Main Aspects of Pharmaceutical Development of In situ Immunobiological Drugs for Intranasal Administration


Cite item

Full Text

Abstract

Introduction:The review presents the latest developments in the area of intranasal in situ delivery systems of immunobiological drugs (IBDs). Interest in intranasal administration for IBDs has increased significantly due to the COVID-19 pandemic. However, not only intranasal delivery of vaccines is developing, but also bacteriophages, interferons, etc. In situ systems that make a selective phase transition can be a modern solution to intranasal delivery problems caused by mucociliary clearance. In addition, smart-polymers used as the main excipients in in situ systems can be used as specific adjuvants.

Methods:A scientific search was conducted on the PubMed database of medical publications for the period from 2000 to 2022, using the keywords \"intranasal in situ vaccine\"; \"intranasal in situ immunization\". There were analyzed in detail more than 70 scientific studies on intranasal in situ delivery of IBDs.

Results and Conclusions:Despite the large number of new studies, the potential of possibilities of intranasal in situ systems is not being realized. Based on the results of the literature review an algorithm was created for the development of in situ systems for intranasal delivery of IBDs. Such algorithms and the methods of study design organization described in the review will help to facilitate the R&D process and bring the drug to commercial market, which will help to improve the quality of medical care.

About the authors

Elena Bakhrushina

Institute of Pharmacy, Sechenov First Moscow State Medical University

Email: info@benthamscience.net

Iosif Mikhel

Institute of Pharmacy, Sechenov First Moscow State Medical University

Author for correspondence.
Email: info@benthamscience.net

Valeriya Kondratieva

Centre of Epidemiology and Microbiology, The Gamaleya National Centre of Epidemiology and Microbiology

Email: info@benthamscience.net

Natalia Demina

Institute of Pharmacy, Sechenov First Moscow State Medical University

Email: info@benthamscience.net

Tatyana Grebennikova

Centre of Epidemiology and Microbiology, The Gamaleya National Centre of epidemiology and microbiology

Email: info@benthamscience.net

Ivan Krasnyuk Jr

Institute of Pharmacy, Sechenov First Moscow State Medical University

Email: info@benthamscience.net

Ivan Krasnyuk

Institute of Pharmacy, Sechenov First Moscow State Medical University

Email: info@benthamscience.net

References

  1. Vorob’ev, AA Liashenko, VA Immunobiological preparations: Their present and future. Immunobiol, 2021, 6, 105-111.
  2. Nagai, M.; Moriyama, M.; Ichinohe, T. Oral bacteria combined with an intranasal vaccine protect from influenza a virus and SARS-CoV-2 infection. MBio, 2021, 12(4), e01598-e21. doi: 10.1128/mBio.01598-21 PMID: 34399617
  3. Xu, H.; Cai, L.; Hufnagel, S.; Cui, Z. Intranasal vaccine: Factors to consider in research and development. Int. J. Pharm., 2021, 609, 121180. doi: 10.1016/j.ijpharm.2021.121180 PMID: 34637935
  4. Buzitskaya, Z.; Stosman, K.; Khairullin, B.; Kassenov, M.; Nurpeisova, A.; Abylai Sansyzbay, A.; Shurygina, A.P.; Aleksandrov, A.; Sivak, K.; Stukova, M. A new intranasal influenza vector-based vaccine TB/FLU-04L against tuberculosis: Preclinical safety studies. Drug Res., 2022, 72(5), 255-258. doi: 10.1055/a-1785-3936 PMID: 35318622
  5. van der Ley, P.A.; Zariri, A.; van Riet, E.; Oosterhoff, D.; Kruiswijk, C.P. An intranasal OMV-based vaccine induces high mucosal and systemic protecting immunity against a SARS-CoV-2 infection. Front. Immunol., 2021, 12, 781280. doi: 10.3389/fimmu.2021.781280 PMID: 34987509
  6. van Doremalen, N.; Purushotham, J.N.; Schulz, J.E.; Holbrook, M.G.; Bushmaker, T.; Carmody, A.; Port, J.R.; Yinda, C.K.; Okumura, A.; Saturday, G.; Amanat, F.; Krammer, F.; Hanley, P.W.; Smith, B.J.; Lovaglio, J.; Anzick, S.L.; Barbian, K.; Martens, C.; Gilbert, S.C.; Lambe, T.; Munster, V.J. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med., 2021, 13(607), eabh0755. doi: 10.1126/scitranslmed.abh0755 PMID: 34315826
  7. Ndeupen, S.; Qin, Z.; Jacobsen, S.; Bouteau, A.; Estanbouli, H.; Igyártó, B.Z. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience, 2021, 24(12), 103479. doi: 10.1016/j.isci.2021.103479 PMID: 34841223
  8. Kozlovskaya, L.I.; Piniaeva, A.N.; Ignatyev, G.M.; Gordeychuk, I.V.; Volok, V.P.; Rogova, Y.V.; Shishova, A.A.; Kovpak, A.A.; Ivin, Y.Y.; Antonova, L.P.; Mefyod, K.M.; Prokosheva, L.S.; Sibirkina, A.S.; Tarasova, Y.Y.; Bayurova, E.O.; Gancharova, O.S.; Illarionova, V.V.; Glukhov, G.S.; Sokolova, O.S.; Shaitan, K.V.; Moysenovich, A.M.; Gulyaev, S.A.; Gulyaeva, T.V.; Moroz, A.V.; Gmyl, L.V.; Ipatova, E.G.; Kirpichnikov, M.P.; Egorov, A.M.; Siniugina, A.A.; Ishmukhametov, A.A. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerg. Microbes Infect., 2021, 10(1), 1790-1806. doi: 10.1080/22221751.2021.1971569 PMID: 34427172
  9. Anand, T.; Virmani, N.; Kumar, S.; Mohanty, A.K.; Pavulraj, S.; Bera, B.C.; Vaid, R.K.; Ahlawat, U.; Tripathi, B.N. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J. Glob. Antimicrob. Resist., 2020, 21, 34-41. doi: 10.1016/j.jgar.2019.09.018 PMID: 31604128
  10. Ji, Y.; Cheng, M.; Zhai, S.; Xi, H.; Cai, R.; Wang, Z.; Zhang, H.; Wang, X.; Xue, Y.; Li, X.; Sun, C.; Feng, X.; Lei, L. ur Rahman, S.; Han, W.; Gu, J. Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet. Microbiol., 2019, 229, 72-80. doi: 10.1016/j.vetmic.2018.12.021 PMID: 30642601
  11. Rodriguez, J.M.; Woodworth, B.A.; Horne, B.A.; Fackler, J.; Brownstein, M.J. Case Report: Successful use of phage therapy in refractory MRSA chronic rhinosinusitis. Int. J. Infect. Dis., 2022, 121, 14-16. doi: 10.1016/j.ijid.2022.04.049 PMID: 35472526
  12. Bae, J.Y.; Jun, K.I.; Kang, C.K.; Song, K.H.; Choe, P.G.; Bang, J.H.; Kim, E.S.; Park, S.W.; Kim, H.B.; Kim, N.J.; Park, W.B.; Oh, M. Efficacy of intranasal administration of the recombinant endolysin SAL200 in a lethal murine Staphylococcus aureus pneumonia model. Antimicrob. Agents Chemother., 2019, 63(4), e02009-e02018. doi: 10.1128/AAC.02009-18 PMID: 30670417
  13. Gilmer, D.B.; Schmitz, J.E.; Thandar, M.; Euler, C.W.; Fischetti, V.A. The phage lysin plyss2 decolonizes Streptococcus suis from murine intranasal mucosa. PLoS One, 2017, 12(1), e0169180. doi: 10.1371/journal.pone.0169180 PMID: 28046082
  14. Wang, Y.; Mi, Z.; Niu, W.; An, X.; Yuan, X.; Liu, H.; Li, P.; Liu, Y.; Feng, Y.; Huang, Y.; Zhang, X.; Zhang, Z.; Fan, H.; Peng, F.; Tong, Y.; Bai, C. Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii -mediated pneumonia. Future Microbiol., 2016, 11(5), 631-641. doi: 10.2217/fmb.16.11 PMID: 26925593
  15. Dobretsov, K.G.; Kolenchukova, O.; Sipkin, A.; Bellussi, L.M.; Ciprandi, G.; Passali, D. A randomized, double-blind, placebo- -controlled study to investigate the use of bacteriophages in patients with chronic rhinosinusitis with nasal polyps. Otolaryngol. Pol., 2021, 75(6), 33-37. doi: 10.5604/01.3001.0015.0084 PMID: 35175218
  16. Ooi, M.L.; Drilling, A.J.; Morales, S.; Fong, S.; Moraitis, S.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.J. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol. Head Neck Surg., 2019, 145(8), 723-729. doi: 10.1001/jamaoto.2019.1191 PMID: 31219531
  17. Dor-On, E.; Solomon, B. Targeting glioblastoma via intranasal administration of Ff bacteriophages. Front. Microbiol., 2015, 6, 530. doi: 10.3389/fmicb.2015.00530 PMID: 26074908
  18. Eriksson, F.; Culp, W.D.; Massey, R.; Egevad, L.; Garland, D.; Persson, M.A.A.; Pisa, P. Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol. Immunother., 2007, 56(5), 677-687. doi: 10.1007/s00262-006-0227-6 PMID: 16967280
  19. González, L.F.; Acuña, E.; Arellano, G.; Morales, P.; Sotomayor, P.; Oyarzun-Ampuero, F.; Naves, R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J. Control. Release, 2021, 331, 443-459. doi: 10.1016/j.jconrel.2020.11.019 PMID: 33220325
  20. Thorne, R.G.; Hanson, L.R.; Ross, T.M.; Tung, D.; Frey, W.H. II Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience, 2008, 152(3), 785-797. doi: 10.1016/j.neuroscience.2008.01.013 PMID: 18304744
  21. Porfiryeva, N.N.; Semina, I.I.; Mustafin, R.I.; Khutoryansky, V.V. Intranasal administration as a method of drug delivery to the brain review. Drug Dev. Regist, 2017, 10(4), 117-127. doi: 10.33380/2305-2066-2021-10-4-117-127
  22. Kunelskaya, N.L.; Artemyeva-Karelova, A.V. The main components of nasal secretion. 2013. Available From: https://cyberleninka.ru/article/n/osnovnye-komponenty-nazalnogo-sekreta-mukoaktivnye-sredstva-vo-vrachebnoy-praktike (accessed on 10 August 2022).
  23. Demina, N.B.; Bakhrushina, E.O.; Bardakov, A.I.; Krasnyuk, I.I. Biopharmaceutical aspects of the design of intranasal dosage form. Pharmacy, 2017, 68(3), 12-17.
  24. Bakhrushina, E.O.; Demina, N.B.; Shumkova, M.M.; Rodyuk, P.S.; Shulikina, D.S.; Krasnyuk, I.I. In situ intranasal delivery systems: Application prospects and main pharmaceutical aspects of development (review). Drug Dev. Regist, 2021, 10(4), 54-63. doi: 10.33380/2305-2066-2021-10-4-54-63
  25. Ivanushko, L.A.; Solovyova, T.F.; Zaporozhets, T.S.; Somova, L.M.; Gorbach, V.I. Antibacterial and antitoxic properties of chitosan and its derivatives. 2009. Available From: https://cyberleninka.ru/article/n/antibakterialnye-i-antitoksicheskie-svoystva-hitozana-i-ego-proizvodnyh (accessed on 10 August 2022).
  26. Kempe, S.; Mäder, K. In situ forming implants-An attractive formulation principle for parenteral depot formulations. J. Control. Release, 2012, 161(2), 668-679. doi: 10.1016/j.jconrel.2012.04.016 PMID: 22543012
  27. Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Ferrari, F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics, 2020, 12(9), 859. doi: 10.3390/pharmaceutics12090859 PMID: 32927595
  28. Bedford, J.G.; Caminschi, I.; Wakim, L.M. Intranasal delivery of a chitosan-hydrogel vaccine generates nasal tissue resident memory CD8+ T cells that are protective against influenza virus infection. Vaccines, 2020, 8(4), 572. doi: 10.3390/vaccines8040572 PMID: 33019568
  29. Ozbılgın, N.D.; Saka, O.M.; Bozkır, A. Preparation and in vitro/in vivo evaluation of mucosal adjuvant in situ forming gels with diphtheria toxoid. Drug Deliv., 2014, 21(2), 140-147. doi: 10.3109/10717544.2013.834754 PMID: 24559517
  30. Zhao, K.; Shi, X.; Zhao, Y.; Wei, H.; Sun, Q.; Huang, T.; Zhang, X.; Wang, Y. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine, 2011, 29(47), 8549-8556. doi: 10.1016/j.vaccine.2011.09.029 PMID: 21945253
  31. Majcher, M.J.; Babar, A.; Lofts, A.; Leung, A.; Li, X.; Abu-Hijleh, F.; Smeets, N.M.B.; Mishra, R.K.; Hoare, T. In situ gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J. Control. Release, 2021, 330, 738-752. doi: 10.1016/j.jconrel.2020.12.050 PMID: 33383097
  32. Agrawal, A.K.; Gupta, P.N.; Khanna, A.; Sharma, R.K.; Chandrawanshi, H.K.; Gupta, N.; Patil, U.K.; Yadav, S.K. Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie, 2010, 65(3), 188-193. PMID: 20383938
  33. Luppi, B.; Bigucci, F.; Mercolini, L.; Musenga, A.; Sorrenti, M.; Catenacci, L.; Zecchi, V. Novel mucoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J. Pharm. Pharmacol., 2010, 61(2), 151-157. doi: 10.1211/jpp.61.02.0003 PMID: 19178761
  34. Wang, Q.; Wong, C.H.; Chan, H.Y.E.; Lee, W.Y.; Zuo, Z. Statistical design of experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int. J. Pharm., 2018, 539(1-2), 50-57. doi: 10.1016/j.ijpharm.2018.01.032 PMID: 29366939
  35. Ahmad, N.; Ahmad, R.; Ahmad, F.J.; Ahmad, W.; Alam, M.A.; Amir, M.; Ali, A. Poloxamer-chitosan-based naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J. Biol. Sci., 2020, 27(1), 500-517. doi: 10.1016/j.sjbs.2019.11.008 PMID: 31889876
  36. Díaz, A.G.; Quinteros, D.A.; Gutiérrez, S.E.; Rivero, M.A.; Palma, S.D.; Allemandi, D.A.; Pardo, R.P.; Zylberman, V.; Goldbaum, F.A.; Estein, S.M. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis. Vet. Immunol. Immunopathol., 2016, 178, 50-56. doi: 10.1016/j.vetimm.2016.07.004 PMID: 27496742
  37. Nasirizadeh, S.; Rajabnezhad, S.; Majid, Z.; Somayeh, D.; Leyla, M.; Ali, D.; Rajabnejad, M. Gonçalves, Lidia Mucoadhesive microspheres of chitosan and polyvinyl alcohol as a carrier for intranasal delivery of insulin: In vitro and in vivo studies. MOJ Bioequiv. Bioavailab., 2017, 3(2), 00030.
  38. Krauland, A.H.; Guggi, D.; Bernkop-Schnürch, A. Thiolated chitosan microparticles: A vehicle for nasal peptide drug delivery. Int. J. Pharm., 2006, 307(2), 270-277. doi: 10.1016/j.ijpharm.2005.10.016 PMID: 16300914
  39. Das, S.S.; Kar, S.; Singh, S.K.; Hussain, A. Carboxymethyl chitosan in advanced drug-delivery applications. In: Chitosan in Drug Delivery; Academic Press, 2022; pp. 323-360. doi: 10.1016/B978-0-12-819336-5.00006-6
  40. Kola, M.; Puri, K.; Unnisa, T.; Swapna, J. Formulation, optimization and evaluation of rasagiline mesylate in situ nasal gel., 2018, 8(9), 1645-1654.
  41. Bertram, U.; Bernard, M.C.; Haensler, J.; Maincent, P.; Bodmeier, R. In situ gelling nasal inserts for influenza vaccine delivery. Drug Dev. Ind. Pharm., 2010, 36(5), 581-593. doi: 10.3109/03639040903382673 PMID: 19954407
  42. Thakkar, J.H.; Prajapati, S.T. Formulation development and characterization of in-situ gel of Rizatriptan Benzoate for intranasal delivery. J. Drug Deliv. Ther., 2021, 11(1-s), 1-6. doi: 10.22270/jddt.v11i1-s.4685
  43. Bertram, U.; Bodmeier, R. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur. J. Pharm. Sci., 2006, 27(1), 62-71. doi: 10.1016/j.ejps.2005.08.005 PMID: 16213127
  44. Cao, S.; Ren, X.; Zhang, Q.; Chen, E.; Xu, F.; Chen, J.; Liu, L.; Jiang, X. In situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int. J. Pharm., 2009, 365(1-2), 109-115. doi: 10.1016/j.ijpharm.2008.08.042 PMID: 18822361
  45. Raquel Maia, F.; Vitor, M. Natural origin materials for bone tissue engineering: properties, processing, and performance. In: Principles of Regenerative Medicine; Academic Press, 2019; pp. 535-558. doi: 10.1016/B978-0-12-809880-6.00032-1
  46. Ball, J.P.; Springer, M.J.; Ni, Y.; Finger-Baker, I.; Martinez, J.; Hahn, J.; Suber, J.F.; DiMarco, A.V.; Talton, J.D.; Cobb, R.R. Intranasal delivery of a bivalent norovirus vaccine formulated in an in situ gelling dry powder. PLoS One, 2017, 12(5), e0177310. doi: 10.1371/journal.pone.0177310 PMID: 28545100
  47. Velasquez, L.S.; Shira, S.; Berta, A.N.; Kilbourne, J.; Medi, B.M.; Tizard, I.; Ni, Y.; Arntzen, C.J.; Herbst-Kralovetz, M.M. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine, 2011, 29(32), 5221-5231. doi: 10.1016/j.vaccine.2011.05.027 PMID: 21640778
  48. Dukovski, B.J. Plantić I.; Čunčić I.; Krtalić I.; Juretić M.; Pepić I.; Lovrić J.; Hafner, A. Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. Int. J. Pharm., 2017, 533(2), 480-487. doi: 10.1016/j.ijpharm.2017.05.065 PMID: 28577969
  49. Giri, T.K. Nanoarchitectured polysaccharide-based drug carrier for ocular therapeutics. In: Nanoarchitectonics for Smart Delivery and Drug Targeting; William Andrew Publishing, 2016; pp. 119-141. doi: 10.1016/B978-0-323-47347-7.00005-7
  50. Iklasova, A.Sh.; Sakipova, Z.B.; Bekbolatova, E.N. Pectin: composition, technology of production, application in food and pharmaceutical industry. 2018. Available From: https://cyberleninka. ru/article/n/pektin-sostav-tehnologiya-polucheniya-primenenie-v-pischevoy-i-farmatsevticheskoy-promyshlennosti (accessed on 10 August 2022).
  51. Park, J.S.; Oh, Y.K.; Yoon, H.; Kim, J.M.; Kim, C.K. In situ gelling and mucoadhesive polymer vehicles for controlled intranasal delivery of plasmid DNA. J. Biomed. Mater. Res., 2002, 59(1), 144-151. doi: 10.1002/jbm.1227 PMID: 11745547
  52. Mura, P.; Mennini, N.; Nativi, C.; Richichi, B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur. J. Pharm. Biopharm., 2018, 122, 54-61. doi: 10.1016/j.ejpb.2017.10.008 PMID: 29032194
  53. Francisco, J. Stimuli sensitive ocular drug delivery systems. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems; William Andrew Publishing, 2018; pp. 211-270. doi: 10.1016/B978-0-12-813689-8.00006-9
  54. Tian, J.L.; Zhao, Y.Z.; Jin, Z.; Lu, C.T.; Tang, Q.Q.; Xiang, Q.; Sun, C.Z.; Zhang, L.; Xu, Y.Y.; Gao, H.S.; Zhou, Z.C.; Li, X.K.; Zhang, Y. Synthesis and characterization of Poloxamer 188-grafted heparin copolymer. Drug Dev. Ind. Pharm., 2010, 36(7), 832-838. doi: 10.3109/03639040903520983 PMID: 20515404
  55. Zylke, J. Poloxamer 188 for sickle cell disease. JAMA, 2021, 325(15), 1524. doi: 10.1001/jama.2021.3399 PMID: 33877286
  56. Emanuele, M.; Balasubramaniam, B. Differential effects of commercial-grade and purified poloxamer 188 on renal function. Drugs R D., 2014, 14(2), 73-83. doi: 10.1007/s40268-014-0041-0 PMID: 24723148
  57. Li, Y.; Cui, Y.; Li, L.; Lin, X.; Zhou, X.; Zhu, H.; Feng, B.A. UHPLC-Q-TOF/MS method for the determination of poloxamer 124 and its application in a tissue distribution study in rats. Anal. Methods, 2021, 13(45), 5516-5522. doi: 10.1039/D1AY01373D PMID: 34750596
  58. Li, Y.; Cui, Y.; Li, L.; Lin, X.; Zhou, X.; Zhu, H.; Feng, B. Ultra‐high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry method for quantifying polymer poloxamer 124 and its application to pharmacokinetic study. J. Sep. Sci., 2021, 44(20), 3822-3829. doi: 10.1002/jssc.202100552 PMID: 34435744
  59. Bakhrushina, E.O.; Novozhilova, E.; Kashperko, A.S.; Sokolova, A.; Demina, N.B.; Krasnyuk, I. Biopharmaceutical study of binary poloxamer systems as in situ drug delivery systems poloxamer polycomplexes: The study. Int. J. Appl. Pharm, 2022, 14(3), 162-165. doi: 10.22159/ijap.2022v14i3.43930
  60. Patil, P.R.; Salve, V.K.; Thorat, R.U. Formulation and evaluation of ion-sensitive in-situ nasal gel of Zolmitriptan. Int. J. Pharm. Pharm. Sci., 2015, 7, 478-486.
  61. Kaur, G.; Grewal, J.; Jyoti, K.; Jain, U.K.; Chandra, R.; Madan, J. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems; William Andrew Publishing, 2018; pp. 567-626. doi: 10.1016/B978-0-12-813689-8.00015-X
  62. Díaz, A.G.; Quinteros, D.A.; Paolicchi, F.A.; Rivero, M.A.; Palma, S.D.; Pardo, R.P.; Clausse, M.; Zylberman, V.; Goldbaum, F.A.; Estein, S.M. Mucosal immunization with polymeric antigen BLSOmp31 using alternative delivery systems against Brucella ovis in rams. Vet. Immunol. Immunopathol., 2019, 209, 70-77. doi: 10.1016/j.vetimm.2019.02.005 PMID: 30885309
  63. Hathaway, H.; Alves, D.R.; Bean, J.; Esteban, P.P.; Ouadi, K.; Mark Sutton, J.; Jenkins, A.T.A. Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur. J. Pharm. Biopharm., 2015, 96, 437-441. doi: 10.1016/j.ejpb.2015.09.013 PMID: 26423908
  64. Chang, R.Y.K.; Chen, K.; Wang, J.; Wallin, M.; Britton, W.; Morales, S.; Kutter, E.; Li, J.; Chan, H.K. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage pev20 in a dry-powder formulation. Antimicrob. Agents Chemother., 2018, 62(2), e01714-e01717. doi: 10.1128/AAC.01714-17 PMID: 29158280
  65. Rahimzadeh, G.; Saeedi, M.; Nokhodchi, A.; Moosazadeh, M.; Ghasemi, M.; Rostamkalaei, S.S.; Mortazavi, P.; Eghbali, M.; Pourbakhshian, R.; Rezai, M.S.; Nemati Hevelaee, E. Evaluation of in-situ gel-forming eye drop containing bacteriophage against Pseudomonas aeruginosa keratoconjunctivitis in vivo. Bioimpacts, 2020, 11(4), 281-287. doi: 10.34172/bi.2021.10 PMID: 34631490
  66. de Andrade, C.Y.T.; Yamanaka, I.; Schlichta, L.S.; Silva, S.K.; Picheth, G.F.; Caron, L.F.; de Moura, J.; de Freitas, R.A.; Alvarenga, L.M. Physicochemical and immunological characterization of chitosan-coated bacteriophage nanoparticles for in vivo mycotoxin modeling. Carbohydr. Polym., 2018, 185, 63-72. doi: 10.1016/j.carbpol.2017.12.063 PMID: 29421061
  67. Brkich, G.E.; Pyatigorskaya, N.V.; Kargin, V.S.; Zyryanov, O.A. Development of research design to determine the efficacy and safety of an innovative drug. Medical and pharmaceutical journal. Pulse, 2022, 24(5), 19-23. doi: 10.26787/nydha-2686-6838-2022-24-5-19-23
  68. Zyryanov, O.A. Development of the composition and technology for obtaining a dosage form based on the triazatricyclotetradecane of a potential MODULATOR of the AMPA receptor; Moscow, 2021.
  69. Flórez Borges, P.; García-Montoya, E.; Pérez-Lozano, P.; Jo, E.; Miñarro, M.; Manich, A.; Suñé-Negre, J.M. The role of SeDeM for characterizing the active substance and polyvinyilpyrrolidone eliminating metastable forms in an oral lyophilizate—A preformulation study. PLoS One, 2018, 13(4), e0196049. doi: 10.1371/journal.pone.0196049 PMID: 29689061
  70. Gulenkov, A.S.; Mizina, P.G.; Bakhrushina, E.O.; Bardakov, A.I.; Nyudochkin, A.V. Pharmaceutical and technological study of adsorbed liquid plant extract of antimicrobial action. Drug Dev. Regist, 2022, 11(2), 94-101. doi: 10.33380/2305-2066-2022-11-2-94-101
  71. Bakhrushina, E.O.; Anurova, M.N.; Aleshkin, A.V.; Demina, N.B.; Krasnyuk, I.I.; Pyatigorskaya, N.V.; Beregovykh, V.V. Some aspects of the use and creation of bacteriophage drugs. Vestnik RAMS., 2021, 76(4), 351-360. doi: 10.15690/vramn1380
  72. Gilbert, J.C.; Richardson, J.L.; Davies, M.C.; Palin, K.J.; Hadgraft, J. The effect of solutes and polymers on the gelation properties of pluronic F-127 solutions for controlled drug delivery. J. Control. Release, 1987, 5(2), 113-118. doi: 10.1016/0168-3659(87)90002-2
  73. Nižić L.; Ugrina, I.; Špoljarić D.; Saršon, V.; Kučuk, M.S.; Pepić I.; Hafner, A. Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition. Int. J. Pharm., 2019, 563, 445-456. doi: 10.1016/j.ijpharm.2019.04.015 PMID: 30965121
  74. Zaki, N.M.; Awad, G.A.; Mortada, N.D.; Abd ElHady, S.S. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur. J. Pharm. Sci., 2007, 32(4-5), 296-307. doi: 10.1016/j.ejps.2007.08.006 PMID: 17920822
  75. Bakhrushina, E.O. Application in vitro modeling for pharmaceutical development in situ systems. Pulse, 2022, 24(6), 137-142. doi: 10.26787/nydha-2686-6838-2022-24-6-137-142
  76. Mahmoud, E. Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery. Int. J. Pharm., 2018, 543(1-2), 224-233. doi: 10.1016/j.ijpharm.2018.03.053
  77. Elshafeey, A.H.; Bendas, E.R.; Mohamed, O.H. Intranasal microemulsion of sildenafil citrate: In vitro evaluation and in vivo pharmacokinetic study in rabbits. AAPS PharmSciTech, 2009, 10, 361-367. doi: 10.1208/s12249-009-9213-6
  78. El-Shenawy, A.A.; Mahmoud, R.A.; Mahmoud, E.A.; Mohamed, M.S. Intranasal in situ gel of apixaban-loaded nanoethosomes: Preparation, optimization, and in vivo evaluation. AAPS PharmSciTech, 2021, 22(4), 147. doi: 10.1208/s12249-021-02020-y PMID: 33948767
  79. Sousa, J.; Alves, G.; Oliveira, P.; Fortuna, A.; Falcão, A. Intranasal delivery of ciprofloxacin to rats: A topical approach using a thermoreversible in situ gel. Eur. J. Pharm. Sci., 2017, 97, 30-37. doi: 10.1016/j.ejps.2016.10.033 PMID: 27810560
  80. Li, C.; Li, C.; Liu, Z.; Li, Q.; Yan, X.; Liu, Y.; Lu, W. Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan. Int. J. Pharm., 2014, 474(1-2), 123-133. doi: 10.1016/j.ijpharm.2014.08.023
  81. Nagaraja, S.; Basavarajappa, G.M.; Karnati, R.K.; Bakir, E.M.; Pund, S. Ion-triggered in situ gelling nanoemulgel as a platform for nose-to-brain delivery of small lipophilic molecules. Pharmaceutics, 2021, 13(8), 1216. doi: 10.3390/pharmaceutics13081216 PMID: 34452177

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers