NEW DATA ON THE QUESTION OF INFORMATIVENESS OF EXPERIMENTS ON CELL CULTURES FOR ASSESSMENT OF COMPARATIVE AND COMBINED TOXICITY OF METAL OXIDE NANOPARTICLES
- Authors: Bushueva T.V.1, Minigalieva I.A.1, Panov V.G.2, Kuznetsova A.N.1, Naumova A.S.1, Sutunkova M.P.1, Shur V.Y.3, Shishkina Е.V.3, Gurviсh V.B.1, Katsnelson B.A.1
-
Affiliations:
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
- Institute of Industrial Ecology, Urals Branch of the Russian Academy of Sciences
- School of Natural Sciences and Mathematics, Ural Federal University
- Issue: No 4 (2019)
- Pages: 16-22
- Section: Articles
- Published: 28.08.2019
- URL: https://rjsocmed.com/0869-7922/article/view/641175
- DOI: https://doi.org/10.36946/0869-7922-2019-4-16-22
- ID: 641175
Cite item
Full Text
Abstract
Isolated and combined damaging effects of PbO and CuO nanoparticles have been estimated on an established line of human fibroblasts using three different cytotoxicity indices based on reduction in: (a) the cellular dehydrogenase activity (MTT Assay), (b) the ATP content (Luminescent Cell Viability Assay), (c) the cellular proliferation, viability, spreading, and attachment to substrate evaluated integrally by continuous impedance-based measurement of the Normalized Cell Index. For all these indicators a clear dependence of cell damage on concentration of metal oxide nanoparticles has been demonstrated for both types of metal oxide nanoparticles, which is adequately described by the hyperbolic function, while at the same level of exposure the quantitative characteristics of cytotoxicity of PbO-NPs in comparison with CuO-NPs are similar. The latter was previously observed in the subchronic experiment on rats. The combined in vitro cytotoxicity of nanoparticles has been also described mathematically using the response surface construction methodology and found to be ambiguous, which is also consistent with the conclusions from the experiment on rats with the same nanoparticles.
Keywords
About the authors
T. V. Bushueva
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Author for correspondence.
Email: bushueva@ymrc.ru
Bushueva Tatiana Victorovna
620014, Ekaterinburg
Russian FederationI. A. Minigalieva
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: ilzira-minigalieva@yandex.ru
Minigalieva Ilzira Amirovna
620014, Ekaterinburg
Russian FederationV. G. Panov
Institute of Industrial Ecology, Urals Branch of the Russian Academy of Sciences
Email: vpanov@ecko.uran.ru
Panov Vladimir Grigorievich
620990, Ekaterinburg
Russian FederationA. N. Kuznetsova
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: alisa@ymrc.ru
Kuznetsova Alisa Nikolaevna
620014, Ekaterinburg
Russian FederationA. S. Naumova
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: naumova@ymrc.ru
Naumova Anna Sergeevna
620014, Ekaterinburg
Russian FederationM. P. Sutunkova
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: sutunkova@ymrc.ru
Sutunkova Marina Petrovna
620014, Ekaterinburg
Russian FederationV. Ya. Shur
School of Natural Sciences and Mathematics, Ural Federal University
Email: vladimir.shur@urfu.ru
Shur Vladimir Yakovlevich
620000, Ekaterinburg
Russian FederationЕ. V. Shishkina
School of Natural Sciences and Mathematics, Ural Federal University
Email: ekaterina.shishkina@labfer.usu.ru
Shishkina Ekaterina Vladimirovna
620000, Ekaterinburg
Russian FederationV. B. Gurviсh
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: gurvich@ymrc.ru
Gurvich Vladimir Borisovich
620014, Ekaterinburg
Russian FederationB. A. Katsnelson
Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: bkaznelson@etel.ru
Katsnelson Boris Aleksandrovich
620014, Ekaterinburg
Russian FederationReferences
- Minigalieva, I.A., Bushueva, T.V., Froehlich, E., Meindl C., Panov V.G, Varaksin A.N, Shur V. Ya, Shishkina E.V., Gurvivh V.B., Katsnelson B.A. Are in vivo and in vitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn3O4 nanoparticles. Food Chem. Toxicol. 2017; 109: 393-4
- Минигалиева И.А., Бушуева Т. В., Панов В. Г., Вараксин А.Н., Шур В.Я., Шишкина Е.В., Гурвич В.Б., Кацнельсон Б.А. Некоторые аспекты оценки токсичности металло- оксидных наночастиц на клеточных культурах (на примере NiO и Mn3O4). Токсикологический вестник. 205: 35-43.
- Minigalieva I.A., Bushueva, T.V., Panov V.G., Shur V. Ya, Shishkina E.V., Gurvivh V.B., Katsnelson B.A. Some aspects of metal oxide nanoparticles toxicity assessment on cell cultures as exemplified by NiO and Mn3OToxicological Review. 205: 35-43 (in Russian).
- Katsnelson B.A., Privalova L.I., Sutunkova M.P., Minigalieva IA, Gurvich V.B., Shur V.Y., et al. Experimental research into metallic and metal oxide nanoparticle toxicity in vivo, In: B. Yan, H. Zhou, J. Gardea-Torresdey (Eds.). “Bioactivity of Engineered Nanoparticles", Springer; 2017; Chapter 11: 259-319.
- Karlsson, H.L., Cronholm, P., Gustafsson, J., Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008; 21: 1726-1732.
- Studer, A.M., Limbach, L.K., van Duc, L., Krumeich, F., Athanassiou, E.K., Gerber, L.C., Moch, H., Stark, W.J. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. 2010; Lett. 1: 169-174.
- Cronholm, P., Karlsson, H.L., Hedberg, J., Lowe, T.A., Winnberg, L., Elihn, K., Wallinder, I.O., Moller, L. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small. 2013; 8: 970-982.
- Cuillel, M., Chevallet, M., Charbonnier, P., Fauquant, C., Pignot-Paintrand, I., Arnaud, J., Cassio, D., Michaud-Soret, I., Mintz, E. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale. 2014; 16: 1707-1715.
- Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E., et al. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors. Int J Mol Sci. 2014; 15: 12379-12406.
- Bondarenko, O., Ivask, A., Kakinen, A., Kahru A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 2012; 169: 81-89.
- Pang, C., Selck, H., Misra, S.K., Berhanu, D., Dybowska, A., Valsami-Jones, E., Forbes, V.E. Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: A comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat. Toxicol. 2012; 15: 114-122.
- Magaye, R., Zhao, J., Bowman, L., Ding, M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp. Ther. Med. 2012; 4: 551-561.
- Liao, M., Liu, H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ. Toxicol. Pharmacol. 2012; 34: 67-80.
- Xu, J., Li, Z., Xu, P., Xiao, L., Yang, Z. Nanosized copper oxide induces apoptosis through oxidative stress in podocytes. Arch. Toxicol. 2013; 87: 1067-1073.
- Sizova, E., Miroshnikov, S., Polyakova, V., Gluschenko, N., Skalny, A. Copper nanoparticles as modulators of apoptosis and structural changes in tissues. J. Biomater. Nanobiotechnol. 2012; 3: 97-104.
- Gomes, T., Araujo, O., Pereira, R., Almeida, A.C., Cravo, A., Bebianno, M.J. Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar. Environ. Res. 2013; 84: 51-59.
- Alarifi, S., Ali, D., Verma, A., Alakhtani, S., Ali, B.A. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int. J. Toxicol. 2013; 32: 296-307.
- Minigalieva, I.A., Katsnelson, B.A., Panov, V.G., Privalova, L.I., Varaksin, A.N., Gurvich, V.B., Sutunkova, M.P., Shur, V.Ya., Shishkina, E.V., Valamina, I.E., Zubarev, I.V., Makeyev, O.H., Meshtcheryakova, E.Y., Klinova, S.V. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017; 380: 72-93.
- Amiri, A., Mohammadi, M., Shabani, M. Synthesis and Toxicity Evaluation of Lead Oxide (PbO) Nanoparticles in Rats. Electronic J Biol. 2016; 12(2): 110-114.
- Dumkova, J., Smutna, T., Vrlikova, L., Le Coustumer, P., Vecera, Z., Docekal, B., Mikuska, P., Capka, L., Fictum, P., Hampl, A., Buchtova M. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol. 2017; 14(1):
- Miri, A., Sarani, M., Hashemzadeh, A., Mardani Z., Darroudi, M., 20Biosynthesis and cytotoxic activity of lead oxide nanoparticles. Green Chemistry Letters and Reports. 2018; 11(4): 567-572.
- Ng, D., Chu, Y., Tan, S., Wang, S., Lin, Y., Chu, C., Soo, Y., Song, Y., Chen, P. In vivo evidence of intestinal lead dissolution from lead dioxide (PbO2) nanoparticles and resulting bioaccumulation and toxicity in medaka fish. Environ. Sci.: Nano. 2019; 6: 580-5
- Cimpan, M.R, Mordal, T., Scholermann J., Allouni Z.E., Pliquett U., Cimpan, E. An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles. Journal of Physics: Conf. Ser. 2013; 429, 012026.
- Varaksin A.N., Katsnelson B.A., Panov V.G., Privalova L.I., Kireyeva E.P., Valamina I.E., et al. Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead. Food Chem Toxicol. 2014; 64: 144-156.
- Minigalieva I.A., Katsnelson B.A., Panov V.G., Varaksin A.N., Gurvich V.B., Privalova L.I., et al. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team (Russia). Toxicol Rep. 2017; 4C: 194-201.
- Privalova, L.I., Katsnelson, B.A., Osipenko, A.B., Yushkov, B.H., Babushkina, L.G. Response of a phagocyte cell system to products of macrophage breakdown as a probable mechanism of alveolar phagocytosis adaptation to deposition of particles of different cytotoxicity. Environ. Health Perspect. 1980; 35: 205-218.
Supplementary files
