ENHANCEMENT OF SEPARATION FLOW AND HEAT TRANSFER IN A BOOMERANG-TYPE GROOVE ON THE CHANNEL WALL
- 作者: Isaev S.A.1,2, Popov I.A.3, Nikushchenko D.V.1, Sudakov A.G.2, Klyus A.A.2, Mironov A.A.3
-
隶属关系:
- St. Petersburg State Marine Technical University
- St. Petersburg State University of Civil Aviation
- Tupolev Kazan National Research Technical University – Kazan Aviation Institute (KAI)
- 期: 编号 1 (2025)
- 页面: 75-112
- 栏目: Articles
- URL: https://rjsocmed.com/1024-7084/article/view/683782
- DOI: https://doi.org/10.31857/S1024708425010045
- EDN: https://elibrary.ru/DUJCZH
- ID: 683782
如何引用文章
详细
作者简介
S. Isaev
St. Petersburg State Marine Technical University; St. Petersburg State University of Civil Aviation
Email: isaev3612@yandex.ru
St. Petersburg, Russia; St. Petersburg, Russia
I. Popov
Tupolev Kazan National Research Technical University – Kazan Aviation Institute (KAI)Kazan, Russia
D. Nikushchenko
St. Petersburg State Marine Technical UniversitySt. Petersburg, Russia
A. Sudakov
St. Petersburg State University of Civil AviationSt. Petersburg, Russia
A. Klyus
St. Petersburg State University of Civil AviationSt. Petersburg, Russia
A. Mironov
Tupolev Kazan National Research Technical University – Kazan Aviation Institute (KAI)Kazan, Russia
参考
- Rashidi S., Hormozi F., Sunden B., Mahian O. Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications // Appl. Energy. 2019. V.259. P. 1491–1547.
- Chyu M.K., Yu Y., Ding H. Heat transfer enhancement in rectangular channels with concavities // Enhanced Heat Transfer. 1999. V. 6. P. 429–439.
- Rao Y., Li B., Feng Y. Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples // Experimental Thermal and Fluid Science. 2015. V. 61. P. 201–209.
- Ilinkov A.V., Shchukin A.V., Takmovtsev V.V., Khabibullin I.I., Zaripov I.Sh. Increasing the strength of large-scale vertical structures in diffuser dimples. J. Russian Aeronautics. 2020. V. 63. № 2. P. 278–282. https://doi.org/10.3103/S1068799820020129
- Chen Y., Chew Y.T., Khoo B.C. Enhancement of heat transfer in turbulent channel flow over dimpled surface // Int. J. Heat and Mass Transfer. 2012. V. 55. P. 8100–8121.
- Jordan C.N., Wright L.M. Heat transfer enhancement in a rectangular (AR=3:1) channel with V-shaped dimples // J. Turbomachinery. 2013. V. 135. P. 011028-1.
- Katkhaw N., Vorayos N., Kiatsiriroat T., Khunatorn Y., Bunturat D., Nuntaphan A. Heat transfer behavior of flat plate having 45 ellipsoidal dimpled surfaces // Case Stud. Therm. Eng. 2014. V. 2. P. 67–74.
- Hao Y.-P., Shao J.-K., Li Z.-Y. Thermal-hydraulic performance investigation of the cooling passage featuring the ridged V-shaped dimple // Numerical Heat Transfer, Part A: Applications, 2024. https://doi.org/10.1080/10407782.2024.2361472
- Leontiev A.I., Kiselev N.A., Vinogradov Yu.A., Strongin M.M., Zditovets A.G., Burtsev S.A. Experimental investigation of heat transfer and drag on surfaces coated with dimples of different shape // Int. J. Thermal Sciences. 2017. V. 118. P. 152–167. https://doi.org/10.1016/j.ijthermalsci.2017.04.027
- Cheng Y., Rao Y., Xie Y. Large eddy simulations and experiments on low-Reynolds-number laminar separation control for low-pressure turbine blades with oblong-dimpled surface // Aerospace Science and Technology. 2023. V. 142. 108606. https://doi.org/10.1016/j.ast.2023.108606
- Zhang P., Rao Y., Ligrani P.M. Experimental study of turbulent flow heat transfer and pressure loss over surfaces with dense micro-depth dimples under viscous sublayer // Int. J. Thermal Sciences. 2022. V. 177. № 3. 107581. https://doi.org/10.1016/j.ijthermalsci.2022.107581
- Isaev S., Gritckevich М., Leontiev А., Popov I. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall // Acta Astronautica. 2019. V. 163 (Part A). P. 202–207.
- Isaev S.A., Gritckevich M.S., Leontiev A.I., Milman O.O., Nikushchenko D.V. NT Vortex enhancement of heat transfer and flow in the narrow channel with a dense packing of inclined one-row oval-trench dimples // Int. J. Heat Mass Transf. 2019. V. 145. P. 118737.1–13.
- Isaev S.A., Leont’ev A.I., Nikushchenko D.V., Sudakov A.G., Usachov A.E. Intensification of the detached flow in a single row of inclined oval trench dimples on the wall of a narrow channel // J. Eng. Physics and Thermophysics. 2021. V. 94. №. P. 151–159.
- Isaev S.A. Genesis of anomalous intensification of separation flow and heat transfer in inclined grooves on structured surfaces // Fluid Dynamics. 2022. V. 57. №5. P. 558–570. https://doi.org/10.1134/S0015462822050081
- Isaev S.A., Guvernyuk S.V., Nikushchenko D.V., Sudakov A.G., Sinyavin A.A., Dubko E.B. Correlation between the abnormal enhancement of the separated flow and extraordinary pressure drops in the groove on the plate when the angle of inclination changes from 0 to 90о // Technical Physics Letters. 2023. V. 49. № 8. P. 33–36. https://doi.org/10.61011/TPL.2023.08.56684.19560
- Zubin M.A. and Zubkov A.F. Structure of separation flow past a cylindrical cavity in the wall of a plane channel // Fluid Dynamics. 2022. V. 57. № 1. P. 77–85. https://doi.org/10.1134/S0015462822010128
- Isaev S.A., Sudakov A.G., Nikushchenko D.V., Usachov A.E., Zubin M.A., Sinyavin A.A., Chulyunin A.Yu. and Dubko E.B. Tests for validation problems of anomalous intensification of separation flow and heat transfer on structured surfaces with extraordinary pressure differences // Fluid Dynamics. 2023. V. 58. № 5. P. 894–905. https://doi.org/10.1134/S001546282360133X
- Isaev S.A., Sapozhnikov S.Z., Nikushchenko D.V., Mityakov V.Yu., Seroshtanov V.V. and Dubko E.B. Anomalous intensification of vortex heat transfer in the case of separated air flow over an inclined groove in a hot isothermal region of a flat plate // Fluid Dynamics. 2024. V. 59. № 1. P. 45–59.
- Isaev S.A., Klyus A.A., Sudakov A.G., Nikushchenko D.V., Usachov A.E., Seroshtanov V.V., Chulyunin A.Yu. Validation test of parallelized codes in the study of flow and heat transfer anomalous enhancement in a single inclined groove on a plate // Supercomputing Frontiers and Innovations. 2024. Vol. 11. № 2. P. 4–13. https://doi.org/10.14529/js_240201
- Isaev S.A., Sudakov A.G., Nikushchenko D.V., Kharchenko V.B., Iunakov L.P. The effect of boundary conditions on the modeling of anomalous intensification of turbulent heat transfer in an inclined groove in the wall of a narrow channel // Fluid Dynamics. 2023. V. 58. № 6. P. 1004–1013. https://doi.org/10.1134/S0015462823601304
- Isaev S.A., Mil’man O.O., Klyus A.A., Nikushchenko D.V., Khmara D.S., Yunakov L.P. Anomalous heat transfer enhancement in separated flow over a zigzag-shaped dense package of inclined grooves in a channel wall at different temperature boundary conditions // Fluid Dynamics. 2024. V. 59. № 2. P. 238–259.
- Исаев С.А., Леонтьев А.И., Гортышов Ю.Ф., Попов И.А., Миронов А.А., Скрыпник А.Н., Аксянов Р.Х. Теплообменная поверхность. Патент РФ. RU 2768667 C1, МПК F28F 3/04 (2006.01). Заявка 2021115548, 31.05.2021 опубликована 24.03.2022. Бюл. № 9.
- Isaev S.A., Baranov P.A., Usachov A.E. Multiblock Computational Technologies in the VP2/3 Package on Aerothermodynamics; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013.
- Menter F.R. Zonal two equation k–ω turbulence models for aerodynamic flows // AIAA Paper. 1993. № 93–2906. 21p.
- Isaev S.A., Sudakov A.G., Baranov P.A., Zhukova Yu.V., Usachov A.E. Analysis of errors of multiblock computational technologies by the example of calculating a circulation flow in a square cavity with a moving cover at Re = 1000 // Journal of Engineering Physics and Thermophysics. 2013. V. 86. Issue 5. P.1134–1150.
- Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. Thesis submitted for the Degree of Doctor of Philosophy of the University of London and Diploma of Imperial College of Science, Technology and Medicine, 1996. 394 p.
- Van Doormaal J.P., Raithby G.D. Enhancement of the SIMPLE method for predicting incompressible fluid flow // Numerical Heat Transfer. 1984. V. 7. № 2. P. 147–163.
- Rhie C.M., Chow W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation // AIAA J. 1983. V. 21. P. 1525–1532.
- Pascau A., Garcia N. Consistency of SIMPLEC scheme in collocated grids // Proc. V European Conf. on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal, 2010. 12 p.
- Leonard B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comp. Meth. Appl. Mech. Eng. 1979. V. 19. № 1. P. 59–98.
- Van Leer B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method // J. Comp. Phys. 1979. V. 32. P. 101–136.
- Saad Y. Iterative methods for sparse linear systems. 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003. 567 p.
- Demidov D. AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method. http://amgcl.readthedocs.org/
- Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E. Influence of the Reynolds number and the spherical dimple depth on the turbulent heat transfer and hydraulic loss in a narrow channel // Int. J. Heat Mass Transfer. 2010. V. 53. № 1–3. P. 178.
- Herwig H., Kock F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems // Heat Mass Transfer. 2007. V. 43. P. 207–215.
补充文件
