In vitro Effect of Cannabidiol on Red Blood Cells: Implication in Long-Lasting Pathology Treatment


Cite item

Full Text

Abstract

Background:Cannabidiol (CBD) is the principal non-hallucinogenic compound of Cannabis plants with high clinical interest because CBD has been described as having anti-inflammatory, analgesic and anticonvulsant properties. CBD is considered a multitarget compound as it can interact with a wide range of targets, explaining their multiplicity of effects. Some clinical studies have indicated certain side effects of CBD, including somnolence, anemia and diarrhea, while the elevation of transaminases is considered as an exclusion criterion from the trial. Since the red blood cells (RBCs) are a source of transaminase, we assayed in vitro effect on RBCs stability.

Methods:We performed in vitro experiments with RBCs obtained from human peripheral blood with normal hematological parameters exposed to CBD in the range of therapeutic uses. We evaluated RBCs morphological changes, membrane fragility and hemoglobin release as a reflection of hemolysis.

Results:CBD induced an increase in the hemoglobin release (3.27 µg/106 RBC), without altered RBC osmotic fragility. When RBCs suspensions were incubated with CBD the initial number of elements (RBCs + vesicles) was increased up to 65% after 20 min and returned to basal level after 40 min of incubation. In the first 20 min, the accounts of elements were enriched in the smaller vesicles that disappeared after the remaining 20 minutes.

Conclusion:These results suggest that CBD affects the indemnity of erythrocytes in vitro, inducing the formation of hemolytic vesicles that can provide the basis for the development of anemia, transaminase elevation and underlying tissular iron overload in patients chronically treated with CBD.

About the authors

Claudia Gómez

Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires

Email: info@benthamscience.net

Natalia Borda

Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires

Email: info@benthamscience.net

Franco Moscovicz

Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC),, Universidad de Buenos Aires

Email: info@benthamscience.net

Florencia Fernandez

Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), University of Buenos Aires

Email: info@benthamscience.net

Alberto Lazarowski

Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires

Email: info@benthamscience.net

Jerónimo Auzmendi

Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC),, Universidad de Buenos Aires

Author for correspondence.
Email: info@benthamscience.net

References

  1. Crippa JA, Guimarães FS, Campos AC, Zuardi AW. Translational investigation of the therapeutic potential of cannabidiol (CBD): Toward a new age. Front Immunol 2018; 9: 2009. doi: 10.3389/fimmu.2018.02009 PMID: 30298064
  2. Burstein S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg Med Chem 2015; 23(7): 1377-85. doi: 10.1016/j.bmc.2015.01.059 PMID: 25703248
  3. Urits I, Gress K, Charipova K, et al. Use of cannabidiol (CBD) for the treatment of chronic pain. Baillieres Best Pract Res Clin Anaesthesiol 2020; 34(3): 463-77. doi: 10.1016/j.bpa.2020.06.004 PMID: 33004159
  4. Elsaid S, Kloiber S, Le Foll B. Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings. Prog Mol Biol Transl Sci 2019; 167: 25-75. doi: 10.1016/bs.pmbts.2019.06.005 PMID: 31601406
  5. Silvestro S, Schepici G, Bramanti P, Mazzon E. Molecular targets of cannabidiol in experimental models of neurological disease. Molecules 2020; 25(21): 5186. doi: 10.3390/molecules25215186 PMID: 33171772
  6. Britch SC, Babalonis S, Walsh SL. Cannabidiol: Pharmacology and therapeutic targets. Psychopharmacology 2021; 238(1): 9-28. doi: 10.1007/s00213-020-05712-8 PMID: 33221931
  7. Pertwee RG. Pharmacological actions of cannabinoids. Handb Exp Pharmacol 2005; 168(168): 1-51. doi: 10.1007/3-540-26573-2_1 PMID: 16596770
  8. Nichols JM, Kaplan BLF. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res 2020; 5(1): 12-31. doi: 10.1089/can.2018.0073 PMID: 32322673
  9. Gómez CT, Lairion F, Repetto M, et al. Cannabidiol (CBD) alters the functionality of neutrophils (PMN). implications in the refractory epilepsy treatment. Pharmaceuticals 2021; 14(3): 220. doi: 10.3390/ph14030220 PMID: 33807975
  10. Balachandran P, Elsohly M, Hill KP. Cannabidiol interactions with medications, illicit substances, and alcohol: A comprehensive review. J Gen Intern Med 2021; 36(7): 2074-84. doi: 10.1007/s11606-020-06504-8 PMID: 33515191
  11. Karaźniewicz-Łada M, Główka AK, Mikulska AA, Główka FK. Pharmacokinetic drug–drug interactions among antiepileptic drugs, including CBD, drugs used to treat COVID-19 and nutrients. Int J Mol Sci 2021; 22(17): 9582. doi: 10.3390/ijms22179582 PMID: 34502487
  12. Nasrin S, Watson CJW, Perez-Paramo YX, Lazarus P. Cannabinoid metabolites as inhibitors of major hepatic CYP450 enzymes, with implications for cannabis-drug interactions. Drug Metab Dispos 2021; 49(12): 1070-80. doi: 10.1124/dmd.121.000442 PMID: 34493602
  13. Doohan PT, Oldfield LD, Arnold JC, Anderson LL. Cannabinoid interactions with cytochrome P450 drug metabolism: A full-spectrum characterization. AAPS J 2021; 23(4): 91. doi: 10.1208/s12248-021-00616-7 PMID: 34181150
  14. Holland ML, Allen JD, Arnold JC. Interaction of plant cannabinoids with the multidrug transporter ABCC1 (MRP1). Eur J Pharmacol 2008; 591(1-3): 128-31. doi: 10.1016/j.ejphar.2008.06.079 PMID: 18619955
  15. Holland ML, Panetta JA, Hoskins JM, et al. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem Pharmacol 2006; 71(8): 1146-54. doi: 10.1016/j.bcp.2005.12.033 PMID: 16458258
  16. Arnold JC, Hone P, Holland ML, Allen JD. CB2 and TRPV1 receptors mediate cannabinoid actions on MDR1 expression in multidrug resistant cells. Pharmacol Rep 2012; 64(3): 751-7. doi: 10.1016/S1734-1140(12)70871-X PMID: 22814029
  17. Feinshtein V, Erez O, Ben-Zvi Z, et al. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines. PeerJ 2013; 1: e153. doi: 10.7717/peerj.153 PMID: 24058883
  18. Zhu HJ, Wang JS, Markowitz JS, et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther 2006; 317(2): 850-7. doi: 10.1124/jpet.105.098541 PMID: 16439618
  19. Auzmendi J, Palestro P, Blachman A, et al. Cannabidiol (CBD) inhibited rhodamine-123 efflux in cultured vascular endothelial cells and astrocytes under hypoxic conditions. Front Behav Neurosci 2020; 14: 32. doi: 10.3389/fnbeh.2020.00032 PMID: 32256321
  20. Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the lennox–gastaut syndrome. N Engl J Med 2018; 378(20): 1888-97. doi: 10.1056/NEJMoa1714631 PMID: 29768152
  21. Koo CM, Kang HC. Could cannabidiol be a treatment option for intractable childhood and adolescent epilepsy? J Epilepsy Res 2017; 7(1): 16-20. doi: 10.14581/jer.17003 PMID: 28775950
  22. Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the dravet syndrome. N Engl J Med 2017; 376(21): 2011-20. doi: 10.1056/NEJMoa1611618 PMID: 28538134
  23. Porter BE, Jacobson C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 2013; 29: 574. doi: 10.1016/j.yebeh.2013.08.037
  24. Watkins PB, Church RJ, Li J, Knappertz V. Cannabidiol and abnormal liver chemistries in healthy adults: Results of a phase I clinical trial. Clin Pharmacol Ther 2021; 109(5): 1224-31. doi: 10.1002/cpt.2071 PMID: 33022751
  25. Ewing LE, Skinner CM, Quick CM, et al. Hepatotoxicity of a cannabidiol-rich cannabis extract in the mouse model. Molecules 2019; 24(9): 1694. doi: 10.3390/molecules24091694 PMID: 31052254
  26. Cabral-Pereira G, Sánchez-Benito D, Díaz-Rodríguez SM, et al. Behavioral and molecular effects induced by cannabidiol and valproate administration in the GASH/SaL model of acute audiogenic seizures. Front Behav Neurosci 2021; 14: 612624. doi: 10.3389/fnbeh.2020.612624 PMID: 33551767
  27. Martinenghi LD, Jønsson R, Lund T, Jenssen H. Isolation, purification, and antimicrobial characterization of cannabidiolic acid and cannabidiol from Cannabis sativa L. Biomolecules 2020; 10(6): 900. doi: 10.3390/biom10060900 PMID: 32545687
  28. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83. doi: 10.1083/jcb.201211138 PMID: 23420871
  29. Alexandru N, Costa A, Constantin A, Cochior D, Georgescu A. Microparticles: From biogenesis to biomarkers and diagnostic tools in cardiovascular disease. Curr Stem Cell Res Ther 2016; 12(2): 89-102. doi: 10.2174/1574888X11666151203224058 PMID: 26647911
  30. Comerci GD. Medical complications of anorexia nervosa and bulimia nervosa. Med Clin North Am 1990; 74(5): 1293-310. doi: 10.1016/S0025-7125(16)30517-X PMID: 2201858
  31. Jazz Pharmaceuticals EPIDIOLEX® safely and effectively. Highlights of Prescribing Informmation 2018.
  32. Bain B, Bates I, Laffan M. Dacie and Lewis Practical Hematology. Elsevier Inc. 2017; 12.
  33. Oh RC, Hustead TR, Ali SM, Pantsari MW. Mildly elevated liver transaminase levels: Causes and evaluation. Am Fam Physician 2017; 96(11): 709-15. PMID: 29431403
  34. Toledano R, Gil-Nagel A. Adverse effects of antiepileptic drugs. Semin Neurol 2008; 28(3): 317-27. doi: 10.1055/s-2008-1079336 PMID: 18777478
  35. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20. doi: 10.1016/S0021-9258(18)48095-7 PMID: 3597417
  36. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1): 255-89. doi: 10.1146/annurev-cellbio-101512-122326 PMID: 25288114
  37. Halliday AJ, Chai KL, Hurley KH, Ninkovic S, Bloch A, Quach H. Haemolytic crisis in G6PD-deficiency triggered by recreational use of synthetic cannabis. Case Rep Intern Med 2016; 3(1): 67. doi: 10.5430/crim.v3n1p67
  38. Alaarg A, Schiffelers RM, van Solinge WW, van Wijk R. Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol 2013; 4: 365. doi: 10.3389/fphys.2013.00365 PMID: 24379786
  39. Lutz HU, Liu SC, Palek J. Release of spectrin-free vesicles from human erythrocytes during ATP depletion: 1. characterization of spectrin-free vesicles. J Cell Biol 1977; 73(3): 548-60. doi: 10.1083/jcb.73.3.548 PMID: 873988
  40. Sudnitsyna J, Skverchinskaya E, Dobrylko I, Nikitina E, Gambaryan S, Mindukshev I. Microvesicle formation induced by oxidative stress in human erythrocytes. Antioxidants 2020; 9(10): 929. doi: 10.3390/antiox9100929 PMID: 32998418
  41. Arashiki N, Kimata N, Manno S, Mohandas N, Takakuwa Y. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: Mechanistic insights into human erythrocyte senescence. Biochemistry 2013; 52(34): 5760-9. doi: 10.1021/bi400405p PMID: 23889086
  42. Minetti G, Egée S, Mörsdorf D, et al. Red cell investigations: Art and artefacts. Blood Rev 2013; 27(2): 91-101. doi: 10.1016/j.blre.2013.02.002 PMID: 23425684
  43. Allan D, Hagelberg C, Kallen KJ, Haest CWM. Echinocytosis and microvesiculation of human erythrocytes induced by insertion of merocyanine 540 into the outer membrane leaflet. Biochim Biophys Acta Biomembr 1989; 986(1): 115-22. doi: 10.1016/0005-2736(89)90279-4 PMID: 2819089
  44. Sheetz MP, Singer SJ. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 1974; 71(11): 4457-61. doi: 10.1073/pnas.71.11.4457 PMID: 4530994
  45. Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Föller M. Eryptosis, a window to systemic disease. Cell Physiol Biochem 2008; 22(5-6): 373-80. doi: 10.1159/000185448 PMID: 19088418
  46. Watkins AR. Cannabinoid interactions with ion channels and receptors. Channels 2019; 13(1): 162-7. doi: 10.1080/19336950.2019.1615824 PMID: 31088312
  47. Ghovanloo MR, Shuart NG, Mezeyova J, Dean RA, Ruben PC, Goodchild SJ. Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J Biol Chem 2018; 293(43): 16546-58. doi: 10.1074/jbc.RA118.004929 PMID: 30219789
  48. Nguyen DB, Thuy Ly TB, Wesseling MC, et al. Characterization of microvesicles released from human red blood cells. Cell Physiol Biochem 2016; 38(3): 1085-99. doi: 10.1159/000443059 PMID: 26938586
  49. Ingólfsson HI, Thakur P, Herold KF, et al. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem Biol 2014; 9(8): 1788-98. doi: 10.1021/cb500086e PMID: 24901212
  50. Chen G, Chen Y, Yang N, Zhu X, Sun L, Li G. Interaction between curcumin and mimetic biomembrane. Sci China Life Sci 2012; 55(6): 527-32. doi: 10.1007/s11427-012-4317-8 PMID: 22744183
  51. Etemad L, Karimi G, Alavi MS, Roohbakhsh A. Pharmacological effects of cannabidiol by transient receptor potential channels. Life Sci 2022; 300: 120582. doi: 10.1016/j.lfs.2022.120582 PMID: 35483477
  52. Belkacemi A, Trost CF, Tinschert R, et al. The TRPV2 channel mediates Ca2+ influx and the Δ9-THC-dependent decrease in osmotic fragility in red blood cells. Haematologica 2021; 106(8): 2246-50. doi: 10.3324/haematol.2020.274951 PMID: 33596644
  53. Novotny S, Lee-Plenty N, Wallace K, et al. Acute kidney injury associated with preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome. Pregnancy Hypertens 2020; 19: 94-9. doi: 10.1016/j.preghy.2019.11.010 PMID: 31927326
  54. Bergamaschi MM, Queiroz RH, Zuardi AW, Crippa JA. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf 2011; 6(4): 237-49. doi: 10.2174/157488611798280924 PMID: 22129319
  55. Huestis MA, Solimini R, Pichini S, Pacifici R, Carlier J, Busardò FP. Cannabidiol adverse effects and toxicity. Curr Neuropharmacol 2019; 17(10): 974-89. doi: 10.2174/1570159X17666190603171901 PMID: 31161980
  56. Brown J, Winterstein A. Potential adverse drug events and drug- drug interactions with medical and consumer cannabidiol (CBD) use. J Clin Med 2019; 8(7): 989. doi: 10.3390/jcm8070989 PMID: 31288397
  57. Salama A. Drug-induced immune hemolytic anemia. Expert Opin Drug Saf 2009; 8(1): 73-9. doi: 10.1517/14740330802577351 PMID: 19236219
  58. Hesdorffer CS, Longo DL. Drug-induced megaloblastic anemia. N Engl J Med 2015; 373(17): 1649-58. doi: 10.1056/NEJMra1508861 PMID: 26488695
  59. Verrotti A, Scaparrotta A, Grosso S, Chiarelli F, Coppola G. Anticonvulsant drugs and hematological disease. Neurol Sci 2014; 35(7): 983-93. doi: 10.1007/s10072-014-1701-0 PMID: 24619070

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers