Influence of Etching Modes on the Surface Topography of Silicon Plates and Their Adhesion Properties

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In the design of a certain class of microelectromechanical systems, contact pairs are used consisting of a silicon plate and an element made of softer material. Under mechanical loading of such contacts, the adhesive interaction of the surfaces plays a significant role due to their relative smoothness. The adhesion forces in the contact of surfaces will significantly depend on their topography. The samples of electrical silicon etched in a medium of acids KO+KOH+KNO3, differing in the ratio of its components and exposure time, are studied. The condition of the surface of the samples was investigated using optical, electron and probe microscopy. The parameters of surface roughness after etching have been determined using probe microscopy. An increase in the etching time leads to an increase in the surface roughness. The concentration of acids affects the surface topography of the samples, i.e., an increase in concentration promotes the formation of a surface with a regular microrelief, close in the shape of irregularities to sinusoidal waviness. A mathematical model is proposed to assess the influence of microrelief parameters on the adhesion force in contact with a smooth elastic surface. The calculation results have shown that the height parameters of roughness have the greatest influence on the adhesion properties of the sample surfaces.

Толық мәтін

Рұқсат жабық

Авторлар туралы

О. Shcherbakova

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: shcherbakovaoo@mail.ru
Ресей, Moscow, 119526

T. Muravyeva

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: shcherbakovaoo@mail.ru
Ресей, Moscow, 119526

I. Tsukanov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: shcherbakovaoo@mail.ru
Ресей, Moscow, 119526

Әдебиет тізімі

  1. Белов Л.А. // Электроника: Наука, технология, бизнес. 2008. № 2. С. 20.
  2. Verma G., Mondal K., Gupta A. // Microelectron. J. 2021. V. 118. P. 105210. https://doi.org/10.1016/j.mejo.2021.105210
  3. Невлюдов И.Ш., Евсеев В.В., Бортникова В.О. // Технология приборостроения. 2014. № 1. С. 47.
  4. Tuan A.P., Hold L., Lacopi A., Nguyen T.-K., Cheng H.H., Dinh T., Dao D.V., Ta H.T., Nguyen N.-T., Phan H.-P. // Sensors Actuators. A. 2021. V. 317. P. 112474. https://doi.org/10.1016/j.sna.2020.112474
  5. Zhuang Y.X., Menon A. // Tribol. Lett. 2005. V. 19. № 2. P. 111. https://doi.org/10.1007/s11249-005-5088-1
  6. Svetovoy V.B., Melenev A.E., Lokhanin M.V., Palasantzas G. // Appl. Phys. Lett. 2017. V. 111. № 1. P. 011603. https://doi.org/10.1063/1.4991968
  7. Wu L., Golinval J.-C., Noels. L. // Tribol. Int. 2013. V. 57. P. 137. https://doi.org/10.1016/j.triboint.2012.08.003
  8. Ardito R., Corigliano A., Frangi A. // Eur. J. Mechan. A. 2013. V. 39. P. 144. https://doi.org/10.1016/j.euromechsol.2012.11.008
  9. Ardito R., Frangi A., Corigliano A., De Masi B., Cazzaniga G. // Microelectron. Reliab. 2012. V. 52. P. 271. https://doi.org/10.1016/j.microrel.2011.08.021
  10. Ling F.Z., De Coster J., Lin W.-Y., Witvrouw A., Celis J.-P., De Wolf I. // Sensors Actuators. A. 2012. V. 188. P. 320. https://doi.org/10.1016/j.sna.2012.01.011
  11. Balabanava N., Wierzbicki R., Zielecka M., Rymuza Z. // Microelectron. Eng. 2007. V. 84. Iss. 5–8. P. 1227. https://doi.org/10.1016/j.mee.2007.01.183
  12. Kolahdoozan M., Kiani A., Heidari P., Oveissi S. // Appl. Surf. Sci. 2019. V. 481. P. 531. https://doi.org/10.1016/j.apsusc.2019.02.252
  13. Briggs G.A.D., Briscoe B.J. // J. Phys. D. 1977. V. 10. P. 2453.
  14. Guduru P.R., Bull C. // J. Mech. Phys. Solids. 2007. V. 55. Iss. 3. P. 473. https://doi.org/10.1016/j.jmps.2006.09.007
  15. Jeong J., Chou N., Kim S. // 6th Int. IEEE/EMBS Conf. on Neural Engineering (NER). San Diego, USA, 2013. P. 911.
  16. ГОСТ 2789-73. Шероховатость поверхности. Параметры и характеристики.
  17. Maugis D. // J. Colloid Interface Sci. 1992. V. 150. P. 243. https://doi.org/10.1016/0021-9797(92)90285-T
  18. Горячева И.Г. Механика фрикционного взаимодействия. М.: Наука, 2001. 478 с.
  19. Hui C.Y., Lin Y.Y., Baney J.M., Kramer E.J. // J. Polymer Sci. B. 2001.V. 39. Iss 11. P. 1195. https://doi.org/10.1002/polb.1094
  20. Goryacheva I.G., Tsukanov I.Y. // Front. Mech. Eng. 2020. V. 6. P. 1. https://doi.org/10.3389/fmech.2020.00045

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. 1. Images of the surfaces of silicon samples 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (e) after etching, obtained using an optical microscope.

Жүктеу (90KB)
3. Fig. 2. SEM images of surfaces of samples 1 (a), 2 (b), 3 (c).

Жүктеу (33KB)
4. Fig. 3. SPM images (on the left) and profilograms of roughness (on the right) of surfaces of samples 1 (a), 2 (b), 3 (c) along the lines indicated in the images.

Жүктеу (73KB)
5. 4. The scheme of the contact problem (a) and the approximation of the Lennard–Jones potential (1) by a piecewise constant function (2) according to the Maugy–Dugdale model (b).

Жүктеу (14KB)
6. 5. Dependences of the dimensionless nominal pressure on the dimensionless average displacement of the wavy surface upon contact, taking into account the adhesive forces in the gap for samples 1 (a), 2 (b), 3 (c).

Жүктеу (3KB)

© Russian Academy of Sciences, 2025