COMPARATIVE AND COMBINED TOXICITY OF ALUMINIUM, TITANIUM AND SILICON OXIDES NANOPARTICLES AND ITS ALLEVIATION WITH THE COMPLEX OF BIOPROTECTORS

Cover Page

Cite item

Full Text

Abstract

Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately or in different combinations to induce subchronic intoxications in rats. To this end, MeO-NPs had been repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before a large number of functional, biochemical and morphometric indexes for the organism’s status were measured. It was found that, in many respects, the Al2O3-NPs were the most toxic as such and the most dangerous component of the studied combinations. Mathematical modeling with the help of the Response Surface Methodology has shown that the response of the organism to a simultaneous exposure to any two of the MeO-NPs under study is characterized by all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type is estimated for as well as on the levels of the effect and dose. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two can change significantly. Many adverse effects produced by the [Al2O3-NP+TiO2-NP+SiO2-NP]-combination, including its genotoxicity, were substantially attenuated by giving to rats per os during the entire exposure period complex of innocuous bioprotective substances.

About the authors

I. A. Minigalieva

The Medical Research Center for Prophylaxis and Health Protection of Industrial Workers, Rospotrebnadzor

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

B. A. Katsnelson

The Medical Research Center for Prophylaxis and Health Protection of Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

L. I. Privalova

The Medical Research Center for Prophylaxis and Health Protection of Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

M. P. Sutunkova

The Medical Research Center for Prophylaxis and Health Protection of Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

V. B. Gurvich

The Medical Research Center for Prophylaxis and Health Protection of Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

V. Y. Shur

Ural Center for Shared Use «Modern nanotechnologies», Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: noemail@neicon.ru
Russian Federation

E. V. Shishkina

Ural Center for Shared Use «Modern nanotechnologies», Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: noemail@neicon.ru
Russian Federation

I. E. Valamina

The Central Research Laboratory, Ural State Medical University

Email: noemail@neicon.ru
Russian Federation

O. G. Makeyev

The Central Research Laboratory, Ural State Medical University

Email: noemail@neicon.ru
Russian Federation

V. G. Panov

Institute of Industrial Ecology, Ural Branch of the Russian Academy of Sciences

Email: noemail@neicon.ru
Russian Federation

A. N. Varaksin

Institute of Industrial Ecology, Ural Branch of the Russian Academy of Sciences

Email: noemail@neicon.ru
Russian Federation

S. V. Klinova

The Medical Research Center for Prophylaxis and Health Protection of Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

S. V. Solovyeva

The Medical Research Center for Prophylaxis and Health Protection of Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

E. Y. Meshtcheryakova

The Central Research Laboratory, Ural State Medical University

Email: noemail@neicon.ru
Russian Federation

References

  1. Katsnelson B.A., Privalova L.I., Degtyareva T.D., Sutunkova M.P., Yeremenko O.S., Minigalieva I.A. Experimental estimates of the toxicity of iron oxide Fe3O4 (magnetite) nanoparticles. Cent Eur J Occup Environ Med. 2010; 16: 47–63.
  2. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Khodos M.Y., Shur V.Y., Shishkina E.V., et al. Uptake of some metallic nanoparticles by, and their impact on pulmonary macrophages in vivo as viewed by optical, atomic force, and transmission electron microscopy. J Nanomed Nanotechnol. 2012; 3: 1–8.
  3. Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O. H., Shur V.Ya., Beikin Y. B., et al. Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int J Mol Sci. 2013; 14: 2449–2483.
  4. Кацнельсон Б.А., Минигалиева И.А., Привалова Л.И., Сутункова М.П., Гурвич В.Б., Шур В.Я., и др. Реакция глубоких дыхательных путей крысы на однократное интратрахеальное введение наночастиц оксидов никеля и марганца или их комбинации и ее ослабление биопротекторной премедикацией. Токсикологический вестник. 2014; 6: 8-14. /Katsnelson B.A., Minigalieva I.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V. Ya., et al. Lower airways response in rats to a single or combined intratracheal instillation of manganese and nickel nanoparticles and its attenuation with a bio-protective pre-treatment. Toksicol Vestnik. 2014; 6: 8-14 (in Russian).
  5. Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E., et al. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors. Int J Mol Sci. 2014; 15: 12379–12406.
  6. Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y., et al. Attenuation of combined nickel (II) oxide and manganese (II,III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int J of Mol Sci. 2015; 16(9): 22555-22583.
  7. Katsnelson B.A., Minigaliyeva I.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., et al. Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. J Food Chem Toxicol. 2015; 86: 351-364.
  8. Sutunkova M.P., Katsnelson B.A., Privalova L.I., Gurvich V.B., Konysheva L.K., Shur V.Ya., et al. On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. J Toxicol. 2016; 363: 19-28.
  9. Minigalieva I.A., Katsnelson B.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017; 380: 72-93.
  10. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Minigalieva I.А., Gurvich V.B., Shur V.Y., et al. Experimental research into metallic and metal oxide nanoparticle toxicity in vivo, In: B. Yan, H. Zhou, J. Gardea-Torresdey (Eds.). “Bioactivity of Engineered Nanoparticles”, Springer; 2017; Chapter 11: 259-319.
  11. Minigalieva I.A., Katsnelson B.A., Panov V.G., Varaksin A.N., Gurvich V.B., Privalova L.I., et al. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team (Russia). Toxicol Rep. 2017; 4C: 194-201.
  12. Минигалиева И.А. Некоторые закономерности комбинированной токсичности металлооксидных наночастиц. Токсикологический Вестник. 2016; 6: 18-24. / Minigalieva I.A. Some regularities of metal oxide NPs combined toxicity. Toksicol Vestnik. 2014; 6: 8-14 (in Russian).
  13. Varaksin A.N., Katsnelson B.A., Panov V.G., Privalova L.I., Kireyeva E.P., Valamina I.E., et al. Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead. Food Chem Toxicol. 2014; 64: 144–156.
  14. Katsnelson B.A., Panov V.G., Minigaliyeva I.A., Varaksin A.N., Privalova L.I., Slyshkina T.V., et al. Further development of the theory and mathematical description of combined toxicity: an approach to classifying types of action of three factorial combinations (a case study of manganese-chromiumnickel subchronic intoxication). Toxicology. 2015; 334: 33-44.
  15. Bermudez E., Mangum J.B., Wong B.A., Asgharian B., Hext P.M., Warheit D.B., et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004; 77(2): 347-57.
  16. Grassian V.H., O’Shaughnessy P.T., Adamcakova-Dodd A., Pettibone J.M., Thorne P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 2007; 115: 397–402.
  17. Park E.-J., Yoon J., Choi K., Yi J., Park K. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology. 2009; 260:37–46.
  18. Iavicoli I., Leso V., Fontana L., Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur. Rev. Med. Pharmacol. Sci. 2011; 15: 481–508.
  19. Husain M., Saber A.T., Guo C., Jacobsen N.R., Jensen K.A., Yauk C.L., et al. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicology and Applied Pharmacology. 2013; 269: 250–262.
  20. Shakeel M., Jabeen F., Iqbal R., Chaudhry A.S., Zafar S., Ali M., et al. Assessment of titanium dioxide nanoparticles (TiO2-NPs) Induced hepatotoxicity and ameliorative effects of Cinnamomum cassia in SpragueDawley rats. Biological Trace Element Research. 2017; 1-13
  21. Kreyling W.G., Holzwarth U., Haberl N., Kozempel J., Hirn S., Wenk A., et al. Quantitative Biokinetics of Titanium Dioxide Nanoparticles After Intravenous Injection in Rats: Part 1. Nanotoxicology. 2017; 11(4): 434-442.
  22. Park E.J., Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 2009; 184 (1): 18–25.
  23. Eom H.J., Choi J. Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol. In Vitro. 2009; 2 (7): 1326–1332.
  24. Kim Y.J., Yu M., Park H.O., Yang S.I. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol. Cell. Toxicol. 2010; 6(4): 336–343.
  25. Sergent J.A., Paget V., Chevillard S. Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann. Occup. Hyg. 2012; 56(5): 622–630.
  26. Tetsuka E., Shimizu Y., Teruya K., MyojinMaekawa Y., Shimamoto F., Watanabe H., et al. Liver injury induced by 30- and 50-nmdiameter silica nanoparticles. J-STAGE. 2012; 36(3): 370-375.
  27. Petrick L., Rosenblat M., Paland N., Aviram M. Silicon dioxide nanoparticles increase macrophage atherogenicity: stimulation of cellular cytotoxicity,oxidative stress, and triglycerides accumulation. Environ. Toxicol. 2016;31(6): 713–723.
  28. Ren L., Zhang J., Zou Y., Zhang L., Wei J., Shi Z., et al. Silica nanoparticles induce reversible damage of spermatogenic cells via RIPK1 signal pathways in C57 mice. Int. J. Nanomedicine. 2016; 11: 2251–2264.
  29. Murugadoss S., Lison D., Godderis L., Van Den Brule S., Mast J., Brassinne F., et al. Toxicology of silica nanoparticles: an update. Arch. Toxicol. 2017; 91(9): 2967-3010.
  30. Sutunkova M.P., Solovyeva S.N., Katsnelson B.A., Gurvich V.B., Privalova L.I., Minigalieva I.A., et al. A paradoxical response of the rat organism to longterm inhalation of silica containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology. 2017; 384: 59-68.
  31. Arul Prakash F., Dushendra Babu G.J., Lavanya M., Shenbaga Vidhya K., Devasena T. Toxicity Studies of Aluminium Oxide Nanoparticles in Cell Lines. International Journal of Nanotechnology and Applications. 2011; 5(2): 99-107.
  32. Radziun E., Dudkiewicz Wilczyńska J., Książek I., Nowak K., Anuszewska E.L., Kunicki A., et al. Assessment of the cytotoxicity of aluminum oxide nanoparticles on selected mammalian cells. Toxicol. In Vitro. 2011; 25(8): 1694-700.
  33. Park E.J., Lee G.H., Yoon C., Jeong U., Kim Y., Cho M.H., et al. Biodistribution and toxicity of spherical aluminum oxide nanoparticles. J. Appl. Toxicol. 2016; 36(3): 424-33.
  34. Panov V.G., Varaksin A.N., Minigalieva I.A., Katsnelson B.A. The Response Surface Methodology as an approach of choice to modeling and analyzing combined toxicity: theoretical premises, the most important inferences, experimental justification. Biom. Biostat. J. 2017; 1(1): 112-124.
  35. Katsnelson B.A., Panov V.G., Minigaliyeva I.A., Varaksin A.N., Privalova L.I., Slyshkina T.V., et al. Further development of the theory and mathematical description of combined toxicity: an approach to classifying types of action of three-factorial combinations (a case study of manganese-chromiumnickel subchronic intoxication). Toxicology. 2015; 334: 33-44.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y., Shishkina E.V., Valamina I.E., Makeyev O.G., Panov V.G., Varaksin A.N., Klinova S.V., Solovyeva S.V., Meshtcheryakova E.Y.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.