Advances on the Role of Ferroptosis in Ionizing Radiation Response


Cite item

Full Text

Abstract

Ferroptosis is an iron-dependent programmed cell death mode that is distinct from other cell death modes, and radiation is able to stimulate cellular oxidative stress and induce the production of large amounts of reactive oxygen radicals, which in turn leads to the accumulation of lipid peroxide and the onset of ferroptosis. In this review, from the perspective of the role of ferroptosis in generating a radiation response following cellular irradiation, the relationship between ferroptosis induced by ionizing radiation stress and the response to ionizing radiation is reviewed, including the roles of MAPK and Nrf2 signaling pathways in ferroptosis, resulting from the oxidative stress response to ionizing radiation, the metabolic regulatory role of the p53 gene in ferroptosis, and regulatory modes of action of iron metabolism and iron metabolism-related regulatory proteins in promoting and inhibiting ferroptosis. It provides some ideas for the follow-up research to explore the specific mechanism and regulatory network of ferroptosis in response to ionizing radiation.

About the authors

Fang Wang

School of Life Science and Engineering, Lanzhou University of Technology

Email: info@benthamscience.net

QingHui Dai

School of Life Science and Engineering, Lanzhou University of Technology

Email: info@benthamscience.net

Luhan Xu

School of Life Science and Engineering, Lanzhou University of Technology

Email: info@benthamscience.net

Lu Gan

Institute of Modern Physics,, Chinese Academy of Sciences

Email: info@benthamscience.net

Yidi Shi

School of Life Science and Engineering, Lanzhou University of Technology

Email: info@benthamscience.net

Mingjun Yang

School of Life Science and Engineering, Lanzhou University of Technology

Author for correspondence.
Email: info@benthamscience.net

Shuhong Yang

School of Life Science and Engineering, Lanzhou University of Technology

Email: info@benthamscience.net

References

  1. Wang, K.; Tepper, J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J. Clin., 2021, 71(5), 437-454. doi: 10.3322/caac.21689 PMID: 34255347
  2. Zeng, J.; Harris, T.J.; Lim, M.; Drake, C.G.; Tran, P.T. (2013) Immune modulation and stereotactic radiation: improving local and abscopal responses. BioMed Res. Int., 2013, 658126. doi: 10.1155/2013/658126 PMID: 24324970
  3. Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res., 2021, 31(2), 107-125. doi: 10.1038/s41422-020-00441-1 PMID: 33268902
  4. Helm, J.S.; Rudel, R.A. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch. Toxicol., 2020, 94(5), 1511-1549. doi: 10.1007/s00204-020-02752-z PMID: 32399610
  5. Noda, A. Radiation-induced unrepairable DSBs: Their role in the late effects of radiation and possible applications to biodosimetry. J. Radiat. Res., 2018, 59(2), ii114-ii120. doi: 10.1093/jrr/rrx074 PMID: 29281054
  6. Yu, C.; Peng, R.Y. Biological effects and mechanisms of shortwave radiation: A review. Mil. Med. Res., 2017, 4(1), 24. doi: 10.1186/s40779-017-0133-6 PMID: 28729909
  7. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296. doi: 10.1038/s41571-020-00462-0 PMID: 33514910
  8. Gan, B. DUBbing ferroptosis in cancer cells. Cancer Res., 2019, 79(8), 1749-1750. doi: 10.1158/0008-5472.CAN-19-0487 PMID: 30987975
  9. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
  10. Tang, D.; Kroemer, G. Ferroptosis. Curr. Biol., 2020, 30(21), R1292-R1297. doi: 10.1016/j.cub.2020.09.068 PMID: 33142092
  11. Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421. doi: 10.1016/j.cell.2022.06.003 PMID: 35803244
  12. Yuan, H.; Pratte, J.; Giardina, C. Ferroptosis and its potential as a therapeutic target. Biochem. Pharmacol., 2021, 186, 114486. doi: 10.1016/j.bcp.2021.114486 PMID: 33631189
  13. Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282. doi: 10.1038/s41580-020-00324-8 PMID: 33495651
  14. Feng, H.; Schorpp, K.; Jin, J.; Yozwiak, C.E.; Hoffstrom, B.G.; Decker, A.M.; Rajbhandari, P.; Stokes, M.E.; Bender, H.G.; Csuka, J.M.; Upadhyayula, P.S.; Canoll, P.; Uchida, K.; Soni, R.K.; Hadian, K.; Stockwell, B.R. Transferrin receptor is a specific ferroptosis marker. Cell Rep., 2020, 30(10), 3411-3423.e7. doi: 10.1016/j.celrep.2020.02.049 PMID: 32160546
  15. Luo, M.; Yan, J.; Hu, X.; Li, H.; Li, H.; Liu, Q.; Chen, Y.; Zou, Z. Targeting lipid metabolism for ferroptotic cancer therapy. Apoptosis, 2022, •••, 18. doi: 10.1007/s10495-022-01795-0 PMID: 36399287
  16. Zheng, J.; Conrad, M. The metabolic underpinnings of ferroptosis. Cell Metab., 2020, 32(6), 920-937. doi: 10.1016/j.cmet.2020.10.011 PMID: 33217331
  17. Dahlmanns, M.; Yakubov, E.; Chen, D.; Sehm, T.; Rauh, M.; Savaskan, N.; Wrosch, J.K. Chemotherapeutic xCT inhibitors sorafenib and erastin unraveled with the synaptic optogenetic function analysis tool. Cell Death Discov., 2017, 3(1), 17030. doi: 10.1038/cddiscovery.2017.30 PMID: 28835855
  18. Zhang, Y.; Shi, J.; Liu, X.; Feng, L.; Gong, Z.; Koppula, P.; Sirohi, K.; Li, X.; Wei, Y.; Lee, H.; Zhuang, L.; Chen, G.; Xiao, Z.D.; Hung, M.C.; Chen, J.; Huang, P.; Li, W.; Gan, B. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol., 2018, 20(10), 1181-1192. doi: 10.1038/s41556-018-0178-0 PMID: 30202049
  19. Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88. doi: 10.1038/s41419-020-2298-2 PMID: 32015325
  20. Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Regulators of Iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem. Sci., 2016, 41(3), 274-286. doi: 10.1016/j.tibs.2015.11.012 PMID: 26725301
  21. Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11), 836-857. doi: 10.1007/s13238-021-00841-y PMID: 33891303
  22. Valashedi, M.R.; Bamshad, C.; Najafi-Ghalehlou, N.; Nikoo, A.; Tomita, K.; Kuwahara, Y.; Sato, T.; Roushandeh, A.M.; Roudkenar, M.H. Non-coding RNAs in ferroptotic cancer cell death pathway: Meet the new masters. Hum. Cell, 2022, 35(4), 972-994. doi: 10.1007/s13577-022-00699-0 PMID: 35415781
  23. Liu, P.; Feng, Y.; Li, H.; Chen, X.; Wang, G.; Xu, S.; Li, Y.; Zhao, L. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell. Mol. Biol. Lett., 2020, 25(1), 10. doi: 10.1186/s11658-020-00205-0 PMID: 32161620
  24. Dächert, J.; Ehrenfeld, V.; Habermann, K.; Dolgikh, N.; Fulda, S. Targeting ferroptosis in rhabdomyosarcoma cells. Int. J. Cancer, 2020, 146(2), 510-520. doi: 10.1002/ijc.32496 PMID: 31173656
  25. Feng, S-Q.; Yao, X.; Zhang, Y.; Hao, J.; Duan, H-Q.; Zhao, C-X.; Sun, C.; Li, B.; Fan, B-Y.; Wang, X.; Li, W-X.; Fu, X-H.; Hu, Y.; Liu, C.; Kong, X-H. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen. Res., 2019, 14(3), 532-541. doi: 10.4103/1673-5374.245480 PMID: 30539824
  26. Cao, Y.; Li, Y.; He, C.; Yan, F.; Li, J.R.; Xu, H.Z.; Zhuang, J.F.; Zhou, H.; Peng, Y.C.; Fu, X.J.; Lu, X.Y.; Yao, Y.; Wei, Y.Y.; Tong, Y.; Zhou, Y.F.; Wang, L. Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci. Bull., 2021, 37(4), 535-549. doi: 10.1007/s12264-020-00620-5 PMID: 33421025
  27. Jiang, T.; Chu, J.; Chen, H.; Cheng, H.; Su, J.; Wang, X.; Cao, Y.; Tian, S.; Li, Q. Gastrodin inhibits H2O2-induced ferroptosis through its antioxidative effect in rat glioma cell line C6. Biol. Pharm. Bull., 2020, 43(3), 480-487. doi: 10.1248/bpb.b19-00824 PMID: 32115506
  28. Xiao, F.J.; Zhang, D.; Wu, Y.; Jia, Q.H.; Zhang, L.; Li, Y.X.; Yang, Y.F.; Wang, H.; Wu, C.T.; Wang, L.S. miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem. Biophys. Res. Commun., 2019, 515(3), 448-454. doi: 10.1016/j.bbrc.2019.05.147 PMID: 31160087
  29. Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62Keap1NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184. doi: 10.1002/hep.28251 PMID: 26403645
  30. Wang, B.; Hou, D.; Liu, Q.; Wu, T.; Guo, H.; Zhang, X.; Zou, Y.; Liu, Z.; Liu, J.; Wei, J.; Gong, Y.; Shao, C. Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol. Ther., 2015, 16(10), 1548-1556. doi: 10.1080/15384047.2015.1071738 PMID: 26176175
  31. Gaschler, M.M.; Andia, A.A.; Liu, H.; Csuka, J.M.; Hurlocker, B.; Vaiana, C.A.; Heindel, D.W.; Zuckerman, D.S.; Bos, P.A.O.; Reznik, E.; Ye, L.F.; Tyurina, Y.Y.; Lin, A.J.; Shchepinov, M.S.; Chan, A.Y.; Peguero-Pereira, E.; Fomich, M.A.; Daniels, J.D.; Bekish, A.V.; Shmanai, V.A.O.; Kagan, V.E.; Mahal, L.K.; Woerpel, K.A.; Stockwell, B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol., 2018, 14(5), 507-515. doi: 10.1038/s41589-018-0031-6 PMID: 29610484
  32. Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307. doi: 10.1038/cddis.2016.208 PMID: 27441659
  33. Du, Y.; Bao, J.; Zhang, M.; Li, L.; Xu, X.L.; Chen, H.; Feng, Y.; Peng, X.; Chen, F. Targeting ferroptosis contributes to ATPR-induced AML differentiation via ROS-autophagy-lysosomal pathway. Gene, 2020, 755, 144889. doi: 10.1016/j.gene.2020.144889 PMID: 32534056
  34. Chen, X.; Xu, S.; Zhao, C.; Liu, B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem. Biophys. Res. Commun., 2019, 516(1), 37-43. doi: 10.1016/j.bbrc.2019.06.015 PMID: 31196626
  35. Mikulska-Ruminska, K.; Anthonymuthu, T.; Levkina, A.; Shrivastava, I.; Kapralov, A. Bayır, H.; Kagan, V.; Bahar, I. NO● represses the oxygenation of arachidonoyl PE by 15LOX/PEBP1: Mechanism and role in ferroptosis. Int. J. Mol. Sci., 2021, 22(10), 5253. doi: 10.3390/ijms22105253 PMID: 34067535
  36. Badgley, M.A.; Kremer, D.M.; Maurer, H.C.; DelGiorno, K.E.; Lee, H.J.; Purohit, V.; Sagalovskiy, I.R.; Ma, A.; Kapilian, J.; Firl, C.E.M.; Decker, A.R.; Sastra, S.A.; Palermo, C.F.; Andrade, L.R.; Sajjakulnukit, P.; Zhang, L.; Tolstyka, Z.P.; Hirschhorn, T.; Lamb, C.; Liu, T.; Gu, W.; Seeley, E.S.; Stone, E.; Georgiou, G.; Manor, U.; Iuga, A.; Wahl, G.M.; Stockwell, B.R.; Lyssiotis, C.A.; Olive, K.P. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Sci., 2020, 368(6486), 85-89. doi: 10.1126/science.aaw9872 PMID: 32241947
  37. Eaton, J.K.; Furst, L.; Ruberto, R.A.; Moosmayer, D.; Hilpmann, A.; Ryan, M.J.; Zimmermann, K.; Cai, L.L.; Niehues, M.; Badock, V.; Kramm, A.; Chen, S.; Hillig, R.C.; Clemons, P.A.; Gradl, S.; Montagnon, C.; Lazarski, K.E.; Christian, S.; Bajrami, B.; Neuhaus, R.; Eheim, A.L.; Viswanathan, V.S.; Schreiber, S.L. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol., 2020, 16(5), 497-506. doi: 10.1038/s41589-020-0501-5 PMID: 32231343
  38. NaveenKumar, S.K.; Hemshekhar, M.; Kemparaju, K.; Girish, K.S. Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: Protection by Melatonin. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2303-2316. doi: 10.1016/j.bbadis.2019.05.009 PMID: 31102787
  39. Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698. doi: 10.1038/s41586-019-1707-0 PMID: 31634899
  40. Yu, Y.; Huang, Z.; Chen, Q.; Zhang, Z.; Jiang, H.; Gu, R.; Ding, Y.; Hu, Y. Iron-based nanoscale coordination polymers synergistically induce immunogenic ferroptosis by blocking dihydrofolate reductase for cancer immunotherapy. Biomaterials, 2022, 288, 121724. doi: 10.1016/j.biomaterials.2022.121724 PMID: 36038420
  41. Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392. doi: 10.1021/acsnano.8b06399 PMID: 30495919
  42. Hsieh, C.H.; Hsieh, H.C.; Shih, F.H.; Wang, P.W.; Yang, L.X.; Shieh, D.B.; Wang, Y.C. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics, 2021, 11(14), 7072-7091. doi: 10.7150/thno.57803 PMID: 34093872
  43. Huo, M.; Wang, L.; Wang, Y.; Chen, Y.; Shi, J. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano., 2019, 13(2), acsnano.9b00457.. doi: 10.1021/acsnano.9b00457 PMID: 30753056
  44. Miao, M.Z.; Xiao, P.G.; Yue, G.; Wen, J.; Dong, L. A review of the effects of ionizing radiation on cell membrane. J. Radiat. Res. Radiat. Technol., 2017, 35(4), 040103-040107. doi: 10.11889/j.1000-3436.2017.rrj.35.040103
  45. Hassannia, B.; Van Coillie, S.; Vanden Berghe, T. Ferroptosis: Biological rust of lipid membranes. Antioxid. Redox Signal., 2021, 35(6), 487-509. doi: 10.1089/ars.2020.8175 PMID: 32808533
  46. Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285. doi: 10.1016/j.cell.2017.09.021 PMID: 28985560
  47. Wang, Y.; Liu, Z.G.; Yuan, H.; Deng, W.; Li, J.; Huang, Y.; Kim, B.Y.S.; Story, M.D.; Jiang, W. The reciprocity between radiotherapy and cancer immunotherapy. Clin. Cancer Res., 2019, 25(6), 1709-1717. doi: 10.1158/1078-0432.CCR-18-2581 PMID: 30413527
  48. Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685. doi: 10.1158/2159-8290.CD-19-0338 PMID: 31554642
  49. Wang, W.; Green, M.; Choi, J.E.; Gijón, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; Xia, H.; Zhou, J.; Li, G.; Li, J.; Li, W.; Wei, S.; Vatan, L.; Zhang, H.; Szeliga, W.; Gu, W.; Liu, R.; Lawrence, T.S.; Lamb, C.; Tanno, Y.; Cieslik, M.; Stone, E.; Georgiou, G.; Chan, T.A.; Chinnaiyan, A.; Zou, W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755), 270-274. doi: 10.1038/s41586-019-1170-y PMID: 31043744
  50. Wang, H.; Mu, X.; He, H.; Zhang, X.D. Cancer radiosensitizers. Trends Pharmacol. Sci., 2018, 39(1), 24-48. doi: 10.1016/j.tips.2017.11.003 PMID: 29224916
  51. Cadenas, S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med., 2018, 117, 76-89. doi: 10.1016/j.freeradbiomed.2018.01.024 PMID: 29373843
  52. Santivasi, W.L.; Xia, F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal., 2014, 21(2), 251-259. doi: 10.1089/ars.2013.5668 PMID: 24180216
  53. Yan, B.; Ai, Y.; Sun, Q.; Ma, Y.; Cao, Y.; Wang, J.; Zhang, Z.; Wang, X. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell, 2021, 81(2), 355-369.e10. doi: 10.1016/j.molcel.2020.11.024 PMID: 33321093
  54. Panzetta, V.; La Verde, G.; Pugliese, M.; Artiola, V.; Arrichiello, C.; Muto, P.; La Commara, M.; Netti, P.A.; Fusco, S. Adhesion and migration response to radiation therapy of mammary epithelial and adenocarcinoma cells interacting with different stiffness substrates. Cancers, 2020, 12(5), 1170. doi: 10.3390/cancers12051170 PMID: 32384675
  55. Imai, H.; Matsuoka, M.; Kumagai, T.; Sakamoto, T.; Koumura, T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr. Top. Microbiol. Immunol., 2016, 403, 143-170. doi: 10.1007/82_2016_508 PMID: 28204974
  56. Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484. doi: 10.1021/acschembio.9b00939 PMID: 31899616
  57. Dixon, S.J.; Winter, G.E.; Musavi, L.S.; Lee, E.D.; Snijder, B.; Rebsamen, M.; Superti-Furga, G.; Stockwell, B.R. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol., 2015, 10(7), 1604-1609. doi: 10.1021/acschembio.5b00245 PMID: 25965523
  58. Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(9), 1398-1409. doi: 10.1016/j.bbagen.2019.06.010 PMID: 31229492
  59. Lin, Z.; Liu, J.; Kang, R.; Yang, M.; Tang, D. Lipid metabolism in ferroptosis. Adv. Biol., 2021, 5(8), 2100396. doi: 10.1002/adbi.202100396 PMID: 34015188
  60. Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol., 2020, 8, 590226. doi: 10.3389/fcell.2020.590226 PMID: 33117818
  61. Zou, Y.; Henry, W.S.; Ricq, E.L.; Graham, E.T.; Phadnis, V.V.; Maretich, P.; Paradkar, S.; Boehnke, N.; Deik, A.A.; Reinhardt, F.; Eaton, J.K.; Ferguson, B.; Wang, W.; Fairman, J.; Keys, H.R. Dančík, V.; Clish, C.B.; Clemons, P.A.; Hammond, P.T.; Boyer, L.A.; Weinberg, R.A.; Schreiber, S.L. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature, 2020, 585(7826), 603-608. doi: 10.1038/s41586-020-2732-8 PMID: 32939090
  62. Chang, L.C.; Chiang, S.K.; Chen, S.E.; Yu, Y.L.; Chou, R.H.; Chang, W.C. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett., 2018, 416, 124-137. doi: 10.1016/j.canlet.2017.12.025 PMID: 29274359
  63. Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med., 2020, 152, 175-185. doi: 10.1016/j.freeradbiomed.2020.02.027 PMID: 32165281
  64. Sun, Y.; Berleth, N.; Wu, W.; Schlütermann, D.; Deitersen, J.; Stuhldreier, F.; Berning, L.; Friedrich, A.; Akgün, S.; Mendiburo, M.J.; Wesselborg, S.; Conrad, M.; Berndt, C.; Stork, B. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis., 2021, 12(11), 1028. doi: 10.1038/s41419-021-04306-2 PMID: 34716292
  65. Kabilan, U.; Graber, T.E.; Alain, T.; Klokov, D. Ionizing radiation and translation control: A link to radiation hormesis? Int. J. Mol. Sci., 2020, 21(18), 6650. doi: 10.3390/ijms21186650 PMID: 32932812
  66. Zhang, X.; Xing, X.; Liu, H.; Feng, J.; Tian, M.; Chang, S.; Liu, P.; Zhang, H. Ionizing radiation induces ferroptosis in granulocyte-macrophage hematopoietic progenitor cells of murine bone marrow. Int. J. Radiat. Biol., 2020, 96(5), 584-595. doi: 10.1080/09553002.2020.1708993 PMID: 31906761
  67. Li, X.Y.; Leung, P.S. Erastin-induced ferroptosis is a regulator for the growth and function of human pancreatic islet-like cell clusters. Cell Regen., 2020, 9(1), 16. doi: 10.1186/s13619-020-00055-3 PMID: 32893325
  68. Regon, P.; Dey, S.; Chowardhara, B.; Saha, B.; Kar, S.; Tanti, B.; Panda, S.K. Physio-biochemical and molecular assessment of Iron (Fe2+) toxicity responses in contrasting indigenous aromatic joha rice cultivars of Assam, India. Protoplasma, 2021, 258(2), 289-299. doi: 10.1007/s00709-020-01574-1 PMID: 33070240
  69. Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692. doi: 10.1038/s41586-019-1705-2 PMID: 31634900
  70. Chen, L.; Xie, J. Ferroptosis suppressor protein 1: A potential neuroprotective target for combating ferroptosis. Mov. Disord., 2020, 35(3), 400. doi: 10.1002/mds.27990 PMID: 32027037
  71. Vogt, A.C.S.; Arsiwala, T.; Mohsen, M.; Vogel, M.; Manolova, V.; Bachmann, M.F. On iron metabolism and its regulation. Int. J. Mol. Sci., 2021, 22(9), 4591. doi: 10.3390/ijms22094591 PMID: 33925597
  72. Gao, J.; Luo, T.; Wang, J. Gene interfered-ferroptosis therapy for cancers. Nat. Commun., 2021, 12(1), 5311. doi: 10.1038/s41467-021-25632-1 PMID: 34493724
  73. Bao, W.D.; Pang, P.; Zhou, X.T.; Hu, F.; Xiong, W.; Chen, K.; Wang, J.; Wang, F.; Xie, D.; Hu, Y.Z.; Han, Z.T.; Zhang, H.H.; Wang, W.X.; Nelson, P.T.; Chen, J.G.; Lu, Y.; Man, H.Y.; Liu, D.; Zhu, L.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ., 2021, 28(5), 1548-1562. doi: 10.1038/s41418-020-00685-9 PMID: 33398092
  74. Sporn, M.B.; Liby, K.T. NRF2 and cancer: The good, the bad and the importance of context. Nat. Rev. Cancer, 2012, 12(8), 564-571. doi: 10.1038/nrc3278 PMID: 22810811
  75. Ke, K.; Li, L.; Lu, C.; Zhu, Q.; Wang, Y.; Mou, Y.; Wang, H.; Jin, W. The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front. Oncol., 2022, 12, 916082. doi: 10.3389/fonc.2022.916082 PMID: 36033459
  76. Gan, B. Mitochondrial regulation of ferroptosis. J. Cell Biol., 2021, 220(9), e202105043. doi: 10.1083/jcb.202105043 PMID: 34328510
  77. Shui, S.; Zhao, Z.; Wang, H.; Conrad, M.; Liu, G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol., 2021, 45, 102056. doi: 10.1016/j.redox.2021.102056 PMID: 34229160
  78. Lu, J.; Holmgren, A. Selenoproteins. J. Biol. Chem., 2009, 284(2), 723-727. doi: 10.1074/jbc.R800045200 PMID: 18757362
  79. Short, S.P.; Williams, C.S. Selenoproteins in tumorigenesis and cancer progression. Adv. Cancer Res., 2017, 136, 49-83. doi: 10.1016/bs.acr.2017.08.002 PMID: 29054422
  80. Wu, H.; Luan, Y.; Wang, H.; Zhang, P.; Liu, S.; Wang, P.; Cao, Y.; Sun, H.; Wu, L. Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathway. Brain Res. Bull., 2022, 183, 38-48. doi: 10.1016/j.brainresbull.2022.02.018 PMID: 35227767
  81. Angeli, F.J.P.; Conrad, M. Selenium and GPX4, a vital symbiosis. Free Radic. Biol. Med., 2018, 127, 153-159. doi: 10.1016/j.freeradbiomed.2018.03.001 PMID: 29522794
  82. Liu, L.; Wang, M.; Gong, N.; Tian, P.; Deng, H. Se improves GPX4 expression and SOD activity to alleviate heat-stress-induced ferroptosis-like death in goat mammary epithelial cells. Anim. Cells Syst., 2021, 25(5), 283-295. doi: 10.1080/19768354.2021.1988704 PMID: 34745435
  83. Dineley, K.E.; Votyakova, T.V.; Reynolds, I.J. Zinc inhibition of cellular energy production: Implications for mitochondria and neurodegeneration. J. Neurochem., 2003, 85(3), 563-570. doi: 10.1046/j.1471-4159.2003.01678.x PMID: 12694382
  84. Lee, S.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid. Med. Cell. Longev., 2018, 2018, 1-11. doi: 10.1155/2018/9156285 PMID: 29743987
  85. Wang, B.; Li, D.; Kovalchuk, O. p53 Ser15 phosphorylation and histone modifications contribute to IR-induced miR-34a transcription in mammary epithelial cells. Cell Cycle, 2013, 12(13), 2073-2083. doi: 10.4161/cc.25135 PMID: 23759592
  86. Chen, J.; Zhang, D.; Qin, X.; Owzar, K.; McCann, J.J.; Kastan, M.B. DNA-damage-induced alternative splicing of p53. Cancers, 2021, 13(2), 251. doi: 10.3390/cancers13020251 PMID: 33445417
  87. Hassin, O.; Oren, M. Drugging p53 in cancer: One protein, many targets. Nat. Rev. Drug Discov., 2022, •••, 1-18. doi: 10.1038/s41573-022-00571-8 PMID: 36216888
  88. Chen, S.L.; Zhang, C.Z.; Liu, L.L.; Lu, S.X.; Pan, Y.H.; Wang, C.H.; He, Y.F.; Lin, C.S.; Yang, X.; Xie, D.; Yun, J.P.A. GYS2/p53 negative feedback loop restricts tumor growth in HBV-related hepatocellular carcinoma. Cancer Res., 2019, 79(3), 534-545. doi: 10.1158/0008-5472.CAN-18-2357 PMID: 30584071
  89. O’Connor, P.M.; Jackman, J.; Bae, I.; Myers, T.G.; Fan, S.; Mutoh, M.; Scudiero, D.A.; Monks, A.; Sausville, E.A.; Weinstein, J.N.; Friend, S.; Fornace, A.J., Jr; Kohn, K.W. Characterization of the p53 tumor suppressor pathway in cell lines of the national cancer institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res., 1997, 57(19), 4285-4300. PMID: 9331090
  90. Werbrouck, C.; Evangelista, C.C.S.; Lobón-Iglesias, M.J.; Barret, E.; Le Teuff, G.; Merlevede, J.; Brusini, R.; Kergrohen, T.; Mondini, M.; Bolle, S.; Varlet, P.; Beccaria, K.; Boddaert, N.; Puget, S.; Grill, J.; Debily, M.A.; Castel, D. TP53 pathway alterations drive radioresistance in diffuse intrinsic pontine gliomas (DIPG). Clin. Cancer Res., 2019, 25(22), 6788-6800. doi: 10.1158/1078-0432.CCR-19-0126 PMID: 31481512
  91. Chen, X.; Zhang, T.; Su, W.; Dou, Z.; Zhao, D.; Jin, X.; Lei, H.; Wang, J.; Xie, X.; Cheng, B.; Li, Q.; Zhang, H.; Di, C. Mutant p53 in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis., 2022, 13(11), 974. doi: 10.1038/s41419-022-05408-1 PMID: 36400749
  92. Ou, Y.; Wang, S.J.; Li, D.; Chu, B.; Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci., 2016, 113(44), E6806-E6812. doi: 10.1073/pnas.1607152113 PMID: 27698118
  93. Wang, P.Y.; Ma, W.; Park, J.Y.; Celi, F.S.; Arena, R.; Choi, J.W.; Ali, Q.A.; Tripodi, D.J.; Zhuang, J.; Lago, C.U.; Strong, L.C.; Talagala, S.L.; Balaban, R.S.; Kang, J.G.; Hwang, P.M. Increased oxidative metabolism in the Li-Fraumeni syndrome. N. Engl. J. Med., 2013, 368(11), 1027-1032. doi: 10.1056/NEJMoa1214091 PMID: 23484829
  94. Xie, Y.; Zhu, S.; Song, X.; Sun, X.; Fan, Y.; Liu, J.; Zhong, M.; Yuan, H.; Zhang, L.; Billiar, T.R.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep., 2017, 20(7), 1692-1704. doi: 10.1016/j.celrep.2017.07.055 PMID: 28813679
  95. Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell, 2017, 170(1), 17-33. doi: 10.1016/j.cell.2017.06.009 PMID: 28666118
  96. Shi, Z.; Liu, J.; Sun, D. Let-7a targets Rsf-1 to modulate radiotherapy response of non-small cell lung cancer cells through Ras-MAPK pathway. J. BUON, 2021, 26(4), 1422-1431. PMID: 34565000
  97. Levada, K.; Guldiken, N.; Zhang, X.; Vella, G.; Mo, F.R.; James, L.P.; Haybaeck, J.; Kessler, S.M.; Kiemer, A.K.; Ott, T.; Hartmann, D.; Hüser, N.; Ziol, M.; Trautwein, C.; Strnad, P. Hsp72 protects against liver injury via attenuation of hepatocellular death, oxidative stress, and JNK signaling. J. Hepatol., 2018, 68(5), 996-1005. doi: 10.1016/j.jhep.2018.01.003 PMID: 29331340
  98. Wang, X.; Zhang, C.; Zou, N.; Chen, Q.; Wang, C.; Zhou, X.; Luo, L.; Qi, H.; Li, J.; Liu, Z.; Yi, J.; Li, J.; Liu, W. Lipocalin-2 silencing suppresses inflammation and oxidative stress of acute respiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice. Bioengineered, 2022, 13(1), 508-520. doi: 10.1080/21655979.2021.2009970 PMID: 34969358
  99. Krayem, M.; Sabbah, M.; Najem, A.; Wouters, A.; Lardon, F.; Simon, S.; Sales, F.; Journe, F.; Awada, A.; Ghanem, G.E.; Van Gestel, D. The benefit of reactivating p53 under mapk inhibition on the efficacy of radiotherapy in Melanoma. Cancers, 2019, 11(8), 1093. doi: 10.3390/cancers11081093 PMID: 31374895
  100. Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal., 2018, 29(17), 1727-1745. doi: 10.1089/ars.2017.7342 PMID: 28899199
  101. Kobayashi, M.; Yamamoto, M. Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul., 2006, 46(1), 113-140. doi: 10.1016/j.advenzreg.2006.01.007 PMID: 16887173
  102. Sato, Y.; Yoshizato, T.; Shiraishi, Y.; Maekawa, S.; Okuno, Y.; Kamura, T.; Shimamura, T.; Sato-Otsubo, A.; Nagae, G.; Suzuki, H.; Nagata, Y.; Yoshida, K.; Kon, A.; Suzuki, Y.; Chiba, K.; Tanaka, H.; Niida, A.; Fujimoto, A.; Tsunoda, T.; Morikawa, T.; Maeda, D.; Kume, H.; Sugano, S.; Fukayama, M.; Aburatani, H.; Sanada, M.; Miyano, S.; Homma, Y.; Ogawa, S. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet., 2013, 45(8), 860-867. doi: 10.1038/ng.2699 PMID: 23797736
  103. Kim, B.; Nam, H.J.; Pyo, K.E.; Jang, M.J.; Kim, I.S.; Kim, D.; Boo, K.; Lee, S.H.; Yoon, J.B.; Baek, S.H.; Kim, J.H. Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3–SPOP E3 ubiquitin ligase complex. Biochem. Biophys. Res. Commun., 2011, 415(4), 720-726. doi: 10.1016/j.bbrc.2011.10.154 PMID: 22085717
  104. Liu, Q.; Wang, K. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol. Int., 2019, 43(11), 1245-1256. doi: 10.1002/cbin.11121 PMID: 30811078
  105. Liu, N.; Lin, X.; Huang, C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br. J. Cancer, 2020, 122(2), 279-292. doi: 10.1038/s41416-019-0660-x PMID: 31819185
  106. Jiao, Y.; Cao, F.; Liu, H. Radiation-induced cell death and its mechanisms. Health Phys., 2022, 123(5), 376-386. doi: 10.1097/HP.0000000000001601 PMID: 36069830
  107. Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23, 101107. doi: 10.1016/j.redox.2019.101107 PMID: 30692038
  108. Huang, W.M.; Li, Z.X.; Wu, Y.H.; Shi, Z.L.; Mi, J.L.; Hu, K.; Wang, R.S. m6A demethylase FTO renders radioresistance of nasopharyngeal carcinoma via promoting OTUB1-mediated anti-ferroptosis. Transl. Oncol., 2023, 27, 101576. doi: 10.1016/j.tranon.2022.101576 PMID: 36343416
  109. Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162. doi: 10.1038/s41422-019-0263-3 PMID: 31949285
  110. Beretta, G.L.; Zaffaroni, N. Radiotherapy-induced ferroptosis for cancer treatment. Front. Mol. Biosci., 2023, 10, 1216733. doi: 10.3389/fmolb.2023.1216733 PMID: 37388241
  111. Zhang, Z.; Lu, M.; Chen, C.; Tong, X.; Li, Y.; Yang, K.; Lv, H.; Xu, J.; Qin, L. Holo-lactoferrin: The link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics, 2021, 11(7), 3167-3182. doi: 10.7150/thno.52028 PMID: 33537080
  112. Du, J.; Wang, T.; Li, Y.; Zhou, Y.; Wang, X.; Yu, X.; Ren, X.; An, Y.; Wu, Y.; Sun, W.; Fan, W.; Zhu, Q.; Wang, Y.; Tong, X. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med., 2019, 131, 356-369. doi: 10.1016/j.freeradbiomed.2018.12.011 PMID: 30557609
  113. Yuan, S.; Wei, C.; Liu, G.; Zhang, L.; Li, J.; Li, L.; Cai, S.; Fang, L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF1α/SLC7A11 pathway. Cell Prolif., 2022, 55(1), e13158. doi: 10.1111/cpr.13158 PMID: 34811833
  114. Su, Y.; Zhao, B.; Zhou, L.; Zhang, Z.; Shen, Y.; Lv, H.; AlQudsy, L.H.H.; Shang, P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett., 2020, 483, 127-136. doi: 10.1016/j.canlet.2020.02.015 PMID: 32067993
  115. Sui, X.; Zhang, R.; Liu, S.; Duan, T.; Zhai, L.; Zhang, M.; Han, X.; Xiang, Y.; Huang, X.; Lin, H.; Xie, T. RSL3 drives ferroptosis through gpx4 inactivation and ros production in colorectal cancer. Front. Pharmacol., 2018, 9, 1371. doi: 10.3389/fphar.2018.01371 PMID: 30524291
  116. Yao, X.; Xie, R.; Cao, Y.; Tang, J.; Men, Y.; Peng, H.; Yang, W. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J. Nanobiotechnology, 2021, 19(1), 311. doi: 10.1186/s12951-021-01058-1 PMID: 34627266
  117. Li, Q.; Liu, C.; Deng, L.; Xie, E.; Yadav, N.; Tie, Y.; Cheng, Z.; Deng, J. Novel function of fluvastatin in attenuating oxidized low density lipoprotein induced endothelial cell ferroptosis in a glutathione peroxidase4 and cystine glutamate antiporter dependent manner. Exp. Ther. Med., 2021, 22(5), 1275. doi: 10.3892/etm.2021.10710 PMID: 34594412
  118. Zhang, Y.; Tan, Y.; Liu, S.; Yin, H.; Duan, J.; Fan, L.; Zhao, X.; Jiang, B. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol. Mech. Methods, 2022, 33(1), 47-55. doi: 10.1080/15376516.2022.2075297 PMID: 35592903
  119. Zhang, Y.; Tan, H.; Daniels, J.D.; Zandkarimi, F.; Liu, H.; Brown, L.M.; Uchida, K.; O’Connor, O.A.; Stockwell, B.R. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol., 2019, 26(5), 623-633.e9. doi: 10.1016/j.chembiol.2019.01.008 PMID: 30799221
  120. Luo, Y.; Yan, P.; Li, X.; Hou, J.; Wang, Y.; Zhou, S. pH-Sensitive polymeric vesicles for GOx/BSO delivery and synergetic starvation-ferroptosis therapy of Tumor. Biomacromolecules, 2021, 22(10), 4383-4394. doi: 10.1021/acs.biomac.1c00960 PMID: 34533297
  121. Shin, D.; Kim, E.H.; Lee, J.; Roh, J.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 129, 454-462. doi: 10.1016/j.freeradbiomed.2018.10.426 PMID: 30339884
  122. Motooka, Y.; Toyokuni, S. Ferroptosis as ultimate target of cancer therapy. Antioxid. Redox Signal., 2022. doi: 10.1089/ars.2022.0048 PMID: 35943875
  123. Zhao, Y.; Zhao, W.; Lim, Y.C.; Liu, T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced Cell Death. Mol. Pharm., 2019, 16(6), 2532-2539. doi: 10.1021/acs.molpharmaceut.9b00132 PMID: 31009228
  124. Helbig, L.; Koi, L.; Brüchner, K.; Gurtner, K.; Hess-Stumpp, H.; Unterschemmann, K.; Baumann, M.; Zips, D.; Yaromina, A. BAY 87–2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts. Radiat. Oncol., 2014, 9(1), 207. doi: 10.1186/1748-717X-9-207 PMID: 25234922
  125. Llabani, E.; Hicklin, R.W.; Lee, H.Y.; Motika, S.E.; Crawford, L.A.; Weerapana, E.; Hergenrother, P.J. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nat. Chem., 2019, 11(6), 521-532. doi: 10.1038/s41557-019-0261-6 PMID: 31086302

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers