EFFECTS OF FATTY ACIDS ON BINDING AND ESTERASE ACTIVITY OF ALBUMIN TOWARDS ORGANOPHOSPHORUS COMPOUNDS ACCORDING TO MOLECULAR MODELING APPROACH

Cover Page

Cite item

Full Text

Abstract

One of the urgent tasks of clinical toxicology is the development of therapy aimed at stoichiometric and/or catalytic detoxification of organophosphorus compounds in the bloodstream, which will prevent the poison’s entering the neuromuscular and neuronal synapses and help to avoid irreversible consequences of poisoning. An auxiliary option for the detoxification of organophosphorus compounds in the bloodstream may be a directed effect on albumin, the main transport protein of the blood, by means of molecules modulating its binding and/or esterase properties. The aim of the present study is to evaluate the effect of fatty acids on the binding and esterase activity of human albumin to organophosphorus compounds by molecular modeling methods on the example of paroxone and oleic acid. According to the data obtained, an increased concentration of fatty acids in the blood reduces the likelihood of paraoxon binding to albumin and pseudo-esterase reaction.

About the authors

D. A. Belinskaya

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Science

Author for correspondence.
Email: d_belinskaya@mail.ru

Belinskaia Daria Alexandrovna

194223, Saint Petersburg

Russian Federation

A. A. Batalova

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Science

Email: batalova.phys@gmail.com

Batalova Anastasia Alexandrovna

194223, Saint Petersburg

Russian Federation

N. V. Goncharov

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Science;
Research Institute of Hygiene, Occupational Pathology and Human Ecology

Email: ngoncharov@gmail.com

Goncharov Nikolay Vasil’evich

194223, Saint Petersburg, 188663, p.o. Kuz’molovsky, Leningrad Region

Russian Federation

References

  1. Peter J.V., Jerobin J., Nair A., Bennett A., Samuel P., Chrispal A. et al. Clinical profile and outcome of patients hospitalized with dimethyl and diethyl organophosphate poisoning. Clin. Toxicol. (Phila) 2010; 48: 916-23.
  2. King A.M., Aaron C.K. Organophosphate and carbamate poisoning. Emerg. Med. Clin. North Am. 2015; 33: 133-151.
  3. Sogorb M.A., Garcia-Arguelles S., Carrera V., Vilanova E. Serum albumin is as efficient as paraxonase in the detoxication of paraoxon at toxicologically relevant concentrations. Chem. Res. Toxicol. 2008; 21: 1524-9.
  4. Li B., Nachon F., Froment M.T., Verdier L., Debouzy J.C., Brasme B. et al. Binding and hydrolysis of soman by human serum albumin. Chem. Res. Toxicol. 2008; 21: 421-31.
  5. Goncharov N.V., Belinskaia D.A., Shmurak V.I., Terpilowski M.A., Jenkins R.O., Avdonin P.V. Serum albumin binding and esterase activity: mechanistic interactions with organophosphates. Molecules 2017; 22: E1201.
  6. Goncharov N.V., Belinskaya D.A., Ukolov A.I., Razygraev A.V. On the enzymatic activity of albumin. Russ. J. Bioorg. Chem. 2015; 41: 131-44 (in Russian).
  7. Duran M. Disorders of Mitochondrial Fatty Acid Oxidation and Ketone Body Handling. In: Blau N., Duran M., Blaskovics M.E., Gibson K.M., eds. Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. Berlin, Heidelberg: Springer; 2003: 309-34.
  8. Reichenwallner J., Hinderberger D. Using bound fatty acids to disclose the functional structure of serum albumin. Biochim. Biophys. Acta. 2013; 1830(12): 5382-93.
  9. Dasgupta A., Crossey M.J. Elevated free fatty acid concentrations in lipemic sera reduce protein binding of valproic acid significantly more than phenytoin. Am. J. Med. Sci. 1997; 313: 75-9.
  10. Takamura N., Shinozawa S., Maruyama T., Suenaga A., Otagiri M. Effects of fatty acids on serum binding between furosemide and valproic acid. Biol. Pharm. Bull. 1998; 21: 174-6.
  11. Vorum H., Honore´ B. Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy. J. Pharm. Pharmacol. 1996; 48: 870-5.
  12. van der Vusse G.J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet. 2009; 24(4): 300-7.
  13. Rizzuti B., Bartucci R., Sportelli L., Guzzi R. Fatty acid binding into the highest affinity site of human serum albumin observed in molecular dynamics simulation. Arch. Biochem. Biophys. 2015; 579: 18-25.
  14. Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2: 19-25.
  15. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., Hermans J. Interaction models for water in relation to protein hydration. In: Pullman B., ed. Intermolecular forces. Dordrecht: Reidel D. Publishing Company; 1981: 331-42.
  16. Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007; 126: 014101.
  17. Berendsen H.J.C., Postma J.P.M., di Nola A., van Gunsteren W.F., Haak J.R. Molecular dynamics with coupling to an external bath . J. Chem. Phys. 1984; 81: 3684-90.
  18. Darden T., York D., Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993; 3: 10089-92.
  19. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem. 1997; 8: 1463-73.
  20. Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015; 10: 449-61.
  21. Kumari R., Kumar R. Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014; 54: 1951-62.
  22. Belinskaia D.A., Taborskaya K.I., Goncharov N.V., Avdonin P.V. Modulation of the albumin– paraoxon interaction sites by fatty acids: analysis by the molecular modeling methods. Russ. J. Bioorg. Chem. 2017; 43: 359-67.
  23. Belinskaya D.A., Taborskaya K.I., Goncharov N.V., Shmurak V.I., Avdonin P.P., Avdonin P.V. In silico analysis of paraoxon binding by human and bovine serum albumin. J. Evol. Biochem. Physiol. 2017; 53: 191-9. (in Russian)
  24. Jacob R.B., Michaels K.C., Anderson C.J., Fay J.M., Dokholyan N.V. Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins. Sci. Rep. 2016; 6:37175.
  25. Yamasaki K., Hyodo S., Taguchi K., Nishi K., Yamaotsu N., Hirono S. et al. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. PLoS One 20179; 12(6): e0180404.
  26. Avci B., Bilge S.S., Arslan G., Alici O., Darakci O., Baratzada T. et al. Protective effects of dietary omega-3 fatty acid supplementation on organophosphate poisoning. Toxicol. Ind. Health. 2018; 34(2): 69-82.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Belinskaya D.A., Batalova A.A., Goncharov N.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.