INFLUENCE OF NANOCOMPOSITE Ag/AgCl ON THE CULTURE OF MICROALGAE SCENEDESMUS QUADRICAUDA AND PHAEODACTYLUM TRICORNUTUM

Cover Page

Cite item

Full Text

Abstract

The toxicity of the Ag/AgCl nanocomposite was evaluated at different concentrations in chronic experiments for 41 days using standard freshwater and marine plant test organisms of Scenedesmus quadricauda (0.05, 0.1, 0.5 and 1.0 mg/l) and Phaeodactylum tricornutum (0.25, 0.5, 1.0, and 2.0 mg/L). Comparative sensitivity of test organisms in acute experiments (72 hours) in terms of LC50 was carried out. It was established that the green alga of S. quadricauda is more sensitive to the Ag/AgCl nanocomposite (LC50 = 0.02 mg/l) than the marine diatomea P. tricornutum (LC50 = 0.3 mg/l). The greatest algicidal effect on the growth of S. quadricauda culture was provided by the nanocomposite in concentrations of 1 and 0.5 mg/l, at which the culture did not grow during the experiment. And at concentrations of 0.1 and 0.05 mg/l the algostatic effect was observed for 10 and 1 days, respectively, after which the culture resumed growth. In the culture of P. tricornutum at concentrations of 1.0 and 2.0 mg/l there was a prolonged inhibition of growth, but after 25 days at 1.0 mg/l the number of cells began to increase. In the presence of 0.5 mg/l the culture resumed growth after 4 days of lag phase and overtook the number of control. At the concentration of 0.25 mg/l the growth of P. tricornutum was either at or above the control level. The difference in the response of the two species of algae can be explained both by the individual feature of the species and by the more complex composition of the marine nutrient medium, which reduces the toxicity of the nanocomposite. According to analytical electron microscopy silver from Ag/AgCl nanocomposites within a day falls inside the cells of S. quadricauda and P. tricornutum algae, passing unimpeded both through the cell wall and the cell membrane.

About the authors

A. G. Trigub

All-Russian Research Institute of Fishery and Oceanography

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

V. I. Ipatova

M.V. Lomonosov Moscow State University

Email: noemail@neicon.ru
Russian Federation

References

  1. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3 (1):95–1
  2. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003; 27 (2–3):341–
  3. Wise J.P.Sr., Goodale B.C., Wise S.S., Craig G.A., Pongan A.F., Walter R.B. et al.Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat. Toxicol. 2010; 97:34–41.
  4. Ivask A., Elbadawy A., Kaweeteerawat C., Boren D., Fischer H., Ji Z. et al. Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver. ACS Nano. 2014; 8:374–86.
  5. Тригуб А.Г., Соколова С.А. Сравнение чувствительности пресноводных и морских гидробионтов к коллоидному серебру и нанокомпозиту Ag/AgCl в острых экспериментах. В кн.: Материалы Второй научной школы молодых ученых и специалистов по рыбному хозяйству и экологии «Комплексные исследования водных биологических ресурсов и среды их обитания». М.: ВНИРО; 20
  6. Маторин Д.Н., Тодоренко Д.А., Ленбаум В.В., Заядан Б.К. Влияние наночастиц серебра на фотосинтез зеленой водоросли Chlamydomonas reinhardtii. Вестник КазНУ. Cер. Биол. 2013; 59 (3/1):274-6.
  7. Oukarroum A., Bras S., Perreault F., Popovic R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotox. Environ. Safe. 2012; 78:80–5.
  8. Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008; 42:8959–64.
  9. Надточенко В.А., Радциг М.А., Хмель И.А. Антимикробное действие наночастиц металлов и полупроводников. Российские нанотехнологии. 2010; 5 (5–6):37–46.
  10. Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007; 73 (6):1712–20.
  11. Miao A.J., Schwehr K.A., Xu C., Zhang S.J., Luo Z.P., Quigg A. et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Pollut. 2009; 157 (11):3034−41.
  12. Miao A.J., Luo Z.P., Chen C.S., Chin W.C., Santschi P.H., Quigg A. Intracellular uptake: A possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. Plos One. 2010; 5 (12). e151
  13. Зарубина А.П., Деев Л.И., Пархоменко И.М., Паршина Е.Ю. Оценка токсичности ионов и наночастиц серебра методом биотестирования на модельном бактериальном объекте со светящимся фенотипом. Российские нанотехнологии. 2015; 10 (5–6):115-21.
  14. Piccapietra F., Allué C.G., Sigg L., Behra R. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environmental science & technology. 2012; (13):7390-7.
  15. Ipatova V.I., Spirkina N.E., Dmitrieva A G. Resistance of microalgae to colloidal silver nanoparticles. Russian Journal of Plant Physiology. 2015; 62 (2):253-61.
  16. Richards R.M.E., Odelola H.A., Anderson B. Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios. 1984; 39 (157–158): 151–7.
  17. Dibrov P., Dzioba J., Gosink K.K., Hase C.C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholera. Antimicrob Agents Chemother. 2002; 46 (8):2668–70.
  18. Holt K.B., Bard A.J. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry. 2005; 44 (39):13214–23.
  19. Park H.J., Kim J.Y., Kim J., Lee J.H., Hahn J.S., Gu M.B. et al. Silverionmediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009; 43 (4):1027–32.
  20. Xiong D., Fang T., Yu I., Zhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidativedamage. Sci. Total Environ. 2011; 409 (8):1444–52.
  21. Klaine S.J., Alvarez P.J., Batley G.E., Fernandes T.F., Handy R.D., Lyon D.Y. et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry. 2008; 27 (9):1825-51.
  22. Hu X., Cook S., Wang P., Hwang H.M. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Science of the Total Environment. 2009; 407 (8):3070-72.
  23. Szivák I., Behra R., Sigg L. Metalinduced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). Journal of Phycology. 2009; 45 (2):427-35.
  24. Lima R., Seabra A. B., Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology. 2012; 32 (11):867-79.
  25. Тригуб А.Г. Влияние коллоидного наносеребра на пресноводные и морские планктонные организмы. В кн.: Петрова М.Г., ред. Теоретические и прикладные аспекты современной науки. Белгород: ИП Петрова М.Г.; 2015:123.
  26. Xiong D., Fang T., Yu I., Zhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidativedamage. Sci. Total Environ. 2011; 409 (8):1444–52.
  27. Соколова С.А., ред. Методические указания по разработке нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения. М.: ВНИРО; 2011.
  28. Schrand A.M., Schlager J.J., Dai L., Hussai S.M. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy/ Nature protocols. 2010; 5 (4):744-
  29. Тригуб А.Г., Ипатова В.И. Особенности действия коллоидного наносеребра на организмы фито- и зоопланктона. Экологические системы и приборы. 2017; 4:38-49.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Trigub A.G., Ipatova V.I.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.