic pain induced by chronic constriction injury in rats. Metab. Brain Dis., 2022, 37(8), 2839-2852. doi: 10.1007/s11011-022-01094-2 PMID: 36222985
  21. Essmat, A.; Hussein, M.S. Green tea extract for mild-to-moderate diabetic peripheral neuropathy A randomized controlled trial. Complement. Ther. Clin. Pract., 2021, 43, 101317. doi: 10.1016/j.ctcp.2021.101317 PMID: 33517103
  22. Naef, M.; Curatolo, M.; Petersen-Felix, S.; Arendt-Nielsen, L.; Zbinden, A.; Brenneisen, R. The analgesic effect of oral delta-9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain, 2003, 105(1), 79-88. doi: 10.1016/S0304-3959(03)00163-5 PMID: 14499423
  23. Paice, J.A.; Ferrans, C.E.; Lashley, F.R.; Shott, S.; Vizgirda, V.; Pitrak, D. Topical capsaicin in the management of HIV-associated peripheral neuropathy. J. Pain Symptom Manage., 2000, 19(1), 45-52. doi: 10.1016/S0885-3924(99)00139-6 PMID: 10687326
  24. Heydari, M.; Homayouni, K.; Hashempur, M.H.; Shams, M. Topical Citrullus colocynthis (bitter apple) extract oil in painful diabetic neuropathy: A double-blind randomized placebo-controlled clinical trial. J. Diabetes, 2016, 8(2), 246-252. doi: 10.1111/1753-0407.12287 PMID: 25800045
  25. Heydarirad, G.; Cramer, H.; Choopani, R.; Gharehgozlou, R.; Mosavat, S.H.; Ameri, A.; Pasalar, M. Topical Costus sp. preparation as palliative care for chemotherapy-induced peripheral neuropathy of patients: A randomized placebo-controlled pilot trial. J. Altern. Complement. Med., 2020, 26(9), 809-814. doi: 10.1089/acm.2020.0012 PMID: 32924550
  26. Sawynok, J. Topical and peripherally acting analgesics. Pharmacol. Rev., 2003, 55(1), 1-20. doi: 10.1124/pr.55.1.1 PMID: 12615951
  27. Li, C.; Kim, H.J.; Back, S.K.; Na, H.S. Common and discrete mechanisms underlying chronic pain and itch: Peripheral and central sensitization. Pflugers Arch., 2021, 473(10), 1603-1615. doi: 10.1007/s00424-021-02599-y PMID: 34245379
  28. Ullah, R.; Badshah, W.; Ali, G.; Ullah, A.; Khan, S.U.; Ahmad, N.; Shahid, M.; Naveed, M.; Ullah, S.; Bangash, S.A.; Althobaiti, Y.S. Cassia artemisiodes attenuates nociceptive and diabetes-induced neuropathic pain modalities apropos antioxidant and anti-inflammatory mechanisms. Biomed. Pharmacother., 2022, 149, 112834. doi: 10.1016/j.biopha.2022.112834 PMID: 35339108
  29. Aminian, A.R.; Forouzanfar, F. Interplay between heat shock proteins, inflammation and pain: A promising therapeutic approach. Curr. Mol. Pharmacol., 2022, 15(1), 170-178. PMID: 34781874
  30. Vranken, JH. Mechanisms and treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem., 2009, 9(1), 71-78. doi: 10.2174/187152409787601932 PMID: 20021340
  31. Dickenson, A.H. The neurobiology of chronic pain states. Anaesth. Intensive Care Med., 2019, 20(8), 426-429. doi: 10.1016/j.mpaic.2019.05.005
  32. Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic pain: From mechanisms to treatment. Physiol. Rev., 2021, 101(1), 259-301. doi: 10.1152/physrev.00045.2019 PMID: 32584191
  33. Ashmawi, H.A.; Freire, G.M.G. Peripheral and central sensitization. Rev. Dor, 2016, 17, 31-34. doi: 10.5935/1806-0013.20160044
  34. Malek, N.; Pajak, A.; Kolosowska, N.; Kucharczyk, M.; Starowicz, K. The importance of TRPV1-sensitisation factors for the development of neuropathic pain. Mol. Cell. Neurosci., 2015, 65, 1-10. doi: 10.1016/j.mcn.2015.02.001 PMID: 25662734
  35. Dombi, Á.; Sánta, C.; Bátai, I.Z.; Kormos, V.; Kecskés, A.; Tékus, V.; Pohóczky, K.; Bölcskei, K.; Pintér, E.; Pozsgai, G. Dimethyl trisulfide diminishes traumatic neuropathic pain acting on TRPA1 receptors in mice. Int. J. Mol. Sci., 2021, 22(7), 3363. doi: 10.3390/ijms22073363 PMID: 33806000
  36. Schug, SA; Daly, HC; Stannard, KJ Pathophysiology of pain. In: Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists; Fitridge, R; Thompson, M Eds.; University of Adelaide Press.: Adelaide (AU) 2018
  37. Ridouh, I.; Hackshaw, K.V. Essential oils and neuropathic pain. Plants, 2022, 11(14), 1797. doi: 10.3390/plants11141797 PMID: 35890431
  38. Sloan, G.; Shillo, P.; Selvarajah, D.; Wu, J.; Wilkinson, I.D.; Tracey, I.; Anand, P.; Tesfaye, S. A new look at painful diabetic neuropathy. Diabetes Res. Clin. Pract., 2018, 144, 177-191. doi: 10.1016/j.diabres.2018.08.020 PMID: 30201394
  39. Kulkantrakorn, K.; Chomjit, A.; Sithinamsuwan, P.; Tharavanij, T.; Suwankanoknark, J.; Napunnaphat, P. 0.075% capsaicin lotion for the treatment of painful diabetic neuropathy: A randomized, double-blind, crossover, placebo-controlled trial. J. Clin. Neurosci., 2019, 62, 174-179. doi: 10.1016/j.jocn.2018.11.036 PMID: 30472337
  40. Simpson, D.M.; Robinson-Papp, J.; Van, J.; Stoker, M.; Jacobs, H.; Snijder, R.J.; Schregardus, D.S.; Long, S.K.; Lambourg, B.; Katz, N. Capsaicin 8% patch in painful diabetic peripheral neuropathy: A randomized, double-blind, placebo-controlled study. J. Pain, 2017, 18(1), 42-53. doi: 10.1016/j.jpain.2016.09.008 PMID: 27746370
  41. Tesfaye, S.; Vileikyte, L.; Rayman, G.; Sindrup, S.H.; Perkins, B.A.; Baconja, M.; Vinik, A.I.; Boulton, A.J.M. Painful diabetic peripheral neuropathy: Consensus recommendations on diagnosis, assessment and management. Diabetes Metab. Res. Rev., 2011, 27(7), 629-638. doi: 10.1002/dmrr.1225 PMID: 21695762
  42. Hutapea, A.M.; Simbolon, B.M. Efficacy of herbal medicine for patients with diabetic neuropathies: An updated literature review. Biomedicine, 2022, 42(2), 209-213. doi: 10.51248/.v42i2.1346
  43. Kuriakose, A.; Roy, K.; Rosh, P.; Kuriakose, S.; Jacob, A.; Beegum, N. A glance to diabetic peripheral neuropathy. Int. J. Dev. Res., 2016, 6(3), 7113-7118.
  44. Spruce, M.C.; Potter, J.; Coppini, D.V. The pathogenesis and management of painful diabetic neuropathy: A review. Diabet. Med., 2003, 20(2), 88-98. doi: 10.1046/j.1464-5491.2003.00852.x PMID: 12581259
  45. Veves, A.; Backonja, M.; Malik, R.A. Painful diabetic neuropathy: Epidemiology, natural history, early diagnosis, and treatment options. Pain Med., 2008, 9(6), 660-674. doi: 10.1111/j.1526-4637.2007.00347.x PMID: 18828198
  46. Mann, R.; Sadosky, A.; Schaefer, C.; Baik, R.; Parsons, B.; Nieshoff, E.; Stacey, B.R.; Tuchman, M.; Nalamachu, S. Burden of HIV-related neuropathic pain in the United States. J. Int. Assoc. Provid. AIDS Care, 2016, 15(2), 114-125. doi: 10.1177/2325957415592474 PMID: 26173942
  47. Yakasai, A.M.; Maharaj, S.S.; Kaka, B.; Danazumi, M.S. Does exercise program of endurance and strength improve health-related quality of life in persons living with HIV-related distal symmetrical polyneuropathy? A randomized controlled trial. Qual. Life Res., 2020, 29(9), 2383-2393. doi: 10.1007/s11136-020-02500-x PMID: 32306301
  48. Aziz-Donnelly, A.; Harrison, T.B. Update of HIV-associated sensory neuropathies. Curr. Treat. Options Neurol., 2017, 19(10), 36. doi: 10.1007/s11940-017-0472-3 PMID: 28861848
  49. Lu, H.J.; Fu, Y.Y.; Wei, Q.Q.; Zhang, Z.J. Neuroinflammation in HIV-related neuropathic pain. Front. Pharmacol., 2021, 12, 653852. doi: 10.3389/fphar.2021.653852 PMID: 33959022
  50. Ellis, R.J.; Toperoff, W.; Vaida, F.; van den Brande, G.; Gonzales, J.; Gouaux, B.; Bentley, H.; Atkinson, J.H. Smoked medicinal cannabis for neuropathic pain in HIV: A randomized, crossover clinical trial. Neuropsychopharmacology, 2009, 34(3), 672-680. doi: 10.1038/npp.2008.120 PMID: 18688212
  51. Egan, K.E.; Caldwell, G.M.; Eckmann, M.S. HIV Neuropathy-a review of mechanisms, diagnosis, and treatment of pain. Curr. Pain Headache Rep., 2021, 25(8), 55. doi: 10.1007/s11916-021-00971-2 PMID: 34236528
  52. Abrams, D.I.; Jay, C.A.; Shade, S.B.; Vizoso, H.; Reda, H.; Press, S.; Kelly, M.E.; Rowbotham, M.C.; Petersen, K.L. Cannabis in painful HIV-associated sensory neuropathy: A randomized placebo-controlled trial. Neurology, 2007, 68(7), 515-521. doi: 10.1212/01.wnl.0000253187.66183.9c PMID: 17296917
  53. Hugen, P.W.H.; Burger, D.M.; Brinkman, K.; ter Hofstede, H.J.M.; Schuurman, R.; Koopmans, P.P.; Hekster, Y.A. Carbamazepine--indinavir interaction causes antiretroviral therapy failure. Ann. Pharmacother., 2000, 34(4), 465-470. doi: 10.1345/aph.19211 PMID: 10772431
  54. Dinat, N.; Marinda, E.; Moch, S.; Rice, A.S.C.; Kamerman, P.R. Randomized, double-blind, crossover trial of amitriptyline for analgesia in painful HIV-associated sensory neuropathy. PLoS One, 2015, 10(5), e0126297. doi: 10.1371/journal.pone.0126297 PMID: 25974287
  55. Kieburtz, K.; Simpson, D.; Yiannoutsos, C.; Max, M.B.; Hall, C.D.; Ellis, R.J.; Marra, C.M.; McKendall, R.; Singer, E.; Dal Pan, G.J.; Clifford, D.B.; Tucker, T.; Cohen, B. A randomized trial of amitriptyline and mexiletine for painful neuropathy in HIV infection. Neurology, 1998, 51(6), 1682-1688. doi: 10.1212/WNL.51.6.1682 PMID: 9855523
  56. Roda, R.H.; Hoke, A. Mitochondrial dysfunction in HIV-induced peripheral neuropathy. Int. Rev. Neurobiol., 2019, 145, 67-82. doi: 10.1016/bs.irn.2019.04.001 PMID: 31208527
  57. Datta, G.; Miller, N.M.; Afghah, Z.; Geiger, J.D.; Chen, X. HIV-1 gp120 promotes lysosomal exocytosis in human Schwann cells. Front. Cell. Neurosci., 2019, 13, 329. doi: 10.3389/fncel.2019.00329 PMID: 31379513
  58. Forouzanfar, F.; Hosseinzadeh, H. Medicinal herbs in the treatment of neuropathic pain: A review. Iran. J. Basic Med. Sci., 2018, 21(4), 347-358. PMID: 29796216
  59. Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci., 2019, 20(6), 1451. doi: 10.3390/ijms20061451 PMID: 30909387
  60. Park, S.B.; Goldstein, D.; Krishnan, A.V.; Lin, C.S.Y.; Friedlander, M.L.; Cassidy, J.; Koltzenburg, M.; Kiernan, M.C. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J. Clin., 2013, 63(6), 419-437. doi: 10.3322/caac.21204 PMID: 24590861
  61. Brewer, J.R.; Morrison, G.; Dolan, M.E.; Fleming, G.F. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol. Oncol., 2016, 140(1), 176-183. doi: 10.1016/j.ygyno.2015.11.011 PMID: 26556766
  62. Rostami, N.; Mosavat, S.H.; Heydarirad, G.; Arbab Tafti, R.; Heydari, M. Efficacy of topical Citrullus colocynthis (bitter apple) extract oil in chemotherapy-induced peripheral neuropathy: A pilot double-blind randomized placebo-controlled clinical trial. Phytother. Res., 2019, 33(10), 2685-2691. doi: 10.1002/ptr.6442 PMID: 31373112
  63. Schloss, J.; Colosimo, M.; Vitetta, L. Herbal medicines and chemotherapy induced peripheral neuropathy (CIPN): A critical literature review. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1107-1118. doi: 10.1080/10408398.2014.889081 PMID: 25849070
  64. Flatters, S.J.L.; Dougherty, P.M.; Colvin, L.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review. Br. J. Anaesth., 2017, 119(4), 737-749. doi: 10.1093/bja/aex229 PMID: 29121279
  65. Boyette-Davis, J.A.; Walters, E.T.; Dougherty, P.M. Mechanisms involved in the development of chemotherapy-induced neuropathy. Pain Manag., 2015, 5(4), 285-296. doi: 10.2217/pmt.15.19 PMID: 26087973
  66. Luo, X.; Huh, Y.; Bang, S.; He, Q.; Zhang, L.; Matsuda, M.; Ji, R.R. Macrophage toll-like receptor 9 contributes to chemotherapy-induced neuropathic pain in male mice. J. Neurosci., 2019, 39(35), 6848-6864. doi: 10.1523/JNEUROSCI.3257-18.2019 PMID: 31270160
  67. Gu, H.; Wang, C.; Li, J.; Yang, Y.; Sun, W.; Jiang, C.; Li, Y.; Ni, M.; Liu, W.T.; Cheng, Z.; Hu, L. High mobility group box-1-toll-like receptor 4-phosphatidylinositol 3-kinase/protein kinase B-mediated generation of matrix metalloproteinase-9 in the dorsal root ganglion promotes chemotherapy-induced peripheral neuropathy. Int. J. Cancer, 2020, 146(10), 2810-2821. doi: 10.1002/ijc.32652 PMID: 31465111
  68. Vahed, L.K.; Arianpur, A.; Gharedaghi, M.; Rezaei, H. Ultrasound as a diagnostic tool in the investigation of patients with carpal tunnel syndrome. Eur. J. Transl. Myol., 2018, 28(2), 7380. PMID: 29991986
  69. Hashempur, M.H.; Homayouni, K.; Ashraf, A.; Salehi, A.; Taghizadeh, M.; Heydari, M. Effect of Linum usitatissimum L. (linseed) oil on mild and moderate carpal tunnel syndrome: A randomized, double-blind, placebo-controlled clinical trial. Daru, 2014, 22(1), 43. doi: 10.1186/2008-2231-22-43 PMID: 24887185
  70. Setayesh, M.; Sadeghifar, A.R.; Nakhaee, N.; Kamalinejad, M.; Rezaeizadeh, H. A topical gel from flax seed oil compared with hand splint in carpal tunnel syndrome: A randomized clinical trial. J. Evid. Based Complementary Altern. Med., 2017, 22(3), 462-467. doi: 10.1177/2156587216677822 PMID: 27909031
  71. Hashempur, M.H.; Lari, Z.N.; Ghoreishi, P.S.; Daneshfard, B.; Ghasemi, M.S.; Homayouni, K.; Zargaran, A. A pilot randomized double-blind placebo-controlled trial on topical chamomile (Matricaria chamomilla L.) oil for severe carpal tunnel syndrome. Complement. Ther. Clin. Pract., 2015, 21(4), 223-228. doi: 10.1016/j.ctcp.2015.08.001 PMID: 26573447
  72. Duncan, S.F.; Bhate, O.; Mustaly, H. Pathophysiology of carpal tunnel syndrome. In: Carpal tunnel syndrome and related median neuropathies; Springer: Cham, 2017; pp. 13-29. doi: 10.1007/978-3-319-57010-5_3
  73. Zamborsky, R.; Kokavec, M.; Simko, L.; Bohac, M. Carpal tunnel syndrome: Symptoms, causes and treatment options. Literature reviev. Ortop. Traumatol. Rehabil., 2017, 19(1), 1-8. doi: 10.5604/15093492.1232629 PMID: 28436376
  74. Paisley, P; Serpell, M Diagnosis and management of postherpetic neuralgia. Practitioner, 2015, 259(1778), 21-4-2-3. PMID: 25726617
  75. Feller, L.; Khammissa, R.; Fourie, J.; Bouckaert, M.; Lemmer, J. Postherpetic neuralgia and trigeminal neuralgia. Pain Res. Treat., 2017, 2017, 1681765. doi: 10.1155/2017/1681765 PMID: 29359044
  76. Webster, L.R.; Malan, T.P.; Tuchman, M.M.; Mollen, M.D.; Tobias, J.K.; Vanhove, G.F. A multicenter, randomized, double-blind, controlled dose finding study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. J. Pain, 2010, 11(10), 972-982. doi: 10.1016/j.jpain.2010.01.270 PMID: 20655809
  77. Wang, K.; Coyle, M.E.; Mansu, S.; Zhang, A.L.; Xue, C.C. Gentiana scabra Bunge. Formula for herpes zoster: Biological actions of key herbs and systematic review of efficacy and safety. Phytother. Res., 2017, 31(3), 375-386. doi: 10.1002/ptr.5769 PMID: 28078812
  78. Wu, Q.; Hu, H.; Han, D.; Gao, H. Efficacy and safety of moxibustion for postherpetic neuralgia: A A systematic review and meta-analysis. Front. Neurol., 2021, 12, 676525. doi: 10.3389/fneur.2021.676525 PMID: 34512502
  79. Kim, M.J.; Cha, H.J.; Lee, Y.R.; Kim, B.S.; Sung, K.J.; Choi, H.K.; Lee, Y.J.; Jeon, J.H.; Kim, Y.I. A review of korean medicine treatment for postherpetic neuralgia. J. Acupuncture Res., 2021, 38(4), 245-256. doi: 10.13045/jar.2021.00171
  80. Gharibo, C.; Kim, C. Neuropathic pain of postherpetic neuralgia. Pain Med., 2011, 85, 84-92.
  81. Devor, M. Rethinking the causes of pain in herpes zoster and postherpetic neuralgia: The ectopic pacemaker hypothesis. Pain Rep., 2018, 3(6), e702. doi: 10.1097/PR9.0000000000000702 PMID: 30706041
  82. Johnson, R.W.; Wasner, G.; Saddier, P.; Baron, R. Postherpetic neuralgia: Epidemiology, pathophysiology and management. Expert Rev. Neurother., 2007, 7(11), 1581-1595. doi: 10.1586/14737175.7.11.1581 PMID: 17997705
  83. Samarghandian, S.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Folgado, S.L.; Rajabpour-Sanati, A.; Khazdair, M.R. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen. Res., 2020, 15(10), 1792-1798. doi: 10.4103/1673-5374.280300 PMID: 32246619
  84. Saeed, M.; Naveed, M.; Arif, M.; Kakar, M.U.; Manzoor, R.; Abd El-Hack, M.E.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A.; Karthik, K.; Dhama, K.; Iqbal, H.M.N.; Dadar, M.; Sun, C. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed. Pharmacother., 2017, 95, 1260-1275. doi: 10.1016/j.biopha.2017.09.024 PMID: 28938517
  85. Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem., 2019, 67(4), 1029-1043. doi: 10.1021/acs.jafc.8b06146 PMID: 30653316
  86. Crew, K.D.; Ho, K.A.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Sneige, N.; Hudis, C.; McArthur, H.L.; Chang, J.; Rimawi, M.; Cornelison, T.L.; Cardelli, J.; Santella, R.M.; Wang, A.; Lippman, S.M.; Hershman, D.L. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor-negative breast cancer. J. Hum. Nutr. Diet., 2015, 28(3), 272-282. doi: 10.1111/jhn.12229 PMID: 24646362
  87. Xu, R.; Yang, K.; Li, S.; Dai, M.; Chen, G. Effect of green tea consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. J., 2020, 19(1), 48. doi: 10.1186/s12937-020-00557-5 PMID: 32434539
  88. Cunha, CA.; Lira, FS; Rosa Neto, JC; Pimentel, GD; Souza, GI; da Silva, CMG Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet. Mediators Inflamm., 2013, 2013, 635470. doi: 10.1155/2013/635470 PMID: 23431242
  89. Varilek, G.W.; Yang, F.; Lee, E.Y.; deVilliers, W.J.S.; Zhong, J.; Oz, H.S.; Westberry, K.F.; McClain, C.J. Green tea polyphenol extract attenuates inflammation in interleukin-2-deficient mice, a model of autoimmunity. J. Nutr., 2001, 131(7), 2034-2039. doi: 10.1093/jn/131.7.2034 PMID: 11435526
  90. Tan, K.; Savoy, M.; McGrew, L.; Wisnieski, L.; Gruszynski, K.; Babos, M.B. Efficacy of green tea consumption on reducing body mass index and insulin resistance: A meta analysis. FASEB J, 2021, 35(S1), fasebj.2021.35.S1.00193. doi: 10.1096/fasebj.2021.35.S1.00193
  91. Chen, X.; Le, Y.; Tang, S-Q.; He, W-y.; He, J. Wang, Y-h Painful diabetic neuropathy is associated with compromised microglial IGF-1 signaling which can be rescued by green tea polyphenol EGCG in mice. Oxid. Med. Cell. Longev., 2022, 2022, 6773662. doi: 10.1155/2022/6773662 PMID: 35401920
  92. Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci., 2016, 7, 19. doi: 10.3389/fpls.2016.00019 PMID: 26870049
  93. Ebrahimi, F.; Farzaei, M.H.; Bahramsoltani, R.; Heydari, M.; Naderinia, K.; Rahimi, R. Plant-derived medicines for neuropathies: A comprehensive review of clinical evidence. Rev. Neurosci., 2019, 30(6), 671-684. doi: 10.1515/revneuro-2018-0097 PMID: 30768427
  94. Karanian, D.; Bahr, B. Cannabinoid drugs and enhancement of endocannabinoid responses: Strategies for a wide array of disease states. Curr. Mol. Med., 2006, 6(6), 677-684. doi: 10.2174/156652406778194991 PMID: 17022737
  95. Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G.; Costa, B. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytother. Res., 2009, 23(12), 1678-1684. doi: 10.1002/ptr.2806 PMID: 19441010
  96. Comelli, F.; Giagnoni, G.; Bettoni, I.; Colleoni, M.; Costa, B. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: Mechanisms involved. Phytother. Res., 2008, 22(8), 1017-1024. doi: 10.1002/ptr.2401 PMID: 18618522
  97. Maayah, Z.H.; Takahara, S.; Ferdaoussi, M.; Dyck, J.R.B. The molecular mechanisms that underpin the biological benefits of full-spectrum cannabis extract in the treatment of neuropathic pain and inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(7), 165771. doi: 10.1016/j.bbadis.2020.165771 PMID: 32201189
  98. Karst, M.; Salim, K.; Burstein, S.; Conrad, I.; Hoy, L.; Schneider, U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: A randomized controlled trial. JAMA, 2003, 290(13), 1757-1762. doi: 10.1001/jama.290.13.1757 PMID: 14519710
  99. Nurmikko, T.J.; Serpell, M.G.; Hoggart, B.; Toomey, P.J.; Morlion, B.J.; Haines, D. Sativex successfully treats neuropathic pain characterised by allodynia: A randomised, double-blind, placebo-controlled clinical trial. Pain, 2007, 133(1), 210-220. doi: 10.1016/j.pain.2007.08.028 PMID: 17997224
  100. Frank, B.; Serpell, M.G.; Hughes, J.; Matthews, J.N.S.; Kapur, D. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: Randomised, crossover, double blind study. BMJ, 2008, 336(7637), 199-201. doi: 10.1136/bmj.39429.619653.80 PMID: 18182416
  101. Wilsey, B.; Marcotte, T.; Deutsch, R.; Gouaux, B.; Sakai, S.; Donaghe, H. Low-dose vaporized cannabis significantly improves neuropathic pain. J. Pain, 2013, 14(2), 136-148. doi: 10.1016/j.jpain.2012.10.009 PMID: 23237736
  102. Serpell, M.; Ratcliffe, S.; Hovorka, J.; Schofield, M.; Taylor, L.; Lauder, H.; Ehler, E. A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur. J. Pain, 2014, 18(7), 999-1012. doi: 10.1002/j.1532-2149.2013.00445.x PMID: 24420962
  103. Selvarajah, D.; Gandhi, R.; Emery, C.J.; Tesfaye, S. Randomized placebo-controlled double-blind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: Depression is a major confounding factor. Diabetes Care, 2010, 33(1), 128-130. doi: 10.2337/dc09-1029 PMID: 19808912
  104. Toth, C.; Mawani, S.; Brady, S.; Chan, C.; Liu, C.; Mehina, E.; Garven, A.; Bestard, J.; Korngut, L. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain, 2012, 153(10), 2073-2082. doi: 10.1016/j.pain.2012.06.024 PMID: 22921260
  105. Wallace, M.S.; Marcotte, T.D.; Umlauf, A.; Gouaux, B.; Atkinson, J.H. Efficacy of inhaled cannabis on painful diabetic neuropathy. J. Pain, 2015, 16(7), 616-627. doi: 10.1016/j.jpain.2015.03.008 PMID: 25843054
  106. Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manage., 2010, 39(2), 167-179. doi: 10.1016/j.jpainsymman.2009.06.008 PMID: 19896326
  107. Johnson, J.R.; Lossignol, D.; Burnell-Nugent, M.; Fallon, M.T. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J. Pain Symptom Manage., 2013, 46(2), 207-218. doi: 10.1016/j.jpainsymman.2012.07.014 PMID: 23141881
  108. Lynch, M.E.; Cesar-Rittenberg, P.; Hohmann, A.G. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J. Pain Symptom Manage., 2014, 47(1), 166-173. doi: 10.1016/j.jpainsymman.2013.02.018 PMID: 23742737
  109. Kobata, K.; Sugawara, M.; Mimura, M.; Yazawa, S.; Watanabe, T. Potent production of capsaicinoids and capsinoids by Capsicum peppers. J. Agric. Food Chem., 2013, 61(46), 11127-11132. doi: 10.1021/jf403553w PMID: 24147886
  110. Chapa-Oliver, A. Mejía-Teniente, L. Capsaicin: From plants to a cancer-suppressing agent. Molecules, 2016, 21(8), 931. doi: 10.3390/molecules21080931 PMID: 27472308
  111. Arora, V.; Campbell, J.N.; Chung, M.K. Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol. Ther., 2021, 220, 107743. doi: 10.1016/j.pharmthera.2020.107743 PMID: 33181192
  112. Hall, O.M.; Broussard, A.; Range, T.; Carroll Turpin, M.A.; Ellis, S.; Lim, V.M.; Cornett, E.M.; Kaye, A.D. Novel agents in neuropathic pain, the role of capsaicin: Pharmacology, efficacy, side effects, different preparations. Curr. Pain Headache Rep., 2020, 24(9), 53. doi: 10.1007/s11916-020-00886-4 PMID: 32761268
  113. Simpson, D.M.; Brown, S.; Tobias, J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology, 2008, 70(24), 2305-2313. doi: 10.1212/01.wnl.0000314647.35825.9c PMID: 18541884
  114. Webster, L.R.; Tark, M.; Rauck, R.; Tobias, J.K.; Vanhove, G.F. Effect of duration of postherpetic neuralgia on efficacy analyses in a multicenter, randomized, controlled study of NGX-4010, an 8% capsaicin patch evaluated for the treatment of postherpetic neuralgia. BMC Neurol., 2010, 10(1), 92. doi: 10.1186/1471-2377-10-92 PMID: 20937130
  115. Irving, G.A.; Backonja, M.M.; Dunteman, E.; Blonsky, E.R.; Vanhove, G.F.; Lu, S.P.; Tobias, J. A multicenter, randomized, double-blind, controlled study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. Pain Med., 2011, 12(1), 99-109. doi: 10.1111/j.1526-4637.2010.01004.x PMID: 21087403
  116. Hussain, N.; Said, A.S.A.; Javaid, F.A.; Al Haddad, A.H.I.; Anwar, M.; Khan, Z.; Abu-Mellal, A. The efficacy and safety profile of capsaicin 8% patch versus 5% Lidocaine patch in patients with diabetic peripheral neuropathic pain: A randomized, placebo-controlled study of south Asian male patients. J. Diabetes Metab. Disord., 2021, 20(1), 271-278. doi: 10.1007/s40200-021-00741-2 PMID: 34178837
  117. Mou, J.; Paillard, F.; Turnbull, B.; Trudeau, J.; Stoker, M.; Katz, N.P. Qutenza (capsaicin) 8% patch onset and duration of response and effects of multiple treatments in neuropathic pain patients. Clin. J. Pain, 2014, 30(4), 286-294. doi: 10.1097/AJP.0b013e31829a4ced PMID: 23765045
  118. Cruccu, G.; Nurmikko, T.J.; Ernault, E.; Riaz, F.K.; McBride, W.T. Haanpää, M. Superiority of capsaicin 8% patch versus oral pregabalin on dynamic mechanical allodynia in patients with peripheral neuropathic pain. Eur. J. Pain, 2018, 22(4), 700-706. doi: 10.1002/ejp.1155 PMID: 29194851
  119. Ellison, N.; Loprinzi, C.L.; Kugler, J.; Hatfield, A.K.; Miser, A.; Sloan, J.A.; Wender, D.B.; Rowland, K.M.; Molina, R.; Cascino, T.L.; Vukov, A.M.; Dhaliwal, H.S.; Ghosh, C. Phase III placebo-controlled trial of capsaicin cream in the management of surgical neuropathic pain in cancer patients. J. Clin. Oncol., 1997, 15(8), 2974-2980. doi: 10.1200/JCO.1997.15.8.2974 PMID: 9256142
  120. Silva, J.; Hussain, A. Citrullus colocynthis (L.) Schrad. (colocynth): Biotechnological perspectives. Emir. J. Food Agric., 2017, 29(2), 83-90. doi: 10.9755/ejfa.2016-11-1764
  121. Heydari, M.; Shams, M.; Hashempur, M.H.; Zargaran, A.; Dalfardi, B.; Borhani-Haghighi, A. The origin of the concept of neuropathic pain in early medieval Persia (9th-12th century CE). Acta Med. Hist. Adriat., 2015, 13(S2), 9-22. PMID: 26966748
  122. Pashmforosh, M.; Rajabi Vardanjani, H.; Rajabi Vardanjani, H.; Pashmforosh, M.; Khodayar, M.J. Topical anti-inflammatory and analgesic activities of Citrullus colocynthis extract cream in rats. Medicina, 2018, 54(4), 51. doi: 10.3390/medicina54040051 PMID: 30344282
  123. Ostovar, M.; Akbari, A.; Anbardar, M.H.; Iraji, A.; Salmanpour, M.; Hafez Ghoran, S.; Heydari, M.; Shams, M. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. J. Integr. Med., 2020, 18(1), 59-67. doi: 10.1016/j.joim.2019.12.002 PMID: 31874814
  124. Maji, P.; Ghosh Dhar, D.; Misra, P.; Dhar, P. Costus speciosus (Koen ex. Retz.) Sm.: Current status and future industrial prospects. Ind. Crops Prod., 2020, 152, 112571. doi: 10.1016/j.indcrop.2020.112571
  125. Waisundara, V.Y.; Watawana, M.I.; Jayawardena, N. Costus speciosus and Coccinia grandis: Traditional medicinal remedies for diabetes. S. Afr. J. Bot., 2015, 98, 1-5. doi: 10.1016/j.sajb.2015.01.012
  126. Pawar, V.; Pawar, P. Costus speciosus: An important medicinal plant. Int. J. Sci. Res., 2014, 3(7), 28-33.
  127. Picanço, L.C.S.; Bittencourt, J.A.H.M.; Henriques, S.V.C.; da Silva, J.S.; Oliveira, J.M.S.; Ribeiro, J.R.; Sanjay, A.B.; Carvalho, J.C.T.; Stien, D.; Silva, J.O. Pharmacological activity of Costus spicatus in experimental Bothrops atrox envenomation. Pharm. Biol., 2016, 54(10), 2103-2110. doi: 10.3109/13880209.2016.1145703 PMID: 27306958
  128. Singh, P.; Srivastava, S.; Jha, K.K.; Mishra, G.; Khosa, R.L.; Srivastava, S. Antiinflammatory, analgesic and antipyretic activities of aerial parts of Costus speciosus Koen. Indian J. Pharm. Sci., 2013, 75(1), 83-88. doi: 10.4103/0250-474X.113532 PMID: 23901165
  129. Narayana, K.R.; Reddy, M.S.; Chaluvadi, M.; Krishna, D. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol., 2001, 33(1), 2-16.
  130. Naznin, N.E.; Mazumder, T.; Reza, M.S.; Jafrin, S.; Alshahrani, S.M.; Alqahtani, A.M. Molecular docking supported investigation of antioxidant, analgesic and diuretic effects of Costus speciosus rhizome. Bull. Chem. Soc. Ethiop., 2022, 36(3), 627-640. doi: 10.4314/bcse.v36i3.12
  131. Bhattacharya, S.; Nagaich, U. Assessment of anti-nociceptive efficacy of costus speciosus rhizome in swiss albino mice. J. Adv. Pharm. Technol. Res., 2010, 1(1), 34-40. PMID: 22247830
  132. Abdullaev, F.I. Biological effects of saffron. Biofactors, 1993, 4(2), 83-86. PMID: 8347278
  133. Bhargava, V. Medicinal uses and pharmacological properties of Crocus sativus Linn (Saffron). Int. J. Pharm. Pharm. Sci., 2011, 3(S3), 22-26.
  134. Fernández, J-A Biology, biotechnology and biomedicine of saffron. In: Recent research developments in plant science; Research Signpost: Trivandrum, 2004; 2, pp. 127-159.
  135. Hosseinzadeh, H; Khosravan, V Anticonvulsant effects of aqueous ana ethanolic extracts of Crocus sativus L stigmas in mice., 2002.
  136. Nemati, H.; Boskabady, M.H.; Ahmadzadef Vostakolaei, H. Stimulatory effect of Crocus sativus (saffron) on β2-adrenoceptors of guinea pig tracheal chains. Phytomedicine, 2008, 15(12), 1038-1045. doi: 10.1016/j.phymed.2008.07.008 PMID: 18771905
  137. Amin, B.; Hosseinzadeh, H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia, 2012, 83(5), 888-895. doi: 10.1016/j.fitote.2012.03.022 PMID: 22484092
  138. Hosseinzadeh, H.; Shariaty, V.M. Anti-nociceptive effect of safranal, a constituent of Crocus sativus (saffron), in mice. Pharmacologyonline, 2007, 2, 498-503.
  139. Li, Puma S.; Landini, L.; Macedo, S.J., Jr; Seravalli, V.; Marone, I.M.; Coppi, E.; Patacchini, R.; Geppetti, P.; Materazzi, S.; Nassini, R.; De Logu, F. TRPA1 mediates the antinociceptive properties of the constituent of Crocus sativus L., safranal. J. Cell. Mol. Med., 2019, 23(3), 1976-1986. doi: 10.1111/jcmm.14099 PMID: 30636360
  140. Safakhah, HA.; Vafaei, AA.; Tavasoli, A.; Jafari, S.; Ghanbari, A. Role of muscarinic receptors in hypoalgesia induced by crocin in neuropathic pain rats. Sci. World J., 2020, 22020, 4046256. doi: 10.1155/2020/4046256 PMID: 33299384
  141. Vafaei, A.A.; Safakhah, H.A.; Jafari, S.; Tavasoli, A.; Rashidy-Pour, A.; Ghanbari, A.; Seyedinia, S.A.; Tarahomi, P. Role of cannabinoid receptors in crocin-induced hypoalgesia in neuropathic pain in rats. J. Exp. Pharmacol., 2020, 12, 97-106. doi: 10.2147/JEP.S250738 PMID: 32431552
  142. Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92. doi: 10.3390/foods6100092 PMID: 29065496
  143. Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. doi: 10.1016/j.autrev.2017.11.016 PMID: 29180127
  144. Keihanian, F; Saeidinia, A; Bagheri, RK; Johnston, TP; Sahebkar, A Curcumin, hemostasis, thrombosis, and coagulation J. Cell Physiol, 2018, 233(6), 4497-4511. doi: 10.1002/jcp.26249. Epub 2017 Dec 26. PMID: 29052850
  145. Afshari, A.R.; Jalili-Nik, M.; Abbasinezhad-Moud, F.; Javid, H.; Karimi, M.; Mollazadeh, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Anti-tumor effects of curcuminoids in glioblastoma multiforme: An updated literature review. Curr. Med. Chem., 2021, 28(39), 8116-8138. doi: 10.2174/1875533XMTExtNDA8x PMID: 33176632
  146. Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458. doi: 10.1002/ptr.7350 PMID: 34904764
  147. Khayatan, D.; Razavi, S.M.; Arab, Z.N.; Niknejad, A.H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A.H.; Barreto, G.E.; Sahebkar, A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother., 2022, 154, 113621. doi: 10.1016/j.biopha.2022.113621 PMID: 36055110
  148. Mohajeri, M.; Bianconi, V. Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156, 104765. doi: 10.1016/j.phrs.2020.104765 PMID: 32217147
  149. Shakeri, F.; Bibak, B.; Safdari, M.R.; Keshavarzi, Z.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. Cellular and molecular mechanisms of curcumin in thyroid gland disorders. Curr. Med. Chem., 2022, 29(16), 2878-2890. doi: 10.2174/0929867329666220210145033 PMID: 35142266
  150. Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
  151. Vahedian-Azimi, A.; Abbasifard, M.; Rahimi-Bashar, F.; Guest, P.C.; Majeed, M.; Mohammadi, A.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: A systematic review of clinical trials. Nutrients, 2022, 14(2), 256. doi: 10.3390/nu14020256 PMID: 35057437
  152. Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921 PMID: 32464325
  153. Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51. doi: 10.1016/j.critrevonc.2017.12.005 PMID: 29458788
  154. Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222. doi: 10.1002/jcp.26848 PMID: 29968913
  155. Abbas Momtazi, A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr. Pharm. Des., 2016, 22(28), 4386-4397. doi: 10.2174/1381612822666160527113501 PMID: 27229723
  156. Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895. doi: 10.1080/10408398.2015.1077195 PMID: 26528921
  157. Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors, 2013, 39(1), 2-13. doi: 10.1002/biof.1079 PMID: 23339055
  158. Barclay, L.R.C.; Vinqvist, M.R.; Mukai, K.; Goto, H.; Hashimoto, Y.; Tokunaga, A.; Uno, H. On the antioxidant mechanism of curcumin: Classical methods are needed to determine antioxidant mechanism and activity. Org. Lett., 2000, 2(18), 2841-2843. doi: 10.1021/ol000173t PMID: 10964379
  159. Banafshe, H.R.; Hamidi, G.A.; Noureddini, M.; Mirhashemi, S.M.; Mokhtari, R.; Shoferpour, M. Effect of curcumin on diabetic peripheral neuropathic pain: Possible involvement of opioid system. Eur. J. Pharmacol., 2014, 723, 202-206. doi: 10.1016/j.ejphar.2013.11.033 PMID: 24315931
  160. Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347. doi: 10.2174/138945011794815356 PMID: 20955148
  161. Sharma, S.; Chopra, K.; Kulkarni, S.K. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: Participation of nitric oxide and TNF-alpha. Phytother. Res., 2007, 21(3), 278-283. doi: 10.1002/ptr.2070 PMID: 17199240
  162. Zhao, X.; Xu, Y.; Zhao, Q.; Chen, C.R.; Liu, A.M.; Huang, Z.L. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: Descending monoamine system and opioid receptors are differentially involved. Neuropharmacology, 2012, 62(2), 843-854. doi: 10.1016/j.neuropharm.2011.08.050 PMID: 21945716
  163. Seo, E.J.; Efferth, T.; Panossian, A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. Phytomedicine, 2018, 50, 285-299. doi: 10.1016/j.phymed.2018.09.202 PMID: 30466988
  164. Zhao, G.; Shi, Y.; Gong, C.; Liu, T.; Nan, W.; Ma, L.; Wu, Z.; Da, C.; Zhou, K.; Zhang, H. Curcumin exerts antinociceptive effects in cancer-induced bone pain via an endogenous opioid mechanism. Front. Neurosci., 2021, 15, 696861. doi: 10.3389/fnins.2021.696861 PMID: 34539332
  165. Asadi, S.; Gholami, M.S.; Siassi, F.; Qorbani, M.; Khamoshian, K.; Sotoudeh, G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med., 2019, 43, 253-260. doi: 10.1016/j.ctim.2019.02.014 PMID: 30935539
  166. Eftekharsadat, B.; Kazem Shakouri, S.; Shimia, M.; Rahbar, M.; Ghojazadeh, M.; Reza Rashidi, M.; Hadi Faraji, M. Effect of E. laciniata (L) ointment on mild and moderate carpal tunnel syndrome: A double-blind, randomized clinical trial. Phytother. Res., 2011, 25(2), 290-295. doi: 10.1002/ptr.3248 PMID: 20665472
  167. Delazar, A.; Sarker, S.D.; Nahar, L.; Jalali, S.B.; Modaresi, M.; Hamedeyazdan, S.; Babaei, H.; Javadzadeh, Y.; Asnaashari, S.; Bamdad Moghadam, S. Rhizomes of Eremostachys laciniata: Isolation and structure elucidation of chemical constituents and a clinical trial on inflammatory diseases. Adv. Pharm. Bull., 2013, 3(2), 385-393. PMID: 24312865
  168. Delazar, A.; Shoeb, M.; Kumarasamy, Y.; Byres, M.; Nahar, L.; Modarresi, M. Two bioactive ferulic acid derivatives from Eremostachys glabra. Daru, 2004, 12(2), 49-53.
  169. Erdemoglu, N.; Turan, N.N. Cakõcõ, I.; Sener, B.; Aydõn, A. Antioxidant activities of some Lamiaceae plant extracts. Phytother. Res., 2006, 20(1), 9-13. doi: 10.1002/ptr.1816 PMID: 16397914
  170. Delazar, A.; Asl, B.H.; Mohammadi, O.; Afshar, F.H.; Nahar, L.; Modarresi, M. Evaluation of analgesic activity of Eremostachys laciniata in mice. J. Nat. Rem., 2009, 9(1), 1-7.
  171. Lee, K.H.; Kim, J.K.; Yu, J.S.; Jeong, S.Y.; Choi, J.H.; Kim, J.C.; Ko, Y.J.; Kim, S.H.; Kim, K.H. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch. Pharm. Res., 2021, 44(5), 514-524. doi: 10.1007/s12272-021-01329-3 PMID: 33929687
  172. Brondino, N; De Silvestri, A; Re, S; Lanati, N; Thiemann, P; Verna, A systematic review and meta-analysis of Ginkgo biloba in neuropsychiatric disorders: From ancient tradition to modern-day medicine. Evid Based Complement Alternat Med., 2013, 2013, 915691. doi: 10.1155/2013/915691 PMID: 23781271
  173. Dongen, M.; van Rossum, E.; Kessels, A.; Sielhorst, H.; Knipschild, P. Ginkgo for elderly people with dementia and age-associated memory impairment: A randomized clinical trial. J. Clin. Epidemiol., 2003, 56(4), 367-376. doi: 10.1016/S0895-4356(03)00003-9 PMID: 12767414
  174. Hirata, B.K.S.; Pedroso, A.P.; Machado, M.M.F.; Neto, N.I.P.; Perestrelo, B.O. de Sá R.D.C.C.; Alonso-Vale, M.I.C.; Nogueira, F.N.; Oyama, L.M.; Ribeiro, E.B.; Tashima, A.K.; Telles, M.M. Ginkgo biloba extract modulates the retroperitoneal fat depot proteome and reduces oxidative stress in diet-induced obese rats. Front. Pharmacol., 2019, 10, 686. doi: 10.3389/fphar.2019.00686 PMID: 31258482
  175. Abdel-Latif, H.M.R.; Hendam, B.M.; Nofal, M.I.; El-Son, M.A.M. Ginkgo biloba leaf extract improves growth, intestinal histomorphometry, immunity, antioxidant status and modulates transcription of cytokine genes in hapa-reared Oreochromis niloticus. Fish Shellfish Immunol., 2021, 117, 339-349. doi: 10.1016/j.fsi.2021.06.003 PMID: 34153429
  176. Li, Q.; Ye, T.; Long, T.; Peng, X. Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-κB signaling pathway. Biosci. Biotechnol. Biochem., 2019, 83(4), 675-683. doi: 10.1080/09168451.2018.1553608 PMID: 30570395
  177. Samandar, F.; Tehranizadeh, Z.A.; Saberi, M.R.; Chamani, J. CB1 as a novel target for Ginkgo biloba’s terpene trilactone for controlling chemotherapy-induced peripheral neuropathy (CIPN). J. Mol. Model., 2022, 28(9), 283. doi: 10.1007/s00894-022-05284-8 PMID: 36044079
  178. Numan, A.; Masud, F.; Khawaja, K.I.; Khan, F.F.; Qureshi, A.B.; Burney, S.; Ashraf, K.; Ahmad, N.; Yousaf, M.S.; Rabbani, I.; Zaneb, H.; Rehman, H. Clinical and electrophysiological efficacy of leaf extract of Gingko biloba L (Ginkgoaceae) in subjects with diabetic sensorimotor polyneuropathy. Trop. J. Pharm. Res., 2016, 15(10), 2137-2145. doi: 10.4314/tjpr.v15i10.12
  179. Kono, T.; Hata, T.; Morita, S.; Munemoto, Y.; Matsui, T.; Kojima, H.; Takemoto, H.; Fukunaga, M.; Nagata, N.; Shimada, M.; Sakamoto, J.; Mishima, H. Goshajinkigan oxaliplatin neurotoxicity evaluation (GONE): A phase 2, multicenter, randomized, double-blind, placebo-controlled trial of goshajinkigan to prevent oxaliplatin-induced neuropathy. Cancer Chemother. Pharmacol., 2013, 72(6), 1283-1290. doi: 10.1007/s00280-013-2306-7 PMID: 24121454
  180. Kono, T.; Suzuki, Y.; Mizuno, K.; Miyagi, C.; Omiya, Y.; Sekine, H.; Mizuhara, Y.; Miyano, K.; Kase, Y.; Uezono, Y. Preventive effect of oral goshajinkigan on chronic oxaliplatin-induced hypoesthesia in rats. Sci. Rep., 2015, 5(1), 16078. doi: 10.1038/srep16078 PMID: 26542342
  181. Ushio, S.; Egashira, N.; Sada, H.; Kawashiri, T.; Shirahama, M.; Masuguchi, K.; Oishi, R. Goshajinkigan reduces oxaliplatin-induced peripheral neuropathy without affecting anti-tumour efficacy in rodents. Eur. J. Cancer, 2012, 48(9), 1407-1413. doi: 10.1016/j.ejca.2011.08.009 PMID: 21907570
  182. Kato, Y.; Tateai, Y.; Ohkubo, M.; Saito, Y.; Amagai, S.; Kimura, Y.; Iimura, N.; Okada, M.; Matsumoto, A.; Mano, Y.; Hirosawa, I.; Ohuchi, K.; Tajima, M.; Asahi, M.; Kotaki, H.; Yamada, H. Goshajinki-gan reduced oxaliplatin-induced hypersensitivity to cold sensation and its effect would be related to suppression of the expression of TRPM8 and TRPA1 in rats. Anticancer Drugs, 2014, 25(1), 39-43. doi: 10.1097/CAD.0000000000000022 PMID: 24052105
  183. Kamei, J.; Hayashi, S-s.; Miyata, S. Effect of Gosha-jinki-gan on vincristine-induced painful neuropathy in mice. Jpn J Pharm Palliat Care Sci., 2008, 1(1), 19-24.
  184. Higuchi, H.; Yamamoto, S.; Ushio, S.; Kawashiri, T.; Egashira, N. Goshajinkigan reduces bortezomib-induced mechanical allodynia in rats: Possible involvement of kappa opioid receptor. J. Pharmacol. Sci., 2015, 129(3), 196-199. doi: 10.1016/j.jphs.2015.09.004 PMID: 26598003
  185. Kitamura, R.; Andoh, T.; Fushimi, H.; Komatsu, K.; Shibahara, N.; Kuraishi, Y. Involvement of descending monoaminergic systems in antiallodynic effect of goshajinkigan in oxaliplatin-treated mice. J. Traditional. Med., 2013, 30(4), 183-189.
  186. Mizuno, K.; Kono, T.; Suzuki, Y.; Miyagi, C.; Omiya, Y.; Miyano, K. Goshajinkigan, a traditional Japanese medicine, prevents oxaliplatin-induced acute peripheral neuropathy by suppressing functional alteration of TRP channels in rat. J. Pharmacol. Sci., 2014, 1251, 91-98. doi: 10.1254/jphs.13244FP PMID: 24784702
  187. Kaku, H.; Kumagai, S.; Onoue, H.; Takada, A.; Shoji, T.; Miura, F.; Yoshizaki, A.; Sato, S.; Kigawa, J.; Arai, T.; Tsunoda, S.; Tominaga, E.; Aoki, D.; Sugiyama, T. Objective evaluation of the alleviating effects of Goshajinkigan on peripheral neuropathy induced by paclitaxel/carboplatin therapy: A multicenter collaborative study. Exp. Ther. Med., 2012, 3(1), 60-65. doi: 10.3892/etm.2011.375 PMID: 22969845
  188. Oki, E.; Emi, Y.; Kojima, H.; Higashijima, J.; Kato, T.; Miyake, Y.; Kon, M.; Ogata, Y.; Takahashi, K.; Ishida, H.; Saeki, H.; Sakaguchi, Y.; Yamanaka, T.; Kono, T.; Tomita, N.; Baba, H.; Shirabe, K.; Kakeji, Y.; Maehara, Y. Preventive effect of Goshajinkigan on peripheral neurotoxicity of FOLFOX therapy (GENIUS trial): A placebo-controlled, double-blind, randomized phase III study. Int. J. Clin. Oncol., 2015, 20(4), 767-775. doi: 10.1007/s10147-015-0784-9 PMID: 25627820
  189. Klemow, K.M.; Bilbow, E.; Grasso, D.; Jones, K.; McDermott, J.; Pape, E. Medical attributes of St. John’s wort (Hypericum perforatum). OXIDATIVE STRESS AND DISEASE., 2004, 14, 757-780.
  190. Badi, H.N.; Amin, G. MAKI, ZM.; Ziaei, S. St. John’s wort (Hypericum perforatum L.): A Review. J. Med. Plants, 2005, 4(16), 1-14.
  191. Alahmad, A.; Alghoraibi, I.; Zein, R.; Kraft, S. Dräger, G.; Walter, J.G.; Scheper, T. Identification of Major Constituents of Hypericum perforatum L. Extracts in Syria by development of a rapid, simple, and Reproducible HPLC-ESI-Q-TOF MS Analysis and their antioxidant activities. ACS Omega, 2022, 7(16), 13475-13493. doi: 10.1021/acsomega.1c06335 PMID: 35559140
  192. Linde, K.St. John’s wort - an overview. Forsch. Komplement. Med., 2009, 16(3), 1. doi: 10.1159/000209290 PMID: 19657198
  193. Nathan, P.J. The experimental and clinical pharmacology of St John’s Wort (Hypericum perforatum L.). Mol. Psychiatry, 1999, 4(4), 333-338. doi: 10.1038/sj.mp.4000557 PMID: 10483049
  194. Galeotti, N.; Vivoli, E.; Bilia, A.R.; Vincieri, F.F.; Ghelardini, C.St. John’s Wort reduces neuropathic pain through a hypericin-mediated inhibition of the protein kinase C γ and ɛ activity. Biochem. Pharmacol., 2010, 79(9), 1327-1336. doi: 10.1016/j.bcp.2009.12.016 PMID: 20045676
  195. Stojanović NM; Radulović NS; Randjelović PJ; Laketić D Antinociceptive properties of St. John’s Wort (Hypericum perforatum) and other Hypericum species. Nat. Prod. Commun., 2016, 11(11), 1741-1747. PMID: 30475520
  196. Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol., 2017, 200, 136-146. doi: 10.1016/j.jep.2017.02.016 PMID: 28216196
  197. Bukhari, I.A.; Dar, A.; Khan, R.A. Antinociceptive activity of methanolic extracts of St. John’s Wort (Hypericum perforatum) preparation. Pak. J. Pharm. Sci., 2004, 17(2), 13-19. PMID: 16414593
  198. Galeotti, N.; Farzad, M.; Bianchi, E.; Ghelardini, C. PKC-mediated potentiation of morphine analgesia by St. John’s Wort in rodents and humans. J. Pharmacol. Sci., 2014, 124(4), 409-417. doi: 10.1254/jphs.13226FP PMID: 24739262
  199. Sanna, M.D.; Ghelardini, C.; Galeotti, N. John’s wort potentiates anti-nociceptive effects of morphine in mice models of neuropathic pain. Pain Med., 2017, 18(7), 1334-1343. PMID: 27688309
  200. Sindrup, S.H.; Madsen, C.; Bach, F.W.; Gram, L.F.; Jensen, T.S.St. John’s wort has no effect on pain in polyneuropathy. Pain, 2001, 91(3), 361-365. doi: 10.1016/S0304-3959(00)00457-7 PMID: 11275394
  201. Hugar, S.M.; Gokhale, N.; Uppin, C.; Kajjari, S.; Meharwade, P.; Joshi, R.S. The effects of lavender essential oil and its clinical implications in dentistry: A review. Int. J. Clin. Pediatr. Dent., 2022, 15(3), 385-388. doi: 10.5005/jp-journals-10005-2378 PMID: 35991803
  202. Koulivand, PH.; Khaleghi Ghadiri, M.; Gorji, A. Lavender and the nervous system. Evid. Based Complement. Alternat. Med., 2013, 2013, 681304. doi: 10.1155/2013/681304 PMID: 23573142
  203. Bellampalli, S.S.; Ji, Y.; Moutal, A.; Cai, S.; Wijeratne, E.M.K.; Gandini, M.A.; Yu, J.; Chefdeville, A.; Dorame, A.; Chew, L.A.; Madura, C.L.; Luo, S.; Molnar, G.; Khanna, M.; Streicher, J.M.; Zamponi, G.W.; Gunatilaka, A.A.L.; Khanna, R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury–associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain, 2019, 160(1), 117-135. doi: 10.1097/j.pain.0000000000001385 PMID: 30169422
  204. Lv, X.; Liu, Z.; Zhang, H.; Tzeng, C. Aromatherapy and the central nerve system (CNS): Therapeutic mechanism and its associated genes. Curr. Drug Targets, 2013, 14(8), 872-879. doi: 10.2174/1389450111314080007 PMID: 23531112
  205. Eftekharsadat, B.; Roomizadeh, P.; Torabi, S.; Heshmati-Afshar, F.; Jahanjoo, F.; Babaei-Ghazani, A. Effectiveness of Lavendula stoechas essential oil in treatment of mild to moderate carpal tunnel syndrome: A randomized controlled trial. J. Hand Ther., 2018, 31(4), 437-442. doi: 10.1016/j.jht.2017.07.004 PMID: 28803691
  206. Gok, M.Z.; Arikan, D.A.; Izgu, N.; Ozdemir, L.; Arslan, I.E. Aromatherapy massage for neuropathic pain and quality of life in diabetic patients. J. Nurs. Scholarsh., 2017, 49(4), 379-388. doi: 10.1111/jnu.12300 PMID: 28605119
  207. He, L.; Xiao, J.; Rashid, K.Y.; Yao, Z.; Li, P.; Jia, G.; Wang, X.; Cloutier, S.; You, F.M. Genome-wide association studies for pasmo resistance in flax (Linum usitatissimum L.). Front. Plant Sci., 2019, 9, 1982. doi: 10.3389/fpls.2018.01982 PMID: 30693010
  208. Ebrahimi, B.; Nazmara, Z.; Hassanzadeh, N.; Yarahmadi, A.; Ghaffari, N.; Hassani, F.; Liaghat, A.; Noori, L.; Hassanzadeh, G. Biomedical features of flaxseed against different pathologic situations: A narrative review. Iran. J. Basic Med. Sci., 2021, 24(5), 551-560. PMID: 34249256
  209. Kaithwas, G.; Mukherjee, A.; Chaurasia, A.; Majumdar, D.K. Anti-inflammatory, analgesic and antipyretic activities of Linum usitatissimum L. (flaxseed/linseed) fixed oil. Indian J. Exp. Biol., 2011, 49(12), 932-938. PMID: 22403867
  210. Udenigwe, C.C.; Lu, Y.L.; Han, C.H.; Hou, W.C.; Aluko, R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem., 2009, 116(1), 277-284. doi: 10.1016/j.foodchem.2009.02.046
  211. Unda, S.R.; Villegas, E.A.; Toledo, M.E.; Asis Onell, G.; Laino, C.H. Beneficial effects of fish oil enriched in omega-3 fatty acids on the development and maintenance of neuropathic pain. J. Pharm. Pharmacol., 2020, 72(3), 437-447. doi: 10.1111/jphp.13213 PMID: 31876957
  212. Rafieian-kopaei, M.; Shakiba, A.; Sedighi, M.; Bahmani, M. The analgesic and anti-inflammatory activity of Linum usitatissimum in Balb/c mice. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 892-896. doi: 10.1177/2156587217717416 PMID: 28750553
  213. Hu, P.; Mei, Q.Y.; Ma, L.; Cui, W.G.; Zhou, W.H.; Zhou, D.S.; Zhao, Q.; Xu, D.Y.; Zhao, X.; Lu, Q.; Hu, Z.Y. Secoisolariciresinol diglycoside, a flaxseed lignan, exerts analgesic effects in a mouse model of type 1 diabetes: Engagement of antioxidant mechanism. Eur. J. Pharmacol., 2015, 767, 183-192. doi: 10.1016/j.ejphar.2015.10.024 PMID: 26494631
  214. McKay, D.L.; Blumberg, J.B. A Review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20(7), 519-530. doi: 10.1002/ptr.1900 PMID: 16628544
  215. Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev., 2011, 5(9), 82-95. doi: 10.4103/0973-7847.79103 PMID: 22096322
  216. Zargaran, A.; Borhani-Haghighi, A.; Faridi, P.; Daneshamouz, S.; Kordafshari, G.; Mohagheghzadeh, A. Potential effect and mechanism of action of topical chamomile (Matricaria chammomila L.) oil on migraine headache: A medical hypothesis. Med. Hypotheses, 2014, 83(5), 566-569. doi: 10.1016/j.mehy.2014.08.023 PMID: 25238714
  217. Mericli, A.H. The lipophilic compounds of a Turkish Matricaria chamomilla variety with no chamazulene in the volatile oil. Int. J. Crude Drug Res., 1990, 28(2), 145-147. doi: 10.3109/13880209009082799
  218. Wu, B.Y.; Liu, C.T.; Su, Y.L.; Chen, S.Y.; Chen, Y.H.; Tsai, M.Y. A review of complementary therapies with medicinal plants for chemotherapy-induced peripheral neuropathy. Complement. Ther. Med., 2019, 42, 226-232. doi: 10.1016/j.ctim.2018.11.022 PMID: 30670246
  219. Srivastava, J.K.; Pandey, M.; Gupta, S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci., 2009, 85(19-20), 663-669. doi: 10.1016/j.lfs.2009.09.007 PMID: 19788894
  220. Oveissi, V.; Ram, M.; Bahramsoltani, R.; Ebrahimi, F.; Rahimi, R.; Naseri, R.; Belwal, T.; Devkota, H.P.; Abbasabadi, Z.; Farzaei, M.H. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: Therapeutic targets and clinical perspective. Daru, 2019, 27(1), 389-406. doi: 10.1007/s40199-019-00255-6 PMID: 30852764
  221. Wu, J.Y.; Li, Y.; Li, B.L.; Wang, Y.G.; Cui, W.G.; Zhou, W.H.; Zhao, X. Evidence for 5‐HT 1A receptor‐mediated antiallodynic and antihyperalgesic effects of apigenin in mice suffering from mononeuropathy. Br. J. Pharmacol., 2021, 178(19), 4005-4025. doi: 10.1111/bph.15574 PMID: 34030210
  222. Gao, W.; Zan, Y.; Wang, Z.J.; Hu, X.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol. Sin., 2016, 37(9), 1166-1177. doi: 10.1038/aps.2016.58 PMID: 27498772
  223. Kato, A.; Minoshima, Y.; Yamamoto, J.; Adachi, I.; Watson, A.A.; Nash, R.J. Protective effects of dietary chamomile tea on diabetic complications. J. Agric. Food Chem., 2008, 56(17), 8206-8211. doi: 10.1021/jf8014365 PMID: 18681440
  224. Hashempur, M.H.; Ghasemi, M.S.; Daneshfard, B.; Ghoreishi, P.S.; Lari, Z.N.; Homayouni, K.; Zargaran, A. Efficacy of topical chamomile oil for mild and moderate carpal tunnel syndrome: A randomized double-blind placebo-controlled clinical trial. Complement. Ther. Clin. Pract., 2017, 26, 61-67. doi: 10.1016/j.ctcp.2016.11.010 PMID: 28107852
  225. Liu, Y.T.; Gong, P.H.; Xiao, F.Q.; Shao, S.; Zhao, D.Q.; Yan, M.M.; Yang, X.W. Chemical constituents and antioxidant, anti-inflammatory and anti-tumor activities of Melilotus officinalis (Linn.). Pall. Molecules, 2018, 23(2), 271. doi: 10.3390/molecules23020271 PMID: 29382154
  226. Merighi, S.; Travagli, A.; Tedeschi, P.; Marchetti, N.; Gessi, S. Antioxidant and Antiinflammatory Effects of Epilobium parviflorum, Melilotus officinalis and Cardiospermum halicacabum Plant extracts in macrophage and microglial cells. Cells, 2021, 10(10), 2691. doi: 10.3390/cells10102691 PMID: 34685671
  227. Al-Snafi, A.E. Chemical constituents and pharmacological effects of Melilotus Officinalis-A review. IOSR J. Pharm., 2020, 10(1), 26-36.
  228. Rashidi, A.; Jahandideh, A.; Hassanpour, S.; Asghari, A. Anti-nociceptive mechanisms of Melilotus officinalis Linn. ethanoic extract in mice: Involvement of opioidergic, nitrergic and muscarinic receptors. J. Basic Clinic. Pathophysiol., 2020, 8(2), 7-14.
  229. Zangiabadi, N.; Mohtashami, H.; Hojatipour, M.; Jafari, M.; Asadi-Shekaari, M.; Shabani, M. The effect of Angipars on diabetic neuropathy in STZ-induced diabetic male rats: A study on behavioral, electrophysiological, sciatic histological and ultrastructural indices. Sci. World J., 2014, 2014, 721547. doi: 10.1155/2014/721547 PMID: 25614895
  230. Bakhshayeshi, S.; Madani, S.; Hemmatabadi, M.; Heshmat, R.; Larijani, B. Effects of Semelil (ANGIPARS™) on diabetic peripheral neuropathy: A randomized, double-blind Placebo-controlled clinical trial. Daru, 2011, 19(1), 65-70. PMID: 22615641
  231. Verma, NK.; Singh AK; Maurya, A Myristica fragrans (Nutmeg): A Brief Review. EAS J Pharm Pharmacol., 2021, 3(5), 133-137.
  232. Matulyte, I.; Jekabsone, A.; Jankauskaite, L.; Zavistanaviciute, P.; Sakiene, V.; Bartkiene, E.; Ruzauskas, M.; Kopustinskiene, D.M.; Santini, A.; Bernatoniene, J. The essential oil and hydrolats from Myristica fragrans seeds with magnesium aluminometasilicate as excipient: Antioxidant, antibacterial, and anti-inflammatory activity. Foods, 2020, 9(1), 37. doi: 10.3390/foods9010037 PMID: 31906495
  233. Chakraborty, P.; Lavanya, P.; Jayanthi, A. Bioactivity of Myristica fragrans methanol extract. J. Pharm. Res., 2015, 4(9), 1145-1157.
  234. Arumugam, G.; Purushotham, B.; Swamy, M.K. Myristica fragrans Houtt.: Botanical, pharmacological, and toxicological aspects. In: Natural bio-active compounds; Springer: Singapore, 2019; pp. 81-106.
  235. Hayfaa, A.S. Malik; Awatif Moker, Evaluation of analgesic activity and toxicity of alkaloids in Myristica fragrans seeds in mice. J. Pain Res., 2013, 6, 611-615. doi: 10.2147/JPR.S45591 PMID: 23946667
  236. Yang, X.D.; Fang, P.F.; Xiang, D.X.; Yang, Y.Y. Topical treatments for diabetic neuropathic pain. Exp. Ther. Med., 2019, 17(3), 1963-1976. PMID: 30783472
  237. Zhang, W.K.; Tao, S.S.; Li, T.T.; Li, Y.S.; Li, X.J.; Tang, H.B.; Cong, R.H.; Ma, F.L.; Wan, C.J. Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutr. Res., 2016, 60(1), 30849. doi: 10.3402/fnr.v60.30849 PMID: 27121041
  238. Pérez-Rosés, R.; Risco, E.; Vila, R. Peñٌalver, P.; Cañٌigueral, S. Biological and nonbiological antioxidant activity of some essential oils. J. Agric. Food Chem., 2016, 64(23), 4716-4724. doi: 10.1021/acs.jafc.6b00986 PMID: 27214068
  239. Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; Kim, S.J.; Park, S.H.; Choi, B.M.; Park, S.J.; Um, J.Y.; Hong, S.H. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med., 2015, 43(4), 731-742. doi: 10.1142/S0192415X15500457 PMID: 26119957
  240. Yu, L.; Yan, J.; Sun, Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol. Med. Rep., 2017, 15(4), 2339-2346. doi: 10.3892/mmr.2017.6241 PMID: 28260017
  241. Motilal, S.; Maharaj, R.G. Nutmeg extracts for painful diabetic neuropathy: A randomized, double-blind, controlled study. J. Altern. Complement. Med., 2013, 19(4), 347-352. doi: 10.1089/acm.2012.0016 PMID: 23098698
  242. Li, L. The effect of Neuragen PN® on Neuropathic pain: A randomized, double blind, placebo controlled clinical trial. BMC Complement. Altern. Med., 2010, 10(1), 22. doi: 10.1186/1472-6882-10-22 PMID: 20487567
  243. Tahir, H.E.; Mahunu, G.K.; Mariod, A.A.; Xiaobo, Z.; Afoakwah, N.A. Biological activities of evening primrose oil. In: Multiple Biological Activities of Unconventional Seed Oils; Elsevier, 2022; pp. 317-332. doi: 10.1016/B978-0-12-824135-6.00032-5
  244. Timoszuk, M.; Bielawska, K.; Skrzydlewska, E. Evening primrose (Oenothera biennis) biological activity dependent on chemical composition. Antioxidants, 2018, 7(8), 108. doi: 10.3390/antiox7080108 PMID: 30110920
  245. Abd-Nikfarjam, B.; Abbasi, M.; Memarzadeh, M.; Farzam, S.A.; Jamshidian, A.; Dolati-Somarin, A. Therapeutic efficacy of Urtica dioica and evening primrose in patients with rheumatoid arthritis: A randomized double-blind, placebo-controlled clinical trial. J. Herb. Med., 2022, 32, 100556. doi: 10.1016/j.hermed.2022.100556
  246. Amin, M.; Ebrahimzadeh Zagami, S.; Rakhshandeh, H.; Esmaeili, H.; Mirteimori, M. The effect of evening primrose (Oenothera biennis) oil capsule on postpartum pain in multiparous women: A triple-blind randomized clinical trial. J. Midwifery. Reproductive Health, 2022, 10(4), 3480-3489.
  247. SafaaHussain M.; Abdulridha, MK.; Khudhair, MS. Anti-inflammatory, anti-oxidant, and vasodilating effect of evening primrose oil in type 2 diabetic patients. Int. J. Pharm. Sci. Rev. Res., 2016, 39(2), 173-178.
  248. Jamal, G.A.; Carmichael, H. The effect of γ-linolenic acid on human diabetic peripheral neuropathy: A double-blind placebo-controlled trial. Diabet. Med., 1990, 7(4), 319-323. doi: 10.1111/j.1464-5491.1990.tb01397.x PMID: 2159860
  249. Nasrabadi, Z.; Rakhshani, M.H.; Ebadi, H.; Akbarzadeh, R. Comparison of the effect of gabapentin and evening primrose oil on peripheral neuropathy pain in patients with type 2 diabetes. Clin. Med., 2019, 26(1), 5-11.
  250. Rajeshwari, C.; Kumar, A.V.; Andallu, B. Therapeutic potential of Ajwain (Tracyspermum ammi L.) Seeds. In: Nuts and seeds in health and disease prevention; Elsevier, 2011; pp. 153-159.
  251. Anwar, S.; Ahmed, N.; Habibatni, S.; Abusamra, Y. Ajwain (Trachyspermum ammi L.) oils. In: Essential Oils in Food Preservation, Flavor and Safety; Elsevier, 2016; pp. 181-192. doi: 10.1016/B978-0-12-416641-7.00019-5
  252. Zarshenas, M.M.; Moein, M.; Samani, S.M.; Petramfar, P. An overview on ajwain (Trachyspermum ammi) pharmacological effects; modern and traditional. J. Nat. Rem., 2013, 14(1), 98-105.
  253. Singh, G.; Maurya, S.; Catalan, C.; de Lampasona, M.P. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. J. Agric. Food Chem., 2004, 52(11), 3292-3296. doi: 10.1021/jf035211c PMID: 15161185
  254. Al-Khazraji, S.M. The pain decreasing effect of the alcoholic extract of Trachyspermum ammi (L.)(Ajwain) in experimental animals. Int. J. Chemtech Res., 2018, 10, 632-639.
  255. Petramfar, P.; Moein, M.; Samani, S.M.; Tabatabaei, S.H.; Zarshenas, M.M. Trachyspermum ammi 10% topical cream versus placebo on neuropathic pain, a randomized, double-blind, placebo-controlled trial. Neurol. Sci., 2016, 37(9), 1449-1455. doi: 10.1007/s10072-016-2600-3 PMID: 27166709
  256. Zhao, T.; Li, C.; Wang, S.; Song, X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules, 2022, 27(12), 3909. doi: 10.3390/molecules27123909 PMID: 35745040
  257. Perucca, E. Cannabinoids in the treatment of epilepsy: Hard evidence at last? J. Epilepsy Res., 2017, 7(2), 61-76. doi: 10.14581/jer.17012 PMID: 29344464
  258. Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.A.; Chatha, S.A.S.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol., 2014, 155(1), 54-66. doi: 10.1016/j.jep.2014.06.011 PMID: 24936768
  259. Sueth-Santiago, V.; Moraes, J.B.B.; Sobral Alves, E.S.; Vannier-Santos, M.A.; Freire-de-Lima, C.G.; Castro, R.N.; Mendes-Silva, G.P.; Del Cistia, C.N.; Magalhães, L.G; Andricopulo, A.D; Sant´’Anna, C.M.R. Decoté-Ricardo, D.; Freire de Lima, M.E. The effectiveness of natural diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, ultrastructural alterations and molecular modeling studies. PLoS One, 2016, 11(9), e0162926. doi: 10.1371/journal.pone.0162926 PMID: 27658305
  260. Velingkar, V.S.; Gupta, G.L.; Hegde, N.B. A current update on phytochemistry, pharmacology and herb-drug interactions of Hypericum perforatum. Phytochem. Rev., 2017, 16(4), 725-744. doi: 10.1007/s11101-017-9503-7
  261. Ez zoubi, Y.; Bousta, D.; Farah, A. A Phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. Clinical Phytoscience., 2020, 6, 1-9.
  262. El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses. Life, 2022, 12(4), 479. doi: 10.3390/life12040479 PMID: 35454969
  263. Kuete, V. Myristica fragrans: A review. In: Medicinal Spices and Vegetables from Africa; Academic Press, 2017; pp. 497-5012. doi: 10.1016/B978-0-12-809286-6.00023-6
  264. Jia, M.; Nie, Y.; Cao, D-P.; Xue, Y-Y.; Wang, J-S.; Zhao, L. Potential antiosteoporotic agents from plants: A comprehensive review. Evid. Based Complement. Alternat. Med., 2012, 20125, 364604. doi: 10.1155/2012/364604 PMID: 23365596
  265. Montserrat-de la Paz, S. Fernández-Arche, M.A.; Ángel-Martín, M.; García-Giménez, M.D. Phytochemical characterization of potential nutraceutical ingredients from Evening Primrose oil (Oenothera biennis L.). Phytochem. Lett., 2014, 8, 158-162. doi: 10.1016/j.phytol.2013.08.008
  266. Chahal, K.; Dhaiwal, K.; Kumar, A.; Kataria, D.; Singla, N. Chemical composition of Trachyspermum ammi L. and its biological properties: A review. J. Pharmacogn. Phytochem., 2017, 6(3), 131-140.
  267. Kraft, B.; Frickey, N.A.; Kaufmann, R.M.; Reif, M.; Frey, R.; Gustorff, B.; Kress, H.G. Lack of analgesia by oral standardized cannabis extract on acute inflammatory pain and hyperalgesia in volunteers. Anesthesiology, 2008, 109(1), 101-110. doi: 10.1097/ALN.0b013e31817881e1 PMID: 18580179
  268. Wilsey, B.; Marcotte, T.; Tsodikov, A.; Millman, J.; Bentley, H.; Gouaux, B.; Fishman, S. A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J. Pain, 2008, 9(6), 506-521. doi: 10.1016/j.jpain.2007.12.010 PMID: 18403272
  269. Berman, J.S.; Symonds, C.; Birch, R. Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: Results of a randomised controlled trial. Pain, 2004, 112(3), 299-306. doi: 10.1016/j.pain.2004.09.013 PMID: 15561385
  270. Ware, M.A.; Wang, T.; Shapiro, S.; Robinson, A.; Ducruet, T.; Huynh, T.; Gamsa, A.; Bennett, G.J.; Collet, J.P. Smoked cannabis for chronic neuropathic pain: A randomized controlled trial. CMAJ, 2010, 182(14), E694-E701. doi: 10.1503/cmaj.091414 PMID: 20805210
  271. Svendsen, K.B.; Jensen, T.S.; Bach, F.W. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ, 2004, 329(7460), 253. doi: 10.1136/bmj.38149.566979.AE PMID: 15258006
  272. Rog, D.J.; Nurmikko, T.J.; Friede, T.; Young, C.A. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology, 2005, 65(6), 812-819. doi: 10.1212/01.wnl.0000176753.45410.8b PMID: 16186518
  273. Corey-Bloom, J.; Wolfson, T.; Gamst, A.; Jin, S.; Marcotte, T.D.; Bentley, H.; Gouaux, B. Smoked cannabis for spasticity in multiple sclerosis: A randomized, placebo-controlled trial. CMAJ, 2012, 184(10), 1143-1150. doi: 10.1503/cmaj.110837 PMID: 22586334
  274. Langford, R.M.; Mares, J.; Novotna, A.; Vachova, M.; Novakova, I.; Notcutt, W.; Ratcliffe, S. A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J. Neurol., 2013, 260(4), 984-997. doi: 10.1007/s00415-012-6739-4 PMID: 23180178
  275. Turcotte, D.; Doupe, M.; Torabi, M.; Gomori, A.; Ethans, K.; Esfahani, F.; Galloway, K.; Namaka, M. Nabilone as an adjunctive to gabapentin for multiple sclerosis-induced neuropathic pain: A randomized controlled trial. Pain Med., 2015, 16(1), 149-159. doi: 10.1111/pme.12569 PMID: 25288189
  276. Bernstein, J.E.; Korman, N.J.; Bickers, D.R.; Dahl, M.V.; Millikan, L.E. Topical capsaicin treatment of chronic postherpetic neuralgia. J. Am. Acad. Dermatol., 1989, 21(2), 265-270. doi: 10.1016/S0190-9622(89)70171-7 PMID: 2768576
  277. Backonja, M.; Wallace, M.S.; Blonsky, E.R.; Cutler, B.J.; Malan, P., Jr; Rauck, R.; Tobias, J. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: A randomised, double-blind study. Lancet Neurol., 2008, 7(12), 1106-1112. doi: 10.1016/S1474-4422(08)70228-X PMID: 18977178
  278. Backonja, M.M.; Malan, T.P.; Vanhove, G.F.; Tobias, J.K. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: A randomized, double-blind, controlled study with an open-label extension. Pain Med., 2010, 11(4), 600-608. doi: 10.1111/j.1526-4637.2009.00793.x PMID: 20113411
  279. Vinik, A.I.; Perrot, S.; Vinik, E.J.; Pazdera, L.; Jacobs, H.; Stoker, M.; Long, S.K.; Snijder, R.J.; van der Stoep, M.; Ortega, E.; Katz, N. Capsaicin 8% patch repeat treatment plus standard of care (SOC) versus SOC alone in painful diabetic peripheral neuropathy: A randomised, 52-week, open-label, safety study. BMC Neurol., 2016, 16(1), 251. doi: 10.1186/s12883-016-0752-7 PMID: 27919222
  280. Haanpää. M.; Cruccu, G.; Nurmikko, T.J.; McBride, W.T.; Docu Axelarad, A.; Bosilkov, A.; Chambers, C.; Ernault, E.; Abdulahad, A.K. Capsaicin 8% patch versus oral pregabalin in patients with peripheral neuropathic pain. Eur. J. Pain, 2016, 20(2), 316-328. doi: 10.1002/ejp.731 PMID: 26581442
  281. Abe, H.; Kawai, Y.; Mori, T.; Tomida, K.; Kubota, Y.; Umeda, T.; Tani, T. The Kampo medicine Goshajinkigan prevents neuropathy in breast cancer patients treated with docetaxel. Asian Pac. J. Cancer Prev., 2013, 14(11), 6351-6356. doi: 10.7314/APJCP.2013.14.11.6351 PMID: 24377531

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers