Concomitant Expression of CD39, CD69, and CD103 Identifies Antitumor CD8+ T Cells in Breast Cancer Implications for Adoptive Cell Therapy


Cite item

Full Text

Abstract

Background:In cancer, an effective immune response involves the action of several different cell types, among which CD8 T cells play a major role as they can specifically recognize and kill cancer cells via the release of cytotoxic molecules and cytokines, being of major importance for adoptive cell transfer (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs). The inflammation resulting from the tumor growth attracts both activated and bystander T cells. For an effective antitumor response, the T cell must express a specific group of chemokine receptors and integrins which include CD103, CD39, CD69, and CD25. These markers had already been analyzed in various cancers, not including breast cancer and their subsequent subtypes, until now. To analyze, the key receptors on ex vivo expanded tumor-infiltrating lymphocytes in luminal A and luminal B breast cancer (BC) subtypes.

Materials and Methods:We were successful in expanding TILs ex vivo using a standard TIL culture condition from a cohort study of 15 primary luminal A and luminal B breast cancer patients. Furthermore, we examined the expression of CD103, CD39, CD69, and CD25 biomarkers after the expansion by flow cytometry.

Results:We found that the information about the percentage of TILs obtainable after the ex vivo expansion is not associated to nor it is dependent on the heterogeneity of the TIL population before the expansion and does not differ by the molecular subtype (p>0.05). We also found that there is a major population of memory-resident antitumor CD8+CD103+CD39+ and CD8+CD103+ CD69+ TILs present in the stroma after the expansion when compared to CD4 immunosubtypes (p(<0.0001). Only the CD8+CD103+CD39+ subpopulation was related to BC subtype (0.0009).

Conclusion:Evidence from our study suggests that CD8 TILs present in the stroma of luminal A and luminal B breast cancer patients can be quantified and phenotyped by flow cytometry and be further expanded ex vivo. The immuno-phenotyping of these markers may be targeted to improve the success of immunotherapeutic approaches, such as adoptive cellular therapy (ACT) in patients with BC.

About the authors

Karen Willard-Gallo

Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila

Email: info@benthamscience.net

Jesús Astorga

Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila

Author for correspondence.
Email: info@benthamscience.net

Grace Lama

, Universidad Iberoamericana de Torreón

Author for correspondence.
Email: info@benthamscience.net

Gregory Noél

, Institut Jules Bordet

Email: info@benthamscience.net

Francisco Márquez

Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila

Email: info@benthamscience.net

Faviel Galarza

Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila

Email: info@benthamscience.net

Adria Hinojosa

, Universidad Iberoamericana de Torreón

Email: info@benthamscience.net

Lydia Rivera

Departamento de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma de Coahuila

Email: info@benthamscience.net

References

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Sci., 2015, 348(6230), 69-74. doi: 10.1126/science.aaa4971 PMID: 25838375
  3. Savas, P.; Salgado, R.; Denkert, C.; Sotiriou, C.; Darcy, P.K.; Smyth, M.J.; Loi, S. Clinical relevance of host immunity in breast cancer: From TILs to the clinic. Nat. Rev. Clin. Oncol., 2016, 13(4), 228-241. doi: 10.1038/nrclinonc.2015.215 PMID: 26667975
  4. Loi, S.; Adams, S.; Schmid, P.; Cortés, J.; Cescon, D.W.; Winer, E.P.; Toppmeyer, D.L.; Rugo, H.S.; De Laurentiis, M.; Nanda, R.; Iwata, H.; Awada, A.; Tan, A.; Aktan, G.; Karantza, V.; Salgado, R. Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple- negative breast cancer: Results from KEYNOTE-086. Ann. Oncol., 2017, 28(S5), 608. doi: 10.1093/annonc/mdx440.005
  5. Loi, S.; Drubay, D.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; Gray, R.; Munzone, E.; Lemonnier, J.; Sotiriou, C.; Piccart, M.J.; Kellokumpu-Lehtinen, P.L.; Vingiani, A.; Gray, K.; Andre, F.; Denkert, C.; Salgado, R.; Michiels, S. Tumor-infiltrating lymphocytes and Prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol., 2019, 37(7), 559-569. doi: 10.1200/JCO.18.01010 PMID: 30650045
  6. Nanda, R.; Chow, L.Q.M.; Dees, E.C.; Berger, R.; Gupta, S.; Geva, R.; Pusztai, L.; Pathiraja, K.; Aktan, G.; Cheng, J.D.; Karantza, V.; Buisseret, L. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J. Clin. Oncol., 2016, 34(21), 2460-2467. doi: 10.1200/JCO.2015.64.8931 PMID: 27138582
  7. Emens, L.A.; Cruz, C.; Eder, J.P.; Braiteh, F.; Chung, C.; Tolaney, S.M.; Kuter, I.; Nanda, R.; Cassier, P.A.; Delord, J.P.; Gordon, M.S.; ElGabry, E.; Chang, C.W.; Sarkar, I.; Grossman, W.; O’Hear, C.; Fassò, M.; Molinero, L.; Schmid, P. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer. JAMA Oncol., 2019, 5(1), 74-82. doi: 10.1001/jamaoncol.2018.4224 PMID: 30242306
  8. Adams, S.; Loi, S.; Toppmeyer, D.; Cescon, D.W.; De Laurentiis, M.; Nanda, R.; Winer, E.P.; Mukai, H.; Tamura, K.; Armstrong, A.; Liu, M.C.; Iwata, H.; Ryvo, L.; Wimberger, P.; Card, D.; Ding, Y.; Karantza, V.; Schmid, P. Phase 2 study of pembrolizumab as first-line therapy for PD-L1–positive metastatic triple-negative breast cancer (mTNBC): Preliminary data from KEYNOTE-086 cohort B. J. Clin. Oncol., 2017, 35(S15), 1088. doi: 10.1200/JCO.2017.35.15_suppl.1088
  9. Schmid, P.; Park, Y.H.; Muñoz-Couselo, E.; Kim, S.B.; Sohn, J. Im, S-A.; Holgado, E.; Wang, Y.; Dang, T.; Aktan, G.; Cortés, J. Pembrolizumab (pembro) + chemotherapy (chemo) as neoadjuvant treatment for triple negative breast cancer (TNBC): Preliminary results from KEYNOTE-173. J. Clin. Oncol., 2017, 35(S15), 556. doi: 10.1200/JCO.2017.35.15_suppl.556
  10. Buisseret, L.; Garaud, S.; de Wind, A.; Van den Eynden, G.; Boisson, A.; Solinas, C.; Gu-Trantien, C.; Naveaux, C.; Lodewyckx, J.N.; Duvillier, H.; Craciun, L.; Veys, I.; Larsimont, D.; Piccart-Gebhart, M.; Stagg, J.; Sotiriou, C.; Willard-Gallo, K. Tumor-infiltrating lymphocyte composition, organization and PD-1/PD-L1 expression are linked in breast cancer. OncoImmunology, 2017, 6(1), e1257452. doi: 10.1080/2162402X.2016.1257452 PMID: 28197375
  11. Solinas, C.; Gombos, A.; Latifyan, S.; Piccart-Gebhart, M.; Kok, M.; Buisseret, L. Targeting immune checkpoints in breast cancer: An update of early results. ESMO Open, 2017, 2(5), e000255. doi: 10.1136/esmoopen-2017-000255 PMID: 29177095
  12. Loi, S.; Giobbie-Hurder, A.; Gombos, A.; Bachelot, T.; Hui, R.; Curigliano, G.; Campone, M.; Biganzoli, L.; Bonnefoi, H.; Jerusalem, G.; Bartsch, R.; Rabaglio-Poretti, M.; Kammler, R.; Maibach, R.; Smyth, M.J.; Di Leo, A.; Colleoni, M.; Viale, G.; Regan, M.M.; André, F. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): A single-arm, multicentre, phase 1b–2 trial. Lancet Oncol., 2019, 20(3), 371-382. doi: 10.1016/S1470-2045(18)30812-X PMID: 30765258
  13. Dudley, M.E.; Wunderlich, J.R.; Shelton, T.E.; Even, J.; Rosenberg, S.A. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother., 2003, 26(4), 332-342. doi: 10.1097/00002371-200307000-00005 PMID: 12843795
  14. Rosenberg, S.A.; Dudley, M.E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol., 2009, 21(2), 233-240. doi: 10.1016/j.coi.2009.03.002 PMID: 19304471
  15. Besser, M.J.; Shapira-Frommer, R.; Itzhaki, O.; Treves, A.J.; Zippel, D.B.; Levy, D.; Kubi, A.; Shoshani, N.; Zikich, D.; Ohayon, Y.; Ohayon, D.; Shalmon, B.; Markel, G.; Yerushalmi, R.; Apter, S.; Ben-Nun, A.; Ben-Ami, E.; Shimoni, A.; Nagler, A.; Schachter, J. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin. Cancer Res., 2013, 19(17), 4792-4800. doi: 10.1158/1078-0432.CCR-13-0380 PMID: 23690483
  16. Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2019, 30(8), 1194-1220. doi: 10.1093/annonc/mdz173 PMID: 31161190
  17. Klebanoff, C.A.; Gattinoni, L.; Restifo, N.P. CD8 + T-cell memory in tumor immunology and immunotherapy. Immunol. Rev., 2006, 211(1), 214-224. doi: 10.1111/j.0105-2896.2006.00391.x PMID: 16824130
  18. Finn, O.J. Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol. Res., 2017, 5(5), 347-354. doi: 10.1158/2326-6066.CIR-17-0112 PMID: 28465452
  19. Gros, A.; Robbins, P.F.; Yao, X.; Li, Y.F.; Turcotte, S.; Tran, E.; Wunderlich, J.R.; Mixon, A.; Farid, S.; Dudley, M.E.; Hanada, K.; Almeida, J.R.; Darko, S.; Douek, D.C.; Yang, J.C.; Rosenberg, S.A. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest., 2014, 124(5), 2246-2259. doi: 10.1172/JCI73639 PMID: 24667641
  20. Inozume, T.; Hanada, K.; Wang, Q.J.; Ahmadzadeh, M.; Wunderlich, J.R.; Rosenberg, S.A.; Yang, J.C. Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells. J. Immunother., 2010, 33(9), 956-964. doi: 10.1097/CJI.0b013e3181fad2b0 PMID: 20948441
  21. Wolfl, M.; Kuball, J.; Ho, W.Y.; Nguyen, H.; Manley, T.J.; Bleakley, M.; Greenberg, P.D. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 2007, 110(1), 201-210. doi: 10.1182/blood-2006-11-056168 PMID: 17371945
  22. Ye, Q.; Song, D.G.; Poussin, M.; Yamamoto, T.; Best, A.; Li, C.; Coukos, G.; Powell, D.J., Jr CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res., 2014, 20(1), 44-55. doi: 10.1158/1078-0432.CCR-13-0945 PMID: 24045181
  23. Mueller, S.N.; Mackay, L.K. Tissue-resident memory T cells: Local specialists in immune defence. Nat. Rev. Immunol., 2016, 16(2), 79-89. doi: 10.1038/nri.2015.3 PMID: 26688350
  24. Schenkel, J.M.; Fraser, K.A.; Beura, L.K.; Pauken, K.E.; Vezys, V.; Masopust, D. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Sci., 2014, 346(6205), 98-101. doi: 10.1126/science.1254536 PMID: 25170049
  25. Schenkel, J.M.; Masopust, D. Tissue-resident memory T cells. Immunity, 2014, 41(6), 886-897. doi: 10.1016/j.immuni.2014.12.007 PMID: 25526304
  26. El-Asady, R.; Yuan, R.; Liu, K.; Wang, D.; Gress, R.E.; Lucas, P.J.; Drachenberg, C.B.; Hadley, G.A. TGF-β–dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med., 2005, 201(10), 1647-1657. doi: 10.1084/jem.20041044 PMID: 15897278
  27. Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med., 2013, 19(6), 355-367. doi: 10.1016/j.molmed.2013.03.005 PMID: 23601906
  28. Young, A.; Mittal, D.; Stagg, J.; Smyth, M.J. Targeting cancer-derived adenosine: New therapeutic approaches. Cancer Discov., 2014, 4(8), 879-888. doi: 10.1158/2159-8290.CD-14-0341 PMID: 25035124
  29. Gupta, P.K.; Godec, J.; Wolski, D.; Adland, E.; Yates, K.; Pauken, K.E.; Cosgrove, C.; Ledderose, C.; Junger, W.G.; Robson, S.C.; Wherry, E.J.; Alter, G.; Goulder, P.J.R.; Klenerman, P.; Sharpe, A.H.; Lauer, G.M.; Haining, W.N. CD39 Expression identifies terminally exhausted CD8+ T cells. PLoS Pathog., 2015, 11(10), e1005177. doi: 10.1371/journal.ppat.1005177 PMID: 26485519
  30. Masopust, D.; Soerens, A.G.; Tissue-Resident, T. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol., 2019, 37(1), 521-546. doi: 10.1146/annurev-immunol-042617-053214 PMID: 30726153
  31. Gebhardt, T.; Wakim, L.M.; Eidsmo, L.; Reading, P.C.; Heath, W.R.; Carbone, F.R.; Memory, T. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol., 2009, 10(5), 524-530. doi: 10.1038/ni.1718 PMID: 19305395
  32. Masopust, D.; Choo, D.; Vezys, V.; Wherry, E.J.; Duraiswamy, J.; Akondy, R.; Wang, J.; Casey, K.A.; Barber, D.L.; Kawamura, K.S.; Fraser, K.A.; Webby, R.J.; Brinkmann, V.; Butcher, E.C.; Newell, K.A.; Ahmed, R.; Dynamic, T. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med., 2010, 207(3), 553-564. doi: 10.1084/jem.20090858 PMID: 20156972
  33. Duhen, T.; Duhen, R.; Montler, R.; Moses, J.; Moudgil, T.; de Miranda, N.F.; Goodall, C.P.; Blair, T.C.; Fox, B.A.; McDermott, J.E.; Chang, S.C.; Grunkemeier, G.; Leidner, R.; Bell, R.B.; Weinberg, A.D. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun., 2018, 9(1), 2724. doi: 10.1038/s41467-018-05072-0 PMID: 30006565
  34. Allakhverdi, Z.; Fitzpatrick, D.; Boisvert, A.; Baba, N.; Bouguermouh, S.; Sarfati, M.; Delespesse, G. Expression of CD103 identifies human regulatory T-cell subsets. J. Allergy Clin. Immunol., 2006, 118(6), 1342-1349. doi: 10.1016/j.jaci.2006.07.034 PMID: 17137867
  35. Shiow, L.R.; Rosen, D.B.; Brdičková, N.; Xu, Y.; An, J.; Lanier, L.L.; Cyster, J.G.; Matloubian, M. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature, 2006, 440(7083), 540-544. doi: 10.1038/nature04606 PMID: 16525420
  36. Byrne, A.; Savas, P.; Sant, S.; Li, R.; Virassamy, B.; Luen, S.J.; Beavis, P.A.; Mackay, L.K.; Neeson, P.J.; Loi, S. Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat. Rev. Clin. Oncol., 2020, 17(6), 341-348. doi: 10.1038/s41571-020-0333-y PMID: 32112054
  37. Garaud, S.; Gu-Trantien, C.; Lodewyckx, J.N.; Boisson, A.; De Silva, P.; Buisseret, L.; Migliori, E.; Libin, M.; Naveaux, C.; Duvillier, H.; Willard-Gallo, K. A simple and rapid protocol to non-enzymatically dissociate fresh human tissues for the analysis of infiltrating lymphocytes. J. Vis. Exp., 2014, (94), 52392. doi: 10.3791/52392 PMID: 25548995
  38. Buisseret, L.; Desmedt, C.; Garaud, S.; Fornili, M.; Wang, X.; Van den Eyden, G.; de Wind, A.; Duquenne, S.; Boisson, A.; Naveaux, C.; Rothé, F.; Rorive, S.; Decaestecker, C.; Larsimont, D.; Piccart-Gebhart, M.; Biganzoli, E.; Sotiriou, C.; Willard-Gallo, K. Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. Mod. Pathol., 2017, 30(9), 1204-1212. doi: 10.1038/modpathol.2017.43 PMID: 28621322
  39. Lee, H.J.; Kim, Y.A.; Sim, C.K.; Heo, S.H.; Song, I.H.; Park, H.S.; Park, S.Y.; Bang, W.S.; Park, I.A.; Lee, M.; Lee, J.H.; Cho, Y.S.; Chang, S.; Jung, J.; Kim, J.; Lee, S.B.; Kim, S.Y.; Lee, M.S.; Gong, G. Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer. Oncotarget, 2017, 8(69), 113345-113359. doi: 10.18632/oncotarget.23007 PMID: 29371915
  40. Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; Perez, E.A.; Thompson, E.A.; Symmans, W.F.; Richardson, A.L.; Brock, J.; Criscitiello, C.; Bailey, H.; Ignatiadis, M.; Floris, G.; Sparano, J.; Kos, Z.; Nielsen, T.; Rimm, D.L.; Allison, K.H.; Reis-Filho, J.S.; Loibl, S.; Sotiriou, C.; Viale, G.; Badve, S.; Adams, S.; Willard-Gallo, K.; Loi, S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an international TILs working group 2014. Ann. Oncol., 2015, 26(2), 259-271. doi: 10.1093/annonc/mdu450 PMID: 25214542
  41. Kverneland, A.H.; Chamberlain, C.A.; Borch, T.H.; Nielsen, M.; Mørk, S.K.; Kjeldsen, J.W.; Lorentzen, C.L.; Jørgensen, L.P.; Riis, L.B.; Yde, C.W.; Met, Ö.; Donia, M.; Marie Svane, I. Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types. J. Immunother. Cancer, 2021, 9(10), e003499. doi: 10.1136/jitc-2021-003499 PMID: 34607899
  42. Meng, S.; Li, L.; Zhou, M.; Jiang, W.; Niu, H.; Yang, K. Distribution and prognostic value of tumor infiltrating T cells in breast cancer. Mol. Med. Rep., 2018, 18(5), 4247-4258. doi: 10.3892/mmr.2018.9460 PMID: 30221739
  43. Shi, F.; Chang, H.; Zhou, Q.; Zhao, Y.J.; Wu, G.J.; Song, Q.K. Distribution of CD4+ and CD8+ exhausted tumor-infiltrating lymphocytes in molecular subtypes of Chinese breast cancer patients. OncoTargets Ther., 2018, 11, 6139-6145. doi: 10.2147/OTT.S168057 PMID: 30288049
  44. Zhang, S.; Liu, W.; Hu, B.; Wang, P.; Lv, X.; Chen, S.; Shao, Z. Prognostic significance of tumor-infiltrating natural killer cells in solid tumors: A systematic review and meta-analysis. Front. Immunol., 2020, 11, 1242. doi: 10.3389/fimmu.2020.01242 PMID: 32714321
  45. Shenouda, M.M.; Gillgrass, A.; Nham, T.; Hogg, R.; Lee, A.J.; Chew, M.V.; Shafaei, M.; Aarts, C.; Lee, D.A.; Hassell, J.; Bane, A.; Dhesy-Thind, S.; Ashkar, A.A. Ex vivo expanded natural killer cells from breast cancer patients and healthy donors are highly cytotoxic against breast cancer cell lines and patient-derived tumours. Breast Cancer Res., 2017, 19(1), 76. doi: 10.1186/s13058-017-0867-9 PMID: 28668076
  46. Fuentes-Antrás, J.; Guevara-Hoyer, K.; Baliu-Piqué, M.; García-Sáenz, J.Á.; Pérez-Segura, P. Pandiella, Atanasio; Ocaña, Alberto Adoptive cell therapy in breast cancer: A current perspective of next-generation medicine. Front. Oncol., 2020, 10, 605633. doi: 10.3389/fonc.2020.605633 PMID: 33194771
  47. Huang, Y.; Ma, C.; Zhang, Q.; Ye, J.; Wang, F.; Zhang, Y.; Hunborg, P.; Varvares, M.A.; Hoft, D.F.; Hsueh, E.C.; Peng, G. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome. Oncotarget, 2015, 6(19), 17462-17478. doi: 10.18632/oncotarget.3958 PMID: 25968569
  48. Mann, J.E.; Smith, J.D.; Birkeland, A.C.; Bellile, E.; Swiecicki, P.; Mierzwa, M.; Chinn, S.B.; Shuman, A.G.; Malloy, K.M.; Casper, K.A.; McLean, S.A.; Moyer, J.S.; Wolf, G.T.; Bradford, C.R.; Prince, M.E.; Carey, T.E.; McHugh, J.B.; Spector, M.E.; Brenner, J.C. Analysis of tumor-infiltrating CD103 resident memory T-cell content in recurrent laryngeal squamous cell carcinoma. Cancer Immunol. Immunother., 2019, 68(2), 213-220. doi: 10.1007/s00262-018-2256-3 PMID: 30361882
  49. Djenidi, F.; Adam, J.; Goubar, A.; Durgeau, A.; Meurice, G.; de Montpréville, V.; Validire, P.; Besse, B.; Mami-Chouaib, F. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol., 2015, 194(7), 3475-3486. doi: 10.4049/jimmunol.1402711 PMID: 25725111
  50. Vihervuori, H.; Autere, T.A.; Repo, H.; Kurki, S.; Kallio, L.; Lintunen, M.M.; Talvinen, K.; Kronqvist, P. Tumor-infiltrating lymphocytes and CD8+ T cells predict survival of triple-negative breast cancer. J. Cancer Res. Clin. Oncol., 2019, 145(12), 3105-3114. doi: 10.1007/s00432-019-03036-5 PMID: 31562550

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers