CYTOLOGICAL AND BIOCHEMICAL CHARACTERISTICS OF BRONCHOALVEOLAR LAVAGE FLUID IN RATS AFTER INTRATRACHEAL INSTILLATION OF COPPER OXIDE NANO-SCALE PARTICLES
- Autores: Privalova L.I.1, Katsnelson B.A.1, Loginova N.V.1, Gurvich V.B.1, Shur V.Y.2, Beikin Y.B.3, Sutunkova M.P.1, Minigalieva I.A.1, Shishkina E.V.2, Pichugova S.V.3, Tulakina L.G.3, Beljayeva S.V.3, Rusakov V.O.1
-
Afiliações:
- Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
- The Centre for collective use «Modern Nanotechnologies», Ural Federal University
- The City Clinical Diagnostics Centre
- Edição: Nº 5 (2014)
- Páginas: 8-15
- Seção: Articles
- ##submission.datePublished##: 10.10.2014
- URL: https://rjsocmed.com/0869-7922/article/view/641380
- DOI: https://doi.org/10.15690/vramn557
- ID: 641380
Citar
Texto integral
Resumo
Stable water suspensions of copper oxide particles with the mean diameter of 20 nm and copper oxide-copper ones with the mean diameter of 340 nm were used to assess the rats pulmonary phagocytosis response to a single intratracheal instillation of 0.5 mg(1 ml) of these suspensions followed by the bronchoalveolar lavage after 24 hours with the help of optical, transmission electron, and semi-contact atomic force microscopy and a number of biochemical indices measured in the bronchoalveolar lavage fluid. It was found out that the two fractions produce an expressed toxic effect on lungs but nanoparticles appear significantly more toxic than sub-micron particles greater than 100 nm in size while the former evokes a more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes at a higher phagocytosis activity of these cells. Results obtained compared to literature data show that a high cytotoxic action of nanometer copper oxide particles may be caused both by a copper ions intracellular release at solubilization and direct contact of persistent particles internalized by phagocytes with cell organelles (primarily, mitochondria) and their injuryas well.
Palavras-chave
Sobre autores
Larisa Privalova
Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
Autor responsável pela correspondência
Email: noemail@neicon.ru
Доктор медицинских наук, профессор, заведующая лабораторией научных основ биопрофилактики ФБУН МНЦПОЗРПП. 620014, г. Екатеринбург
e-mail: privalovali@yahoo.com
RússiaBoris Katsnelson
Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
Email: noemail@neicon.ru
Доктор медицинских наук, профессор, заведующий отделом токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП. 620014, г. Екатеринбург
e-mail: bkaznelson@etel.ru
RússiaNadezhda Loginova
Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
Email: noemail@neicon.ru
Научный сотрудник лаборатории научных основа биопрофилактики ФБУН ЕМНЦПОЗРПП. 620142, г. Екатеринбург,
e-mail: loginovan@ymrc.ru
RússiaVladimir Gurvich
Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
Email: noemail@neicon.ru
Доктор медицинских наук, директор ФБУН ЕМНЦПОЗРПП; 620014, г. Екатеринбург.
e-mail: gurvich@ymrc.ru
RússiaVladimir Shur
The Centre for collective use «Modern Nanotechnologies», Ural Federal University
Email: noemail@neicon.ru
Доктор физико-математических наук, профессор, директор Центра коллективного пользования «Современные нанотехнологии», 620000, г. Екатеринбург
e-mail: vladimir.shur@usu.ru
RússiaYakov Beikin
The City Clinical Diagnostics Centre
Email: noemail@neicon.ru
Доктор медицинских наук, профессор, директор МУ «Клинико-диагностический центр», 620142, г. Екатеринбург
e-mail: kdc_boss@mail.ru
RússiaMarina Sutunkova
Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
Email: noemail@neicon.ru
Кандидат медицинских наук, старший научный сотрудник отдела токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург
e-mail: sutunkova@ymrc.ru
RússiaIlzira Minigalieva
Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
Email: noemail@neicon.ru
Кандидат биологических наук, старший научный сотрудник отдела токсикологии и биопрофилактики ФБУН ЕМНЦПОЗРПП, 620014, г. Екатеринбург
e-mail: ilzira-minigalieva@yandex.ru
RússiaEkaterina Shishkina
The Centre for collective use «Modern Nanotechnologies», Ural Federal University
Email: noemail@neicon.ru
Кандидат физико-математических наук, старший научный сотрудник Центра коллективного пользования «Современные нано технологии», 620000, г. Екатеринбург
e-mail: ekaterina.shishkina@labfer.usu.ru
RússiaSvetlana Pichugova
The City Clinical Diagnostics Centre
Email: noemail@neicon.ru
Специалист лаборатории электронной микроскопии «Клинико-диагностический центр», 620142, г. Екатеринбург
e-mail: ekb-lem@mail.ru
RússiaLudmila Tulakina
The City Clinical Diagnostics Centre
Email: noemail@neicon.ru
Кандидат медицинских наук, заведующий лабораторией электронной микроскопии «Клинико-диагностический центр», 620142, г. Екатеринбург
e-mail: tulakina@inbox.ru
RússiaSvetlana Beljayeva
The City Clinical Diagnostics Centre
Email: noemail@neicon.ru
Кандидат биологических наук, заведующий биохимической лабораторией МУ «Клинико-диагностический центр», 620142, г. Екатеринбург
e-mail: kdc_boss@mail.ru
RússiaVadim Rusakov
Ekaterinburg Medical Research Center for Prophylaxis and Health Protection of Industrial Workers
Email: noemail@neicon.ru
Аспирант ФБУН ЕМНЦ ПОЗРПП, 620014, г. Екатеринбург
e-mail: ruzakov_vo@66.rospotrebnadzor.ru
RússiaBibliografia
- Warheit D.B., Reed K.L., Sayes C.M. A role of surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicology. 2009; 3: 181–187.
- Donaldson K., Stone V., Tran C.K., Kreyling W., Borm P.J. Nanotoxicology (editorial). Occup Environ Med. 2004; 61: 727–728.
- Katsnelson B.A., Privalova L.I., Kuzmin S.V., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S., Minigalieva I.A., Kireyeva E.P., Khodos M.Y., Kozitsina A.N. et al. Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: Are we defenseless against nanoparticles? Int. J. Occup. Environ. Health. 2010; 16: 508–524.
- Katsnelson B.A., Privalova L.I., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S., Minigalieva I.A., KireyevaE.P., Kozitsina A.N., Malakhova N.A., Glazyrina J.A. et al. Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles. Cent. Eur. J. Occup. Environ. Med. 2010; 16: 47–63.
- Katsnelson B.A., Privalova L.I., Sutunkova M.P., Tulakina L.G., Pichugova S.V., Beikin J.B., Khodos M.Y. The «in vivo» interaction between iron oxide Fe3О4 nanoparticles and alveolar macrophages. Bull. Exp. Biol. Med. 2012; 152: 627–631.
- Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O.H., Shur V.Y., Beikin J.B., Sutunkova M.P., Kireyeva E.P., Minigalieva I.A., Loginova N.V. et al. Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int. J. Mol. Sci. 2013; 14: 2449–2483.
- Bastus N.G., Casals E., Socorro V.-C., Puntes V. Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology. 2008; 2: 99–112.
- Karlsson H.L., Cronholm P., Gustafsson J., Möller L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008; 21: 1726–1732.
- Xu J., Li Z., Xu P., Xiao L., Yang Z. Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Arch. Toxicol. 2013; 87: 1067–1073.
- Bondarenko O., Ivask A., Käkinen A., Kahru A. Subtoxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 2012; 169: 81–89.
- Pang C., Selck H., Misra S.K., Berhanu D., Dybowska A., Valsami-Jones E., Forbes V.E. Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum:A comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat. Toxicol. 2012; 15: 114–122.
- Studer A.M., Limbach L.K., van Duc L., Krumeich F., Athanassiou E.K., Gerber L.C., Moch H., Stark W.J. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010; 1: 169–174.
- Cronholm P., Karlsson H.L., Hedberg J., Lowe T.A., Winnberg L., Elihn K., Wallinder I.O., Möller L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small. 2013; 8: 970–982.
- Cuillel M., Chevallet M., Charbonnier P., Fauquant C., Pignot-Paintrand I., Arnaud J., Cassio D., MichaudSoret I., Mintz E. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale. 2014; 16: 1707–1715.
- Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F. et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006; 25: 109–120.
- Limbach L.K., Studer A.M., Van Duc L. et al. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010; 197(3): 169–174.
- Alarifi S., Ali D., Verma A., Alakhtani S., Ali B.A. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int. J. Toxicol. 2013; 32: 296–307.
- Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E. et al. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci. 2014;15:12379–12406.
- Privalova L.I., Katsnelson B.A., Osipenko A.B., Yushkov B.H., Babushkina L.G. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity. Environm. Health Perspect.1980; 35: 205–218.
- Katsnelson B.A., Privalova L.I. Recruitment of phagocytizing cells into the respiratory tract as a response to the cytotoxic action of deposited particles. Environ Health Perspect.1984; 55: 313–325.
- Katsnelson B.A., Konysheva L.K., Privalova L.Y., Sharapova N.Y. Quartz dust retention in rat lungs under chronic exposure simulated by a multicompartmental model: Further evidence of the key role of the cytotoxicity of quartz particles. Inhalat Toxicol. 1997; 9:703–715.
- Privalova L.I., Katsnelson B.A., Sharapova N.Y., Kislitsina N.S. On the relationship between activation and the breakdown of macrophages in pathogenesis of silicosis. Med. Lav. 1995; 86: 511–521.
- Fröhlich E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. J. Curr. Drug. Metab. 2013; 14: 976–988.
- Donaldson K., Bolton R., Jones E.A., Brown G. M., Robertson M.D., Slight J., Cowie H., Davis J. M. G. Kinetics of the bronchoalveolar leucocyte response in rats during exposure to equal airborne mass concentrations of quartz, chrysotile asbestos, or titanium dioxide.Thorax. 1988;43: 525–533.
- Zhang Q., Yukinori K., Sato K., Nakakuki K., Koyahama N., Domaldson K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J. Toxicol. and Environmental Health. 1998; 53: 423–438.
- Zhang Q., Yukinori K., Zhu X., Sato K., Mo Y., Kluz T., Donaldson K. Comparative toxicity of standard nickel and ultrafine nickel after intratracheal instillation. J. Occip. Health. 2003; 45: 23–30.
Arquivos suplementares
