Potential of Flavonoids as Promising Phytotherapeutic Agents to Combat Multidrug-Resistant Infections


Cite item

Full Text

Abstract

Background:Considering the limited number of current effective treatments, Multidrug- Resistant (MDR) illnesses have grown to be a serious concern to public health. It has become necessary to look for new antimicrobial drugs because of the emergence of resistance to numerous kinds of antibiotics. The use of flavonoids is one phytotherapeutic strategy that has been researched as a potential remedy for this issue. Secondary plant compounds called flavonoids have been found to have an antibacterial effect against resistant microorganisms.

Objective:This review seeks to give readers a glimpse into contemporary studies on flavonoids' potential to fight MDR infections.

Methods:A systematic search was conducted on electronic databases (PubMed, Scopus, and Google Scholar) using relevant keywords such as flavonoids, MDR infections, antimicrobial activity, and resistance microbes. Studies that investigated the antimicrobial activity of flavonoids against resistant microbes were included in this review.

Results:Most research found that flavonoids have antibacterial efficacy against resistant microorganisms, and some also showed that they have synergistic benefits with traditional antibiotics. The flavonoids quercetin, kaempferol, apigenin, and luteolin were the most often investigated ones. According to research, flavonoids affect microbial gene expression, inhibit microbial enzymes, and disrupt the integrity of microbial cell membranes. Additionally, a few studies have noted the flavonoids' low toxicity and safety.

Conclusion:For the treatment of infections that are resistant to many drugs, flavonoids constitute a promising class of phytotherapeutic agents. To develop flavonoid-based treatment methods for treating MDR illnesses and assess the potential of flavonoids as adjuvants to conventional antimicrobial drugs, more study is required.

About the authors

Deepika Pathak

Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute)

Email: info@benthamscience.net

Avijit Mazumder

Department of Pharmacy,, Noida Institute of Engineering and Technology (Pharmacy Institute)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Jain, P.; Bepari, A.K.; Sen, P.K.; Rafe, T.; Imtiaz, R.; Hossain, M.; Reza, H.M. High prevalence of multiple antibiotic resistance in clinical E. coli isolates from Bangladesh and prediction of molecular resistance determinants using WGS of an XDR isolate. Sci. Rep., 2021, 11(1), 22859. doi: 10.1038/s41598-021-02251-w PMID: 34819576
  2. Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microb. Drug Resist., 2019, 25(6), 890-908. doi: 10.1089/mdr.2018.0319 PMID: 30811275
  3. Zhai, X.; Wu, G.; Tao, X.; Yang, S.; Lv, L.; Zhu, Y.; Dong, D.; Xiang, H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Advances, 2023, 13(12), 7798-7817. doi: 10.1039/D3RA00184A PMID: 36909750
  4. Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.U.; de la Cruz, R.; Romalde, J.L.; Nesme, J.; Sørensen, S.J.; Smets, B.F.; Graham, D.; Paul, M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ., 2020, 743, 140804. doi: 10.1016/j.scitotenv.2020.140804 PMID: 32758846
  5. Bokhary, H.; Pangesti, K.N.A.; Rashid, H.; Abd El Ghany, M.; Hill-Cawthorne, G.A. Travel-related antimicrobial resistance: A systematic review. Trop. Med. Infect. Dis., 2021, 6(1), 11. doi: 10.3390/tropicalmed6010011 PMID: 33467065
  6. Agyeman, W.Y.; Bisht, A.; Gopinath, A.; Cheema, A.H.; Chaludiya, K.; Khalid, M.; Nwosu, M.; Konka, S.; Khan, S. A systematic review of antibiotic resistance trends and treatment options for hospital-acquired multidrug-resistant infections. Cureus, 2022, 14(10), e29956. doi: 10.7759/cureus.29956 PMID: 36381838
  7. Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control, 2018, 7(1), 58. doi: 10.1186/s13756-018-0336-y PMID: 29713465
  8. Shriram, V.; Kumar, V.; Dey, A. Fighting antimicrobial resistance with natural products - current developments and future prospects. Curr. Top. Med. Chem., 2022, 22(13), 1045. doi: 10.2174/156802662213220630121857 PMID: 35974672
  9. Alnour, T.M.S.; Ahmed-Abakur, E.H.; Elssaig, E.H.; Abuduhier, F.M.; Ullah, M.F. Antimicrobial synergistic effects of dietary flavonoids rutin and quercetin in combination with antibiotics gentamicin and ceftriaxone against E. coli (MDR) and P. mirabilis (XDR) strains isolated from human infections: Implications for food–medicine interactions. Ital. J. Food Sci., 2022, 34(2), 34-42. doi: 10.15586/ijfs.v34i2.2196
  10. Husain, S.A.; Ahmad, S.; Abass, S.; Parveen, R.; Irfan, M.; Jan, B. Synergy based extracts of medicinal plants: Future antimicrobials to combat multidrug resistance. Curr. Pharm. Biotechnol., 2022, 23(13), 1527-1540. doi: 10.2174/1389201023666220126115656 PMID: 35081888
  11. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16. doi: 10.1155/2013/162750 PMID: 24470791
  12. Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356. doi: 10.1016/j.ijantimicag.2005.09.002 PMID: 16323269
  13. Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules, 2022, 27(4), 1149. doi: 10.3390/molecules27041149 PMID: 35208939
  14. Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis., 2014, 14(1), 13. doi: 10.1186/1471-2334-14-13 PMID: 24405683
  15. Osei Sekyere, J. Candida auris: A systematic review and meta‐analysis of current updates on an emerging multidrug‐resistant pathogen. MicrobiologyOpen, 2018, 7(4), e00578. doi: 10.1002/mbo3.578 PMID: 29345117
  16. Lopo, I.; Libânio, D.; Pita, I.; Dinis-Ribeiro, M.; Pimentel-Nunes, P. Helicobacter pylori antibiotic resistance in Portugal: Systematic review and meta‐analysis. Helicobacter, 2018, 23(4), e12493. doi: 10.1111/hel.12493 PMID: 29911329
  17. Tweldemedhin, M.; Muthupandian, S.; Gebremeskel, T.K.; Mehari, K.; Abay, G.K.; Teklu, T.G.; Dhandapani, R.; Paramasivam, R.; Asmelash, T. Multidrug resistance from a one health perspective in Ethiopia: A systematic review and meta-analysis of literature (2015–2020). One Health, 2022, 14, 100390. doi: 10.1016/j.onehlt.2022.100390 PMID: 35686143
  18. Charan, J.; Tank, N.; Reljic, T.; Singh, S.; Bhardwaj, P.; Kaur, R.; Goyal, J.; Kumar, A. Prevalence of multidrug resistance tuberculosis in adult patients in India: A systematic review and meta-analysis. J. Family Med. Prim. Care, 2019, 8(10), 3191-3201. doi: 10.4103/jfmpc.jfmpc_542_19 PMID: 31742141
  19. Nasiri, M.J.; Zamani, S.; Pormohammad, A.; Feizabadi, M.M.; Aslani, H.R.; Amin, M.; Halabian, R.; Imani Fooladi, A.A. The reliability of rifampicin resistance as a proxy for multidrug-resistant tuberculosis: A systematic review of studies from Iran. Eur. J. Clin. Microbiol. Infect. Dis., 2018, 37(1), 9-14. doi: 10.1007/s10096-017-3079-4 PMID: 28823010
  20. Ahmed, I.; Rabbi, M.B.; Sultana, S. Antibiotic resistance in Bangladesh: A systematic review. Int. J. Infect. Dis., 2019, 80, 54-61. doi: 10.1016/j.ijid.2018.12.017 PMID: 30634043
  21. Ding, Y.; Wang, Y.; Hsia, Y.; Sharland, M.; Heath, P.T. Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China. Ann. Clin. Microbiol. Antimicrob., 2019, 18(1), 36. doi: 10.1186/s12941-019-0334-9 PMID: 31727088
  22. Solomon, S.L.; Oliver, K.B. Antibiotic resistance threats in the United States: Stepping back from the brink. Am. Fam. Physician, 2014, 89(12), 938-941. PMID: 25162160
  23. Infectious Diseases Society of America The 10 x ’20 Initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin. Infect. Dis., 2010, 50(8), 1081-1083. doi: 10.1086/652237 PMID: 20214473
  24. WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. Available From: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  25. CLSI Performance Standards for Antimicrobial Susceptibility Testing. , 2021. Available From: https://clsi.org/standards/products/microbiology/documents/m100/
  26. IDSA New Guidance for Treating Antimicrobial-Resistant Infections Released. , 2021. Available From: https://www.idsociety.org/news--publications-new/articles/2021/new-guidance-for-treating-antimicrobial-resistant-infections-released/
  27. Kalil, A.C.; Gilbert, D.N.; Winslow, D.L.; Masur, H.; Klompas, M. Infectious Diseases Society of America (IDSA) POSITION STATEMENT: Why IDSA Did Not Endorse the Surviving Sepsis Campaign Guidelines. Clin. Infect. Dis., 2018, 66(10), 1631-1635. doi: 10.1093/cid/cix997 PMID: 29182749
  28. Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; Rybak, M.J.; Talan, D.A.; Chambers, H.F. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis., 2011, 52(3), e18-e55. doi: 10.1093/cid/ciq146 PMID: 21208910
  29. ESCMID. Guidelines for the Treatment of MDR Bacterial Infections. 2020. Available From: https://www.escmid.org/guidelines/
  30. Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; Rochwerg, B.; Rubenfeld, G.D.; Angus, D.C.; Annane, D.; Beale, R.J.; Bellinghan, G.J.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.; De Backer, D.P.; French, C.J.; Fujishima, S.; Gerlach, H.; Hidalgo, J.L.; Hollenberg, S.M.; Jones, A.E.; Karnad, D.R.; Kleinpell, R.M.; Koh, Y.; Lisboa, T.C.; Machado, F.R.; Marini, J.J.; Marshall, J.C.; Mazuski, J.E.; McIntyre, L.A.; McLean, A.S.; Mehta, S.; Moreno, R.P.; Myburgh, J.; Navalesi, P.; Nishida, O.; Osborn, T.M.; Perner, A.; Plunkett, C.M.; Ranieri, M.; Schorr, C.A.; Seckel, M.A.; Seymour, C.W.; Shieh, L.; Shukri, K.A.; Simpson, S.Q.; Singer, M.; Thompson, B.T.; Townsend, S.R.; Van der Poll, T.; Vincent, J.L.; Wiersinga, W.J.; Zimmerman, J.L.; Dellinger, R.P. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit. Care Med., 2017, 45(3), 486-552. doi: 10.1097/CCM.0000000000002255 PMID: 28098591
  31. Suganya, T.; Packiavathy, I.A.S.V.; Aseervatham, G.S.B.; Carmona, A.; Rashmi, V.; Mariappan, S.; Devi, N.R.; Ananth, D.A. Tackling multiple-drug-resistant bacteria with conventional and complex phytochemicals. Front. Cell. Infect. Microbiol., 2022, 12, 883839. doi: 10.3389/fcimb.2022.883839 PMID: 35846771
  32. Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616. doi: 10.3390/molecules27030616 PMID: 35163878
  33. Gandra, S.; Tseng, K.K.; Arora, A.; Bhowmik, B.; Robinson, M.L.; Panigrahi, B.; Laxminarayan, R.; Klein, E.Y. The mortality burden of multidrug-resistant pathogens in India: A retrospective, observational study. Clin. Infect. Dis., 2019, 69(4), 563-570. doi: 10.1093/cid/ciy955 PMID: 30407501
  34. Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evid. Based Complement. Alternat. Med., 2021, 2021, 1-30. doi: 10.1155/2021/3663315 PMID: 34447454
  35. Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Fatoki, T.H.; Omonhinmin, C.A. Antimicrobial importance of medicinal plants in Nigeria. ScientificWorldJournal, 2020, 2020, 1-10. doi: 10.1155/2020/7059323 PMID: 33029108
  36. Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Front. Microbiol., 2021, 12, 613077. doi: 10.3389/fmicb.2021.613077 PMID: 34394014
  37. Alam, M.; Bano, N.; Ahmad, T.; Sharangi, A.B.; Upadhyay, T.K.; Alraey, Y.; Alabdallah, N.M.; Rauf, M.A.; Saeed, M. Synergistic role of plant extracts and essential oils against multidrug resistance and gram-negative bacterial strains producing extended-spectrum β-lactamases. Antibiotics (Basel), 2022, 11(7), 855. doi: 10.3390/antibiotics11070855 PMID: 35884109
  38. Enioutina, E.Y.; Teng, L.; Fateeva, T.V.; Brown, J.C.S.; Job, K.M.; Bortnikova, V.V.; Krepkova, L.V.; Gubarev, M.I.; Sherwin, C.M.T. Phytotherapy as an alternative to conventional antimicrobials: Combating microbial resistance. Expert Rev. Clin. Pharmacol., 2017, 10(11), 1203-1214. doi: 10.1080/17512433.2017.1371591 PMID: 28836870
  39. Seukep, A.J.; Kuete, V.; Nahar, L.; Sarker, S.D.; Guo, M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J. Pharm. Anal., 2020, 10(4), 277-290. doi: 10.1016/j.jpha.2019.11.002 PMID: 32923005
  40. Huang, W.; Wang, Y.; Tian, W.; Cui, X.; Tu, P.; Li, J.; Shi, S.; Liu, X. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics (Basel), 2022, 11(10), 1380. doi: 10.3390/antibiotics11101380 PMID: 36290037
  41. Bhatia, P.; Sharma, A.; George, A.J.; Anvitha, D.; Kumar, P.; Dwivedi, V.P.; Chandra, N.S. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon, 2021, 7(2), e06310. doi: 10.1016/j.heliyon.2021.e06310 PMID: 33718642
  42. Akram, M.; Riaz, M.; Munir, N.; Rasul, A.; Daniyal, M.; Ali Shah, S.M.; Shariati, M.A.; Shaheen, G.; Akhtar, N.; Parveen, F.; Akhter, N.; Owais Ghauri, A.; Chishti, A.W.; Usman Sarwar, M.; Said Khan, F. Progress and prospects in the management of bacterial infections and developments in Phytotherapeutic modalities. Clin. Exp. Pharmacol. Physiol., 2020, 47(7), 1107-1119. doi: 10.1111/1440-1681.13282 PMID: 32064656
  43. Shamim, A.; Ali, A.; Iqbal, Z.; Mirza, M.A.; Aqil, M.; Kawish, S.M.; Siddiqui, A.; Kumar, V.; Naseef, P.P.; Alshadidi, A.A.F.; Saheer Kuruniyan, M. Natural medicine a promising candidate in combating microbial biofilm. Antibiotics (Basel), 2023, 12(2), 299. doi: 10.3390/antibiotics12020299 PMID: 36830210
  44. Khare, T.; Anand, U.; Dey, A.; Assaraf, Y.G.; Chen, Z.S.; Liu, Z.; Kumar, V. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front. Pharmacol., 2021, 12, 720726. doi: 10.3389/fphar.2021.720726 PMID: 34366872
  45. Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel), 2020, 13(7), 153. doi: 10.3390/ph13070153 PMID: 32708619
  46. Villinski, J.; Dumas, E.; Chai, H.B.; Pezzuto, J.; Angerhofer, C.; Gafner, S. Antibacterial activity and alkaloid content of Berberis thunbergii, Berberis vulgaris and Hydrastis canadensis. Pharm. Biol., 2003, 41(8), 551-557. doi: 10.1080/13880200390500768
  47. González de Llano, D.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry polyphenols and prevention against urinary tract infections: relevant considerations. Molecules, 2020, 25(15), 3523. doi: 10.3390/molecules25153523 PMID: 32752183
  48. Nabavi, S.; Di Lorenzo, A.; Izadi, M.; Sobarzo-Sánchez, E.; Daglia, M.; Nabavi, S. Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients, 2015, 7(9), 7729-7748. doi: 10.3390/nu7095359 PMID: 26378575
  49. Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, H.B. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci., 2017, 18(6), 1283. doi: 10.3390/ijms18061283 PMID: 28621716
  50. Radji, M.; Agustama, R.A.; Elya, B.; Tjampakasari, C.R. Antimicrobial activity of green tea extract against isolates of methicillin–resistant Staphylococcus aureus and multi–drug resistant Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed., 2013, 3(8), 663-667. doi: 10.1016/S2221-1691(13)60133-1 PMID: 23905026
  51. El-Azzouny, M.M.; El-Demerdash, A.S.; Seadawy, H.G.; Abou-Khadra, S.H. Antimicrobial Effect of Garlic (Allium sativum) and Thyme (Zataria multiflora Boiss) extracts on some food borne pathogens and their effect on virulence gene expression. Cell. Mol. Biol., 2018, 64(10), 79-86. doi: 10.14715/cmb/2018.64.10.13 PMID: 30084799
  52. Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci., 2020, 27(11), 3079-3086. doi: 10.1016/j.sjbs.2020.09.016 PMID: 33100868
  53. Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B, 2015, 5(4), 310-315. doi: 10.1016/j.apsb.2015.05.005 PMID: 26579460
  54. Bubonja-Šonje, M.; Knežević, S.; Abram, M. Challenges to antimicrobial susceptibility testing of plant-derived polyphenolic compounds. Archives of Industrial Hygiene and Toxicology, 2020, 71(4), 300-311. doi: 10.2478/aiht-2020-71-3396 PMID: 33410777
  55. Silva, E.; Teixeira, J.A.; Pereira, M.O.; Rocha, C.M.R.; Sousa, A.M. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine, 2023, 119, 154973. doi: 10.1016/j.phymed.2023.154973 PMID: 37499434
  56. Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients, 2021, 13(1), 273. doi: 10.3390/nu13010273 PMID: 33477894
  57. Solnier, J.; Chang, C.; Pizzorno, J. Consideration for flavonoid-containing dietary supplements to tackle deficiency and optimize health. Int. J. Mol. Sci., 2023, 24(10), 8663. doi: 10.3390/ijms24108663 PMID: 37240008
  58. Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377. doi: 10.3390/molecules26175377 PMID: 34500810
  59. Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol., 2017, 162(9), 2539-2551. doi: 10.1007/s00705-017-3417-y PMID: 28547385
  60. Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243. doi: 10.3390/molecules25225243 PMID: 33187049
  61. Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci., 2021, 22(23), 12824. doi: 10.3390/ijms222312824 PMID: 34884627
  62. Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 2022, 383, 132531. doi: 10.1016/j.foodchem.2022.132531 PMID: 35413752
  63. Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules, 2022, 27(8), 2494. doi: 10.3390/molecules27082494 PMID: 35458691
  64. Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism In vitro. J. Food Prot., 2018, 81(1), 68-78. doi: 10.4315/0362-028X.JFP-17-214 PMID: 29271686
  65. Morimoto, Y.; Baba, T.; Sasaki, T.; Hiramatsu, K. Apigenin as an anti-quinolone-resistance antibiotic. Int. J. Antimicrob. Agents, 2015, 46(6), 666-673. doi: 10.1016/j.ijantimicag.2015.09.006 PMID: 26526895
  66. Zhou, H.; Xu, M.; Guo, W.; Yao, Z.; Du, X.; Chen, L.; Sun, Y.; Shi, S.; Cao, J.; Zhou, T. The antibacterial activity of kaempferol combined with colistin against colistin-resistant gram-negative bacteria. Microbiol. Spectr., 2022, 10(6), e02265-e22. doi: 10.1128/spectrum.02265-22 PMID: 36314964
  67. Duda-Madej, A.; Kozłowska, J.; Krzyżek, P.; Anioł, M.; Seniuk, A.; Jermakow, K.; Dworniczek, E. Antimicrobial O-alkyl derivatives of naringenin and their oximes against multidrug-resistant bacteria. Molecules, 2020, 25(16), 3642. doi: 10.3390/molecules25163642 PMID: 32785151
  68. Otsuka, Y. Potent antibiotics active against multidrug-resistant gram-negative bacteria. Chem. Pharm. Bull. (Tokyo), 2020, 68(3), 182-190. doi: 10.1248/cpb.c19-00842 PMID: 32115524
  69. Sharma, D.; Yadav, J. An overview of phytotherapeutic approaches for the treatment of tuberculosis. Mini Rev. Med. Chem., 2016, 17(2), 167-183. doi: 10.2174/1389557516666160505114603 PMID: 27145855
  70. Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep., 2021, 11(1), 10471. doi: 10.1038/s41598-021-90035-7 PMID: 34006930
  71. Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272. doi: 10.1007/s11101-018-9591-z
  72. Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40. doi: 10.1002/ptr.6208 PMID: 30346068
  73. Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med., 2019, 9(1), 109. doi: 10.3390/jcm9010109 PMID: 31906141
  74. Santi, M.D.; Ortega, M.G.; Peralta, M.A. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr. Med. Chem., 2022, 29(24), 4251-4281. doi: 10.2174/0929867329666220209103538 PMID: 35139777
  75. Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol., 2013, 168(5), 1059-1073. doi: 10.1111/bph.12009 PMID: 23072320
  76. Hirose, T.; Ozaki, K.; Saito, Y.; Takai-Todaka, R.; Matsui, H.; Honsho, M.; Iwatsuki, M.; Asami, Y.; Katayama, K.; Sunazuka, T.; Hanaki, H.; Teruya, T. Studies on the Catechin Constituents of Bark of Cinnamomum sieboldii. Chem. Pharm. Bull. (Tokyo), 2023, 71(5), 374-379. doi: 10.1248/cpb.c22-00922 PMID: 37121688
  77. Dai, W.; Bi, J.; Li, F.; Wang, S.; Huang, X.; Meng, X.; Sun, B.; Wang, D.; Kong, W.; Jiang, C.; Su, W. Antiviral efficacy of flavonoids against enterovirus 71 infection in vitro and in newborn mice. Viruses, 2019, 11(7), 625. doi: 10.3390/v11070625 PMID: 31284698
  78. Fallatah, O.; Georges, E. Apigenin-induced ABCC1-mediated efflux of glutathione from mature erythrocytes inhibits the proliferation of Plasmodium falciparum. Int. J. Antimicrob. Agents, 2017, 50(5), 673-677. doi: 10.1016/j.ijantimicag.2017.08.014 PMID: 28807879
  79. Xia, F.; Li, X.; Wang, B.; Gong, P.; Xiao, F.; Yang, M.; Zhang, L.; Song, J.; Hu, L.; Cheng, M.; Sun, C.; Feng, X.; Lei, L.; Ouyang, S.; Liu, Z.J.; Li, X.; Gu, J.; Han, W. Combination therapy of LysGH15 and apigenin as a new strategy for treating pneumonia caused by Staphylococcus aureus. Appl. Environ. Microbiol., 2016, 82(1), 87-94. doi: 10.1128/AEM.02581-15 PMID: 26475103
  80. Zhang, D.; Gao, X.; Song, X.; Zhou, W.; Hong, W.; Tian, C.; Liu, Y.; Liu, M. Luteolin showed a resistance elimination effect on gentamicin by decreasing MATE mRNA expression in Trueperella pyogenes. Microb. Drug Resist., 2019, 25(4), 619-626. doi: 10.1089/mdr.2018.0097 PMID: 30431396
  81. Liu, C.; Huang, H.; Zhou, Q.; Liu, B.; Wang, Y.; Li, P.; Liao, K.; Su, W. Pithecellobium clypearia extract enriched in gallic acid and luteolin has antibacterial activity against MRSA and reduces resistance to erythromycin, ceftriaxone sodium and levofloxacin. J. Appl. Microbiol., 2020, 129(4), 848-859. doi: 10.1111/jam.14668 PMID: 32301544
  82. Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151. doi: 10.1080/14756366.2019.1690480 PMID: 31724441
  83. Speranta, A.; Manoliu, L.; Sogor, C.; Mernea, M.; Seiman, C.D.; Seiman, D.D.; Chifiriuc, C. Structural bioinformatics used to predict the protein targets of remdesivir and flavones in SARS-CoV-2 Infection. Med. Chem., 2022, 18(3), 382-393. doi: 10.2174/1573406417666210806154129 PMID: 34365955
  84. Mayorga, O.A.S.; da Costa, Y.F.G.; da Silva, J.B.; Scio, E.; Ferreira, A.L.P.; de Sousa, O.V.; Alves, M.S. Kalanchoe brasiliensis Cambess., a promising natural source of antioxidant and antibiotic agents against multidrug-resistant pathogens for the treatment of Salmonella Gastroenteritis. Oxid. Med. Cell. Longev., 2019, 2019, 1-15. doi: 10.1155/2019/9245951 PMID: 31827708
  85. Meenu, M.T.; Kaul, G.; Shukla, M.; Radhakrishnan, K.V.; Chopra, S. Cudraflavone C from Artocarpus hirsutus as a promising inhibitor of pathogenic, multidrug-resistant S. aureus, persisters, and biofilms: a new insight into a rational explanation of traditional wisdom. J. Nat. Prod., 2021, 84(10), 2700-2708. doi: 10.1021/acs.jnatprod.1c00578 PMID: 34546736
  86. Macedo, I.; da Silva, J.H.; da Silva, P.T.; Cruz, B.G.; do Vale, J.P.C.; Dos Santos, H.S.; Bandeira, P.N.; de Souza, E.B.; Xavier, M.R.; Coutinho, H.D.M.; Braz-Filho, R.; Teixeira, A.M.R. Structural and microbiological characterization of 5-hydroxy-3,7,4′-trimethoxyflavone: A flavonoid isolated from vitex gardneriana schauer leaves. Microb. Drug Resist., 2019, 25(3), 434-438.
  87. Dzotam, J.K.; Simo, I.K.; Bitchagno, G.; Celik, I.; Sandjo, L.P.; Tane, P.; Kuete, V. In vitro antibacterial and antibiotic modifying activity of crude extract, fractions and 3′,4′,7-trihydroxyflavone from Myristica fragrans Houtt against MDR Gram-negative enteric bacteria. BMC Complement. Altern. Med., 2018, 18(1), 15. doi: 10.1186/s12906-018-2084-1 PMID: 29334931
  88. Bame, J.; Graf, T.; Junio, H.; Bussey, R., III; Jarmusch, S.; El-Elimat, T.; Falkinham, J., III; Oberlies, N.; Cech, R.; Cech, N. Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta Med., 2013, 79(5), 327-329. doi: 10.1055/s-0032-1328259 PMID: 23468310
  89. Bi, C.; Dong, X.; Zhong, X.; Cai, H.; Wang, D.; Wang, L. Acacetin protects mice from Staphylococcus aureus bloodstream infection by inhibiting the activity of sortase A. Molecules, 2016, 21(10), 1285. doi: 10.3390/molecules21101285 PMID: 27681715
  90. Lan, J.E.; Li, X.J.; Zhu, X.F.; Sun, Z.L.; He, J.M.; Zloh, M.; Gibbons, S.; Mu, Q. Flavonoids from Artemisia rupestris and their synergistic antibacterial effects on drug-resistant Staphylococcus aureus. Nat. Prod. Res., 2021, 35(11), 1881-1886. doi: 10.1080/14786419.2019.1639182 PMID: 31303068
  91. Verdrengh, M.; Collins, L.V.; Bergin, P.; Tarkowski, A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect., 2004, 6(1), 86-92. doi: 10.1016/j.micinf.2003.10.005 PMID: 14738897
  92. Abreu, A.C.; Coqueiro, A.; Sultan, A.R.; Lemmens, N.; Kim, H.K.; Verpoorte, R.; van Wamel, W.J.B.; Simões, M.; Choi, Y.H. Looking to nature for a new concept in antimicrobial treatments: Isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci. Rep., 2017, 7(1), 3777. doi: 10.1038/s41598-017-03716-7 PMID: 28630440
  93. Kim, H.; Lee, D.G. Nitric oxide–inducing Genistein elicits apoptosis-like death via an intense SOS response in Escherichia coli. Appl. Microbiol. Biotechnol., 2020, 104(24), 10711-10724. doi: 10.1007/s00253-020-11003-1 PMID: 33170329
  94. Singh, V.; Pal, A.; Darokar, M.P. Glabridin synergy with norfloxacin induces ROS in multidrug resistant Staphylococcus aureus. J. Gen. Appl. Microbiol., 2021, 67(6), 269-272. doi: 10.2323/jgam.2021.06.002 PMID: 34690227
  95. Yu, J.S.; Kim, J.H.; Rashan, L.; Kim, I.; Lee, W.; Kim, K.H. Potential antimicrobial activity of galloyl-flavonoid glycosides from woodfordia uniflora against methicillin-resistant Staphylococcus aureus. Front. Microbiol., 2021, 12, 784504. doi: 10.3389/fmicb.2021.784504 PMID: 34899667
  96. Randhawa, H.K.; Hundal, K.K.; Ahirrao, P.N.; Jachak, S.M.; Nandanwar, H.S. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus. Biologia (Bratisl.), 2016, 71(5), 484-493. doi: 10.1515/biolog-2016-0073
  97. Lin, S.; Li, H.; Tao, Y.; Liu, J.; Yuan, W.; Chen, Y.; Liu, Y.; Liu, S. In vitro and in vivo evaluation of membrane-active flavone amphiphiles: semisynthetic kaempferol-derived antimicrobials against drug-resistant gram-positive bacteria. J. Med. Chem., 2020, 63(11), 5797-5815. doi: 10.1021/acs.jmedchem.0c00053 PMID: 32400157
  98. Cruz, B.G.; dos Santos, H.S.; Bandeira, P.N.; Rodrigues, T.H.S.; Matos, M.G.C.; Nascimento, M.F.; de Carvalho, G.G.C.; Braz-Filho, R.; Teixeira, A.M.R.; Tintino, S.R.; Coutinho, H.D.M. Evaluation of antibacterial and enhancement of antibiotic action by the flavonoid kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis müll. Microb. Pathog., 2020, 143, 104144. doi: 10.1016/j.micpath.2020.104144 PMID: 32194182
  99. Vipin, C.; Saptami, K.; Fida, F.; Mujeeburahiman, M.; Rao, S.S. Athmika; Arun, A.B.; Rekha, P.D. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS One, 2020, 15(11), e0241304. doi: 10.1371/journal.pone.0241304 PMID: 33156838
  100. Vipin, C.; Mujeeburahiman, M.; Ashwini, P.; Arun, A.B.; Rekha, P.D. Anti‐biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett. Appl. Microbiol., 2019, 68(5), 464-471. doi: 10.1111/lam.13129 PMID: 30762887
  101. Das, S.; Batra, S.; Gupta, P.P.; Kumar, M.; Srivastava, V.K.; Jyoti, A.; Singh, N.; Kaushik, S. Identification and evaluation of quercetin as a potential inhibitor of naphthoate synthase from Enterococcus faecalis. J. Mol. Recognit., 2019, 32(11), e2802. doi: 10.1002/jmr.2802 PMID: 31353747
  102. Kim, M.K.; Lee, T.G.; Jung, M.; Park, K.H.; Chong, Y. In vitro synergism and anti-biofilm activity of quercetin-pivaloxymethyl conjugate against Staphylococcus aureus and Enterococcus Species. Chem. Pharm. Bull. (Tokyo), 2018, 66(11), 1019-1022. doi: 10.1248/cpb.c18-00380 PMID: 30381653
  103. Kho, W.; Kim, M.K.; Jung, M.; Chong, Y.P.; Kim, Y.S.; Park, K.H.; Chong, Y. Strain-specific anti-biofilm and antibiotic-potentiating activity of 3′,4′-difluoroquercetin. Sci. Rep., 2020, 10(1), 14162. doi: 10.1038/s41598-020-71025-7 PMID: 32843653
  104. Mun, S.H.; Kang, O.H.; Joung, D.K.; Kim, S.B.; Seo, Y.S.; Choi, J.G.; Lee, Y.S.; Cha, S.W.; Ahn, Y.S.; Han, S.H.; Kwon, D.Y. Combination Therapy of Sophoraflavanone B against MRSA: In vitro Synergy Testing. Evid. Based Complement. Alternat. Med., 2013, 2013, 823794. doi: 10.1155/2013/823794
  105. Pinto, H.B.; Brust, F.R.; Macedo, A.J.; Trentin, D.S. The antivirulence compound myricetin possesses remarkable synergistic effect with antibacterials upon multidrug resistant Staphylococcus aureus. Microb. Pathog., 2020, 149, 104571. doi: 10.1016/j.micpath.2020.104571 PMID: 33075517
  106. Wang, T.; Zhang, P.; Lv, H.; Deng, X.; Wang, J. A natural dietary flavone myricetin as an α-hemolysin inhibitor for controlling Staphylococcus aureus infection. Front. Cell. Infect. Microbiol., 2020, 10, 330. doi: 10.3389/fcimb.2020.00330 PMID: 32793508
  107. Motallebi, M.; Khorsandi, K.; Sepahy, A.A.; Chamani, E.; Hosseinzadeh, R. Effect of rutin as flavonoid compound on photodynamic inactivation against P. aeruginosa and S. aureus. Photodiagn. Photodyn. Ther., 2020, 32, 102074. doi: 10.1016/j.pdpdt.2020.102074 PMID: 33137496
  108. Alenezi, S.S.; Natto, M.J.; Igoli, J.O.; Gray, A.I.; Fearnley, J.; Fearnley, H.; de Koning, H.P.; Watson, D.G. Novel flavanones with anti-trypanosomal activity isolated from Zambian and Tanzanian propolis samples. Int. J. Parasitol. Drugs Drug Resist., 2020, 14, 201-207. doi: 10.1016/j.ijpddr.2020.10.011 PMID: 33160277
  109. Sianglum, W.; Muangngam, K.; Joycharat, N.; Voravuthikunchai, S.P. Mechanism of action and biofilm inhibitory activity of lupinifolin against multidrug-resistant enterococcal clinical isolates. Microb. Drug Resist., 2019, 25(10), 1391-1400. doi: 10.1089/mdr.2018.0391 PMID: 31314663
  110. Vijayakumar, K.; Muhilvannan, S.; Arun Vignesh, M. Hesperidin inhibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: An In vitro and in silico approach. World J. Microbiol. Biotechnol., 2022, 38(3), 44. doi: 10.1007/s11274-022-03232-5 PMID: 35064842
  111. Jeon, D.; Jeong, M.C.; Jnawali, H.; Kwak, C.; Ryoo, S.; Jung, I.; Kim, Y. Phloretin exerts anti-tuberculosis activity and suppresses lung inflammation. Molecules, 2017, 22(1), 183. doi: 10.3390/molecules22010183 PMID: 28117761
  112. Gupta, V.K.; Gaur, R.; Sharma, A.; Akther, J.; Saini, M.; Bhakuni, R.S.; Pathania, R. A novel bi-functional chalcone inhibits multi-drug resistant Staphylococcus aureus and potentiates the activity of fluoroquinolones. Bioorg. Chem., 2019, 83, 214-225. doi: 10.1016/j.bioorg.2018.10.024 PMID: 30380450
  113. Farooq, S.; Wahab, A.T.; Fozing, C.D.A.; Rahman, A.U.; Choudhary, M.I. Artonin I inhibits multidrug resistance in Staphylococcus aureus and potentiates the action of inactive antibiotics in vitro. J. Appl. Microbiol., 2014, 117(4), 996-1011. doi: 10.1111/jam.12595 PMID: 24996035
  114. Babii, C.; Savu, M.; Motrescu, I.; Birsa, L.M.; Sarbu, L.G.; Stefan, M. The antibacterial synthetic flavonoid BrCl-Flav exhibits important anti-candida activity by damaging cell membrane integrity. Pharmaceuticals (Basel), 2021, 14(11), 1130. doi: 10.3390/ph14111130 PMID: 34832912
  115. Gupta, T.; Kataria, R.; Sardana, S. A comprehensive review on current perspectives of flavonoids as antimicrobial agent. Curr. Top. Med. Chem., 2022, 22(6), 425-434. doi: 10.2174/1568026622666220117104709 PMID: 35040402
  116. Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.; Nautiyal, A. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review. Plants, 2017, 6(4), 16. doi: 10.3390/plants6020016 PMID: 28394295
  117. Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 2020, 146, 104720. doi: 10.1016/j.fitote.2020.104720 PMID: 32910994
  118. Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2014, 22(1), 132-149. doi: 10.2174/0929867321666140916113443 PMID: 25245513
  119. Liu, X.W.; Yang, Y.J.; Qin, Z.; Li, S.H.; Bai, L.X.; Ge, W.B.; Li, J.Y. Isobavachalcone from cullen corylifolium presents significant antibacterial activity against clostridium difficile through disruption of the cell membrane. Front. Pharmacol., 2022, 13, 914188. doi: 10.3389/fphar.2022.914188 PMID: 35942219
  120. Bhattacharya, D.; Ghosh, D.; Bhattacharya, S.; Sarkar, S.; Karmakar, P.; Koley, H.; Gachhui, R. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: Targeting cell membrane. Lett. Appl. Microbiol., 2018, 66(2), 145-152. doi: 10.1111/lam.12829 PMID: 29193174
  121. Liang, H.; He, K.; Li, T.; Cui, S.; Tang, M.; Kang, S.; Ma, W.; Song, L. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci. Rep., 2020, 10(1), 21416. doi: 10.1038/s41598-020-78379-y PMID: 33293561
  122. Lee, H.S.; Kim, Y. Myricetin disturbs the cell wall integrity and increases the membrane permeability of Candida albicans. J. Microbiol. Biotechnol., 2022, 32(1), 37-45. doi: 10.4014/jmb.2110.10014 PMID: 34750288
  123. Weng, Z.; Zeng, F.; Wang, M.; Guo, S.; Tang, Z.; Itagaki, K.; Lin, Y.; Shen, X.; Cao, Y.; Duan, J.A.; Wang, F. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J. Adv. Res., 2023, 1232(23), 00123-00126. doi: 10.1016/j.jare.2023.04.017
  124. Guo, L.; Li, Y.; Mao, X.; Tao, R.; Tao, B.; Zhou, Z. Antifungal activity of polymethoxylated flavonoids (PMFs)-loaded citral nanoemulsion against penicillium italicum by causing cell membrane damage. J. Fungi (Basel), 2022, 8(4), 388. doi: 10.3390/jof8040388 PMID: 35448619
  125. Le, M.T.; Trinh, D.T.T.; Ngo, T.D.; Tran-Nguyen, V.K.; Nguyen, D.N.; Hoang, T.; Nguyen, H.M.; Do, T.G.S.; Mai, T.T.; Tran, T.D.; Thai, K.M. Chalcone derivatives as potential inhibitors of P-glycoprotein and NorA: An In Silico and In vitro Study. BioMed Res. Int., 2022, 2022, 1-9. doi: 10.1155/2022/9982453 PMID: 35378788
  126. Pereira, D.; Durães, F.; Szemerédi, N.; Freitas-da-Silva, J.; Pinto, E.; Martins-da-Costa, P.; Pinto, M.; Correia-da-Silva, M.; Spengler, G.; Sousa, E.; Cidade, H. New chalcone–triazole hybrids with promising antimicrobial activity in multidrug resistance strains. Int. J. Mol. Sci., 2022, 23(22), 14291. doi: 10.3390/ijms232214291 PMID: 36430768
  127. Jesus, A.; Duraes, F.; Szemeredi, N.; Freitas-Silva, J.; da Costa, P.M.; Pinto, E.; Pinto, M.; Spengler, G.; Sousa, E.; Cidade, H. BDDE-inspired chalcone derivatives to fight bacterial and fungal infections. Mar. Drugs, 2022, 20(5), 315. doi: 10.3390/md20050315
  128. Marć, M.A.; Kincses, A.; Rácz, B.; Nasim, M.J.; Sarfraz, M.; Lázaro-Milla, C.; Domínguez-Álvarez, E.; Jacob, C.; Spengler, G.; Almendros, P. Antimicrobial, anticancer and multidrug-resistant reversing activity of novel oxygen-, sulfur- and selenoflavones and bioisosteric analogues. Pharmaceuticals (Basel), 2020, 13(12), 453. doi: 10.3390/ph13120453 PMID: 33322409
  129. Holasová, K.; Křížkovská, B.; Hoang, L.; Dobiasová, S.; Lipov, J.; Macek, T.; Křen, V.; Valentová, K.; Ruml, T.; Viktorová, J. Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomed. Pharmacother., 2022, 149, 112806. doi: 10.1016/j.biopha.2022.112806 PMID: 35303568
  130. Hellewell, L.; Bhakta, S. Chalcones, stilbenes and ketones have anti-infective properties via inhibition of bacterial drug-efflux and consequential synergism with antimicrobial agents. Access Microbiol., 2020, 2(4), acmi000105. doi: 10.1099/acmi.0.000105 PMID: 33005869
  131. Guo, Y.; Huang, C.; Su, H.; Zhang, Z.; Chen, M.; Wang, R.; Zhang, D.; Zhang, L.; Liu, M. Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes. Vet. Res., 2022, 53(1), 3. doi: 10.1186/s13567-021-01021-w PMID: 35012652
  132. Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Flavones, flavonols, and glycosylated derivatives—impact on Candida albicans growth and virulence, expression of CDR1 and ERG11, cytotoxicity. Pharmaceuticals (Basel), 2020, 14(1), 27. doi: 10.3390/ph14010027 PMID: 33396973
  133. Wang, Y.; Su, J.; Zhou, Z.; Yang, J.; Liu, W.; Zhang, Y.; Zhang, P.; Guo, T.; Li, G. Baicalein resensitizes multidrug-resistant gram-negative pathogens to doxycycline. Microbiol. Spectr., 2023, 11(3), e04702-e04722. doi: 10.1128/spectrum.04702-22 PMID: 37070985
  134. da Fonseca, S.T.D.; Teixeira, T.R.; Ferreira, J.M.S.; Lima, L.A.R.S.; Luyten, W.; Castro, A.H.F. Flavonoid-rich fractions of Bauhinia holophylla leaves inhibit Candida albicans biofilm formation and hyphae growth. Plants, 2022, 11(14), 1796. doi: 10.3390/plants11141796 PMID: 35890430
  135. Li, Y.L.; Chu, Z.Y.; Liu, G.M.; Yang, S.Q.; Zeng, H. The derived components of Gnaphalium hypoleucum DC. Reduce quorum sensing of Chromobacterium violaceum. Molecules, 2022, 27(15), 4881. doi: 10.3390/molecules27154881 PMID: 35956830
  136. Wang, L.; Jing, S.; Qu, H.; Wang, K.; Jin, Y.; Ding, Y.; Yang, L.; Yu, H.; Shi, Y.; Li, Q.; Wang, D. Orientin mediates protection against MRSA-induced pneumonia by inhibiting Sortase A. Virulence, 2021, 12(1), 2149-2161. doi: 10.1080/21505594.2021.1962138 PMID: 34369293
  137. Wang, S.; Feng, Y.; Han, X.; Cai, X.; Yang, L.; Liu, C.; Shen, L. Inhibition of virulence factors and biofilm formation by wogonin attenuates pathogenicity of Pseudomonas aeruginosa PAO1 via targeting pqs quorum-sensing system. Int. J. Mol. Sci., 2021, 22(23), 12699. doi: 10.3390/ijms222312699 PMID: 34884499
  138. Li, M.; Wang, Y.; Jin, J.; Dou, J.; Guo, Q.; Ke, X.; Zhou, C.; Guo, M. Inhibitory activity of honeysuckle extracts against influenza A Virus In vitro and In vivo. Virol. Sin., 2021, 36(3), 490-500. doi: 10.1007/s12250-020-00302-6 PMID: 33044658
  139. Kan, J.W.Y.; Yan, C.S.W.; Wong, I.L.K.; Su, X.; Liu, Z.; Chan, T.H.; Chow, L.M.C. Discovery of a flavonoid FM04 as a potent inhibitor to reverse P-glycoprotein-mediated drug resistance in xenografts and improve oral bioavailability of paclitaxel. Int. J. Mol. Sci., 2022, 23(23), 15299. doi: 10.3390/ijms232315299 PMID: 36499627
  140. Dao, T.B.N.; Nguyen, T.M.T.; Nguyen, V.Q.; Tran, T.M.D.; Tran, N.M.A.; Nguyen, C.H.; Nguyen, T.H.T.; Nguyen, H.H.; Sichaem, J.; Tran, C.L.; Duong, T.H. Flavones from Combretum quadrangulare growing in vietnam and their alpha-glucosidase inhibitory activity. Molecules, 2021, 26(9), 2531. doi: 10.3390/molecules26092531 PMID: 33926133
  141. Gallique, M.; Wei, K.; Maisuria, V.B.; Okshevsky, M.; McKay, G.; Nguyen, D.; Tufenkji, N. Cranberry-derived proanthocyanidins potentiate β-lactam antibiotics against resistant bacteria. Appl. Environ. Microbiol., 2021, 87(10), e00127-e21. doi: 10.1128/AEM.00127-21 PMID: 33712420
  142. Jing, S.; Kong, X.; Wang, L.; Wang, H.; Feng, J.; Wei, L.; Meng, Y.; Liu, C.; Chang, X.; Qu, Y.; Guan, J.; Yang, H.; Zhang, C.; Zhao, Y.; Song, W. Quercetin reduces the virulence of S. aureus by targeting ClpP to protect mice from MRSA-induced lethal pneumonia. Microbiol. Spectr., 2022, 10(2), e02340-e21. doi: 10.1128/spectrum.02340-21 PMID: 35319277
  143. Morimoto, Y.; Aiba, Y.; Miyanaga, K.; Hishinuma, T.; Cui, L.; Baba, T.; Hiramatsu, K. CID12261165, a flavonoid compound as antibacterial agents against quinolone-resistant Staphylococcus aureus. Sci. Rep., 2023, 13(1), 1725. doi: 10.1038/s41598-023-28859-8 PMID: 36720958
  144. Khan, S.A.; Khan, S.U. Fozia; Ullah, N.; Shah, M.; Ullah, R.; Ahmad, I.; Alotaibi, A. Isolation, structure elucidation and in silico prediction of potential drug-like flavonoids from Onosma chitralicum targeted towards functionally important proteins of drug-resistant bad bugs. Molecules, 2021, 26(7), 2048. doi: 10.3390/molecules26072048 PMID: 33918531
  145. Rauf, A.; Raza, M.; Humayun Khan, M.; Hemeg, H.A.; Al-Awthan, Y.S.; Bahattab, O.; Bawazeer, S.; Naz, S.; Basoglu, F.; Saleem, M.; Khan, M.; Seyyedamirhossein, H.; Mubarak, M.S.; Erdogan Orhan, I. In vitro and in silico studies on clinically important enzymes inhibitory activities of flavonoids isolated from Euphorbia pulcherrima. Ann. Med., 2022, 54(1), 495-506. doi: 10.1080/07853890.2022.2033826 PMID: 35112936
  146. Kim, S.R.; Jeong, M.S.; Mun, S.H.; Cho, J.; Seo, M.D.; Kim, H.; Lee, J.; Song, J.H.; Ko, H.J. Antiviral activity of chrysin against influenza virus replication via inhibition of autophagy. Viruses, 2021, 13(7), 1350. doi: 10.3390/v13071350 PMID: 34372556
  147. Kong, X.; Wang, B.; Chen, X.; Wang, L.; Wang, X.; Hou, J.; Wei, L.; Sui, L.; Zhang, C.; Guan, J.; Luan, Y.; Wang, W.; Song, W.; Zhao, Y. Hinokiflavone attenuates the virulence of methicillin-resistant Staphylococcus aureus by targeting caseinolytic protease P. Antimicrob. Agents Chemother., 2022, 66(8), e00240-e22. doi: 10.1128/aac.00240-22 PMID: 35862746
  148. Peng, L.Y.; Yuan, M.; Wu, Z.M.; Song, K.; Zhang, C.L.; An, Q.; Xia, F.; Yu, J.L.; Yi, P.F.; Fu, B.D.; Shen, H.Q. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci. Rep., 2019, 9(1), 4063. doi: 10.1038/s41598-019-40684-6 PMID: 30858423
  149. Sass, A.; Slachmuylders, L.; Van Acker, H.; Vandenbussche, I.; Ostyn, L.; Bové, M.; Crabbé, A.; Chiarelli, L.R.; Buroni, S.; Van Nieuwerburgh, F.; Abatih, E.; Coenye, T. Various evolutionary trajectories lead to loss of the tobramycin-potentiating activity of the quorum-sensing inhibitor baicalin hydrate in Burkholderia cenocepacia Biofilms. Antimicrob. Agents Chemother., 2019, 63(4), e02092-e18. doi: 10.1128/AAC.02092-18 PMID: 30670425
  150. Coelho, P.; Oliveira, J.; Fernandes, I.; Araújo, P.; Pereira, A.R.; Gameiro, P.; Bessa, L.J. Pyranoanthocyanins interfering with the quorum sensing of Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Mol. Sci., 2021, 22(16), 8559. doi: 10.3390/ijms22168559 PMID: 34445281
  151. Hao, S.; Yang, D.; Zhao, L.; Shi, F.; Ye, G.; Fu, H.; Lin, J.; Guo, H.; He, R.; Li, J.; Chen, H.; Khan, M.F.; Li, Y.; Tang, H. EGCG-mediated potential inhibition of biofilm development and quorum Sensing in Pseudomonas aeruginosa. Int. J. Mol. Sci., 2021, 22(9), 4946. doi: 10.3390/ijms22094946 PMID: 34066609
  152. Samarasinghe, S.; Reid, R. AL-Bayati, M. The anti-virulence effect of cranberry active compound proanthocyanins (PACs) on expression of genes in the third-generation cephalosporin-resistant Escherichia coli CTX-M-15 associated with urinary tract infection. Antimicrob. Resist. Infect. Control, 2019, 8(1), 181. doi: 10.1186/s13756-019-0637-9 PMID: 31832181
  153. Omer, F.H.; Al-Khafaji, N.S.K.; Al-Alaq, F.T.; Al-Dahmoshi, H.O.M.; Memariani, M.; Saki, M. Synergistic effects of silybin and curcumin on virulence and carbapenemase genes expression in multidrug resistant Klebsiella oxytoca. BMC Res. Notes, 2022, 15(1), 330. doi: 10.1186/s13104-022-06172-3 PMID: 36273212
  154. Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules, 2022, 27(19), 6545. doi: 10.3390/molecules27196545 PMID: 36235082
  155. Shorobi, F.M.; Nisa, F.Y.; Saha, S.; Chowdhury, M.A.H.; Srisuphanunt, M.; Hossain, K.H.; Rahman, M.A. Quercetin: A functional food-flavonoid incredibly attenuates emerging and re-emerging viral infections through immunomodulatory actions. Molecules, 2023, 28(3), 938. doi: 10.3390/molecules28030938 PMID: 36770606
  156. Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 2022, 27(9), 2901. doi: 10.3390/molecules27092901 PMID: 35566252
  157. Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother., 2021, 134, 111017. doi: 10.1016/j.biopha.2020.111017 PMID: 33338751
  158. Vicente, J.; Benedetti, M.; Martelliti, P.; Vázquez, L.; Gentilini, M.V.; Peñaranda Figueredo, F.A.; Nabaes Jodar, M.S.; Viegas, M.; Barquero, A.A.; Bueno, C.A. The flavonoid cyanidin shows immunomodulatory and broad-spectrum antiviral properties, including SARS-CoV-2. Viruses, 2023, 15(4), 989. doi: 10.3390/v15040989 PMID: 37112969
  159. Güran, M.; Çakıral, K.; Teralı, K.; Kandemir, T.; Şanlıtürk, G.; Öcal, M.M.; Nagiyev, T.; Köksal, F. Meropenem in combination with baicalein exhibits synergism against extensively drug resistant and pan-drug-resistant Acinetobacter baumannii clinical isolates in vitro. Pathog. Dis., 2023, 81, ftad007. doi: 10.1093/femspd/ftad007 PMID: 37120729
  160. Bai, Y.; Wang, W.; Shi, M.; Wei, X.; Zhou, X.; Li, B.; Zhang, J. Novel antibiofilm inhibitor ginkgetin as an antibacterial synergist against Escherichia coli. Int. J. Mol. Sci., 2022, 23(15), 8809. doi: 10.3390/ijms23158809 PMID: 35955943
  161. Song, W.; Wang, L.; Zhao, Y.; Lanzi, G.; Wang, X.; Zhang, C.; Guan, J.; Wang, W.; Guo, X.; Meng, Y.; Wang, B.; Zhao, Y. Hibifolin, a natural sortase A inhibitor, attenuates the pathogenicity of Staphylococcus aureus and enhances the antibacterial activity of cefotaxime. Microbiol. Spectr., 2022, 10(4), e00950-e22. doi: 10.1128/spectrum.00950-22 PMID: 35913166
  162. Kampoun, T.; Koonyosying, P.; Ruangsuriya, J.; Prommana, P.; Shaw, P.J.; Kamchonwongpaisan, S.; Suwito, H.; Puspaningsih, N.N.T.; Uthaipibull, C.; Srichairatanakool, S. Antagonistic antimalarial properties of a methoxyamino chalcone derivative and 3-hydroxypyridinones in combination with dihydroartemisinin against Plasmodium falciparum. PeerJ, 2023, 11, e15187. doi: 10.7717/peerj.15187 PMID: 37131988
  163. Okoye, C.O.; Jiang, H.; Wu, Y.; Li, X.; Gao, L.; Wang, Y.; Jiang, J. Bacterial biosynthesis of flavonoids: Overview, current biotechnology applications, challenges, and prospects. J. Cell. Physiol., 2023, jcp.31006. doi: 10.1002/jcp.31006 PMID: 37025076
  164. Manzoor, M.F.; Hussain, A.; Sameen, A.; Sahar, A.; Khan, S.; Siddique, R.; Aadil, R.M.; Xu, B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. Ultrason. Sonochem., 2021, 78, 105686. doi: 10.1016/j.ultsonch.2021.105686 PMID: 34358980
  165. Thilakarathna, S.; Rupasinghe, H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387. doi: 10.3390/nu5093367 PMID: 23989753
  166. Ivanov, M.; Novović, K.; Malešević, M.; Dinić, M.; Stojković, D.; Jovčić, B.; Soković, M. Polyphenols as inhibitors of antibiotic resistant bacteria—mechanisms underlying rutin interference with bacterial virulence. Pharmaceuticals (Basel), 2022, 15(3), 385. doi: 10.3390/ph15030385 PMID: 35337182
  167. Pi, J.; Wang, J.; Feng, X.; Li, Z.; Liu, Y.; Yang, W.; Zhang, T.; Guo, P.; Liu, Z.; Qi, D. The Flavonoid Components of Scutellaria baicalensis: Biopharmaceutical properties and their improvement using nanoformulation techniques. Curr. Top. Med. Chem., 2023, 23(1), 17-29. doi: 10.2174/1568026623666221128144258 PMID: 36443977
  168. Ravetti, S.; Garro, A.G.; Gaitán, A.; Murature, M.; Galiano, M.; Brignone, S.G.; Palma, S.D. Naringin: Nanotechnological strategies for potential pharmaceutical applications. Pharmaceutics, 2023, 15(3), 863. doi: 10.3390/pharmaceutics15030863 PMID: 36986723
  169. Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as plant-based nutraceuticals: health effects, encapsulation, nano-delivery, and application. Foods, 2022, 11(15), 2189. doi: 10.3390/foods11152189 PMID: 35892774
  170. Tian, Y.; Shi, Z.; Ma, H. Research progress on the preparation and application of flavonoid nanocrystals. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2023, 52(3), 338-348. doi: 10.3724/zdxbyxb-2023-0180 PMID: 37476945
  171. Pimentel-Moral, S.; Verardo, V.; Robert, P.; Segura-Carretero, A.; Martinez-Ferez, A. 13-Nanoencapsulation strategies applied to maximize target delivery of intact polyphenols.Encapsulations; Grumezescu, A.M., Ed.; Academic Press: Cambridge, Massachusetts, 2016, pp. 559-595. doi: 10.1016/B978-0-12-804307-3.00013-2
  172. Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech., 2013, 3(6), 439-459. doi: 10.1007/s13205-013-0117-5
  173. Sajid, M.; Channakesavula, C.N.; Stone, S.R.; Kaur, P. Synthetic biology towards improved flavonoid pharmacokinetics. Biomolecules, 2021, 11(5), 754. doi: 10.3390/biom11050754 PMID: 34069975
  174. Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 2021, 9(10), 2041. doi: 10.3390/microorganisms9102041 PMID: 34683362
  175. Polansky, H.; Javaherian, A.; Itzkovitz, E. Clinical trial of herbal treatment gene-eden-VIR/novirin in oral herpes. J Evid Based Integr Med., 2018, 23, 2515690X18806269. doi: 10.1177/2515690X18806269
  176. Margolin, L.; Luchins, J.; Margolin, D.; Margolin, M.; Lefkowitz, S. 20-week study of clinical outcomes of over-the-counter COVID-19 prophylaxis and treatment. J Evid Based Integr Med., 2021, 26, 2515690X211026193.. doi: 10.1177/2515690X211026193
  177. Heinz, S.A.; Henson, D.A.; Austin, M.D.; Jin, F.; Nieman, D.C. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol. Res., 2010, 62(3), 237-242. doi: 10.1016/j.phrs.2010.05.001 PMID: 20478383
  178. Pár, A.; Roth, E.; Miseta, A.; Hegedüs, G.; Pár, G.; Hunyady, B.; Vincze, A. Effects of supplementation with the antioxidant flavonoid, silymarin, in chronic hepatitis C patients treated with peg-interferon + ribavirin. A placebo-controlled double blind study Orv. Hetil., 2009, 150(2), 73-79. doi: 10.1556/oh.2009.28517 PMID: 19103558
  179. Yao, W.; Zhang, X.; Xu, F.; Cao, C.; Liu, T.; Xue, Y. The therapeutic effects of naringenin on bronchial pneumonia in children. Pharmacol. Res. Perspect., 2021, 9(4), e00825. doi: 10.1002/prp2.825 PMID: 34310866
  180. Braun, D.L.; Rauch, A.; Aouri, M.; Durisch, N.; Eberhard, N.; Anagnostopoulos, A.; Ledergerber, B.; Müllhaupt, B.; Metzner, K.J.; Decosterd, L.; Böni, J.; Weber, R.; Fehr, J. A lead-in with silibinin prior to triple-therapy translates into favorable treatment outcomes in difficult-to-treat HIV/Hepatitis C coinfected patients. PLoS One, 2015, 10(7), e0133028. doi: 10.1371/journal.pone.0133028 PMID: 26176696
  181. Adeyemo, O.; Doi, H.; Rajender Reddy, K.; Kaplan, D.E. Impact of oral silymarin on virus- and non-virus-specific T-cell responses in chronic hepatitis C infection. J. Viral Hepat., 2013, 20(7), 453-462. doi: 10.1111/jvh.12050 PMID: 23730838
  182. Maki, K.C.; Kaspar, K.L.; Khoo, C.; Derrig, L.H.; Schild, A.L.; Gupta, K. Consumption of a cranberry juice beverage lowered the number of clinical urinary tract infection episodes in women with a recent history of urinary tract infection. Am. J. Clin. Nutr., 2016, 103(6), 1434-1442. doi: 10.3945/ajcn.116.130542 PMID: 27251185

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers