Association of glutathione-S-transferase gene polymorphisms with various disease (review of foreign studies)

Cover Page

Cite item

Full Text

Abstract

Introduction. This review is devoted to the association of GSTM1, GSTT1, GSTP1 gene polymorphisms with various diseases in foreign literature sources.

Material and methods. For this article, we used data published in foreign literature over the past 11 years. medline was extensively searched for eligible studies using the Pubmed search engine, and 30 studies were eventually selected for inclusion in this review.

Results. This review showed that researchers all over the world have repeatedly tried to evaluate the relationship between GST polymorphisms and various diseases, but in some cases received conflicting results. At the same time, many studies have found an association of pathologies with both single GST gene polymorphisms and combined polymorphic variants, which indicates a complex effect of antioxidant system genes.

Limitation of the study. The limitation of this review is the lack of domestic literary sources.

Conclusion. Further research of functional polymorphisms of the GST family genes are needed to develop effective systems for the diagnosis, prevention, and treatment of diseases.

Compliance with ethical standards. This study does not require the conclusion of a biomedical ethics committee or other documents.

Contribution. All co-authors made an equal contribution to the research and preparation of the article for publication.

Conflict of interests. The authors declare no conflict of interest.

Funding. The study had no sponsorship.

Received: January 1, 2023 / Accepted: February 2, 2023 / Published: April 30, 2023

About the authors

Ivan Andreevich Bereza

Yekaterinburg Medical and Scientific Center for Prevention and Health Protection of Industrial Workers of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Author for correspondence.
Email: berezaia@ymrc.ru
ORCID iD: 0000-0002-4109-9268

Researcher, Department of Molecular Biology and Electron Microscopy, FBRI YMRC PHPIW of Rospotrebnadzor, 620014, Yekaterinburg, Russian Federation.

e-mail: ivan11011994@gmail.com

Russian Federation

Daria Ramilevna Shaikhova

Yekaterinburg Medical and Scientific Center for Prevention and Health Protection of Industrial Workers of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: darya.boo@mail.ru
ORCID iD: 0000-0002-7029-3406
Russian Federation

Anna Mikhailovna Amromina

Yekaterinburg Medical and Scientific Center for Prevention and Health Protection of Industrial Workers of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: amrominaam@ymrc.ru
ORCID iD: 0000-0001-8794-7288
Russian Federation

References

  1. Glazier A.M., Nadeau J.H., Aitman T.J. Finding Genes That Underlie Complex Traits. Science. 2002; 298 (5602): 2345–9. https://doi.org/10.1126/science.1076641
  2. Gambano G., Anglani F., D’angelo A. Association studies of genetic polymorphisms and complex disease. The Lancet. 2000; 355(9200): 308–11. https://doi.org/10.1016/S0140-6736(99)07202-5
  3. Kelly F.J. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003; 60(8): 612–6. https://doi/org/10.1136/oem.60.8.612
  4. Ray P.D., Huang B.-W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling. 2012; 24(5): 981–90. https://doi.org/10.1016/j.cellsig.2012.01.008
  5. Hayes J.D., Flanagan J.U., Jowsey I.R. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005; 45: 51–88. https://doi/org/10.1146/annurev.pharmtox.45.120403.095857
  6. Board P.G., Menon D. Structure, function and disease relevance of Omega-class glutathione transferases. Arch Toxicol. 2016; 90(5): 1049–67. https://doi.org/10.1007/s00204-016-1691-1
  7. Jozefczak M., Remans T., Vangronsveld J., Cuypers A. Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses. Int J Mol Sci. 2012; 13(3): 3145–75. https://doi.org/10.3390/ijms13033145
  8. Wormhoudt L.W., Commandeur J.N.M., Vermeulen N.P.E. Genetic Polymorphisms of Human N -Acetyltransferase, Cytochrome P450, Glutathione-S-Transferase, and Epoxide Hydrolase Enzymes: Relevance to Xenobiotic Metabolism and Toxicity. Crit Rev Toxicol. 1999; 29(1): 59–124. https://doi.org/10.1080/10408449991349186
  9. Pemble S., Schroeder K.R., Spencer S.R., Meyer D.J., Hallier E., Bolt H.M., et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994; 300(1): 271–6. https://doi.org/10.1042/bj3000271
  10. Sundberg K. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998; 19(3): 433–6. https://doi.org/10.1093/carcin/19.3.433
  11. Hu X., Xia H., Srivastava S.K., Herzog C., Awasthi Y.C., Ji X., et al. Activity of four allelic forms of glutathione s-transferase hGSTP1-1 for diol epoxides of polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun. 1997 238 (2): 397–402. https://doi.org/10.1006/bbrc.1997.7311
  12. Lefer D.J., Granger D.N. Oxidative stress and cardiac disease. Am J Med. 2000; 109 (4): 315–23. https://doi.org/10.1016/S0002-9343(00)00467-8
  13. Kelly F.J., Fussell J.C. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med. 2017; 110: 345–67. https://doi.org/10.1016/j.freeradbiomed.2017.06.019
  14. Pourkeramati A., Zare Mehrjardi E., Dehghan Tezerjani M., Seifati S.M. Association of GSTP1, GSTT1 and GSTM1 gene variants with coronary artery disease in iranian population: a case–control study. Int J Gen Med. 2020; 13: 249–59. https://doi.org/10.2147/IJGM.S252552
  15. Bhatti J.S., Vijayvergiya R., Singh B., Bhatti G.K. Genetic susceptibility of glutathione S-transferase genes (GSTM1/T1 and P1) to coronary artery disease in Asian Indians. Ann Hum Genet. 2018; 82(6): 448–56. https://doi.org/10.1111/ahg.12274
  16. Suvakov S., Jerotic D., Damjanovic T., Milic N., Pekmezovic T., Djukic T., et al. Markers of oxidative stress and endothelial dysfunction predict haemodialysis patients survival. Am J Nephrol. 2019; 50(2): 115–25. https://doi.org/10.1159/000501300
  17. Su H., Cao Y., Li J., Zhu Y., Ma X. GST null polymorphisms may affect the risk of coronary artery disease: evidence from a meta-analysis. Thromb J. 2020; 18(1): 20. https://doi.org/10.1186/s12959-020-00234-x
  18. Mendonca E., Salazar Alcala E., Fernandez-Mestre M. Role of genes GSTM1, GSTT1, and MnSOD in the development of late-onset Alzheimer disease and their relationship with APOE*4. Neurología. 2016; 31(8): 535–42. https://doi.org/10.1016/j.nrl.2014.10.012
  19. Flatow J., Buckley P., Miller B.J. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013; 74(6): 400–9. https://doi.org/10.1016/j.biopsych.2013.03.018
  20. Kim S., Kang S., Chung J-H., Park H., Cho K., Park M-S. Genetic polymorphisms of glutathione-related enzymes (GSTM1, GSTT1, and GSTP1) and schizophrenia risk: a meta-analysis. Int J Mol Sci. 2015; 16(8): 19602–11. https://doi/org/10.3390/ijms160819602
  21. Wadhwa R., Gupta R., Maurya P.K. Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr Pharm Des. 2019; 24(40): 4711–25. https://doi.org/10.2174/1381612825666190115121018
  22. Pinheiro D.S., Santos S.R., de Brito R.B., Cruz Ah Da S., Ghedini P.C., Reis A.A.S. GSTM1/GSTT1 double-null genotype increases risk of treatment-resistant schizophrenia: A genetic association study in Brazilian patients. PLOS ONE. 2017; 12(8): e0183812. https://doi.org/10.1371/journal.pone.0183812
  23. Yan C., Duan L., Fu C., Tian C., Zhang B., Shao X., et al. Association Between Glutathione S-Transferase (GST) Polymorphisms and Schizophrenia in a Chinese Han Population. Neuropsychiatr Dis Treat. 2020; 16: 479–87. https://doi.org/10.2147/NDT.S235043
  24. Klusek J., Błońska-Sikora E., Witczak B., Orlewska K., Klusek J., Głuszek S., et al. Glutathione S-transferases gene polymorphism influence on the age of diabetes type 2 onset. BMJ Open Diabetes Res Care. 2020; 8(2): e001773. https://doi.org/10.1136/bmjdrc-2020-001773
  25. Banerjee M., Vats P., Kushwah A., Srivastava N. Interaction of antioxidant gene variants and susceptibility to type 2 diabetes mellitus. Br J Biomed Sci. 2019; 76(4): 166–71. https://doi.org/10.1080/09674845.2019.1595869
  26. Barseem N., Elsamalehy M. Gene Polymorphisms of glutathione s-transferase t1/m1 in egyptian children and adolescents with type 1 diabetes mellitus. J Clin Res Pediatr Endocrinol. 2017; 9(2): 138–43. https://doi.org/10.4274/jcrpe.3690
  27. Szabo C.E., Ilieș R.F., Aioanei C.S., Catana A., Creț V., Șerban R.S., et al. The role of adiponectin, TNF-α and glutathione in the pathogenesis and evolution of type 1 diabetes. Diabetes Metab Syndr Obes Targets Ther. 2019; 12: 2303–8. https://doi.org/10.2147/DMSO.S220133
  28. Gong M., Dong W., Shi Z., Xu Y., Ni W., An R. Genetic polymorphisms of GSTM1, GSTT1, and GSTP1 with prostate cancer risk: a meta-analysis of 57 studies. PLoS ONE. 2012; 7(11): e50587. https://doi.org/10.1371/journal.pone.0050587
  29. Reszka E., Wasowicz W., Gromadzinska J. Genetic polymorphism of xenobiotic metabolising enzymes, diet and cancer susceptibility. The British Journal of Nutrition. 2006; 96(4): 609–19.
  30. Ritambhara, Tiwari S., Vijayraghavalu S., Kumar M. Genetic Polymorphisms of Xenobiotic Metabolizing Genes (GSTM1, GSTT1, GSTP1), Gene-Gene Interaction with Association to Lung Cancer Risk in North India; A Case Control Study. Asian Pacific Journal of Cancer Prevention. 2019; 20(9): 2707–14. https://doi.org/10.31557/APJCP.2019.20.9.2707
  31. Liu T., Liu W.Z., Sun Y., Bi X.H., Zhou H.F. An updated meta-analysis of the relationship between glutathione-S-transferase T1 null/presence gene polymorphism and the risk of lung cancer. J Can Res Ther. 2020; 16(4): 718-25.
  32. Zhao Y., Wang B., Hu K., Wang J., Lu S., Zhang Y., Lu W., Zhao E., Yuan L. Glutathione S-transferase θ1 polymorphism contributes to lung cancer susceptibility: a meta-analysis of 26 case-control studies. Oncol Lett. 2015; 9: 1947–53.
  33. Gao Y., Gao F., Hu T.T., Li G., Sui Y.X. Combined effects of glutathione S-transferase M1 and T1 polymorphisms on risk of lung cancer: evidence from a meta-analysis. Oncotarget. 2017; 8(17): 28135–43.
  34. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 0: 1–41.
  35. Li S., Xue F., Zheng Y., Yang P., Lin S., Deng Y., et al. GSTM1 and GSTT1 null genotype increase the risk of hepatocellular carcinoma: evidence based on 46 studies. Cancer Cell Int. 2019; 19: 76.
  36. Li Y., Cai Y., Chen H., Mao L. Clinical significance and association of GSTP1 hypermethylation with hepatocellular carcinoma: a meta-analysis. J Cancer Res Ther. 2018; 14: S486–9.
  37. Hecht F., Pessoa C.F., Gentile L.B., Rosenthal D., Carvalho D.P., Fortunato R.S. The role of oxidative stress on breast cancer development and therapy. Tumor Biol. 2016; 37(4): 4281–91.
  38. Miao L.F., Ye X.H., He X.F. Individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on breast cancer risk: a meta-analysis and re-analysis of systematic meta-analyses. PLoS One. 2020; 15(3): e0216147.
  39. Song Z., Shao C., Feng C., Lu Y., Gao Y., Dong C. Association of glutathione S-transferase T1, M1, and P1 polymorphisms in the breast cancer risk: a meta-analysis. Ther Clin Risk Manag. 2016; 12: 763–9.
  40. Kimi L., Ghatak S., Yadav R.P., Chhuani L., Lallawmzuali D., Pautu J.L., et al. Relevance of GSTM1, GSTT1 and GSTP1 gene polymorphism to breast cancer susceptibility in mizoram population, Northeast India. Biochemical Genetics. 2016; 54(1): 41–9. https://doi.org/10.1007/s10528-015-9698-5
  41. Baltruskeviciene E., Kazbariene B., Aleknavicius E., Krikstaponiene A., Suziedelis K., et al. Changes of reduced glutathione and glutathione S-transferase levels in colorectal cancer patients undergoing treatment. Ann Oncol. 2017; 28(3): 97.
  42. Song L., Yang C., He X.-F. Individual and combined effects of GSTM1 and GSTT1 polymorphisms on colorectal cancer risk: an updated meta-analysis. Bioscience Reports. 2020; 40(8): BSR20201927. https://doi.org/10.1042/BSR20201927

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bereza I.A., Shaikhova D.R., Amromina A.M.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.