IMPACT ОF CHRONIC INHALATION OF LOW DOSES OF ALIPHATIC HYDROCARBONS C6-C10 ON METABOLIC PROFILES OF RATS BRAIN AND LIVER

Cover Page

Cite item

Full Text

Abstract

For the first time, the chronic inhalation effect of aliphatic hydrocarbons (HC) in low concentrations on metabolic profiles of low molecular weight organic compounds including free (FFA) and esterified (EFA) fatty acids in rats brain and liver was studied. Gas and liquid chromatography-mass spectrometry was used as analytical methods. The list of hydrocarbons includes hexane, heptane, octane, nonane and decane in various ratios. Changes in profiles of low-molecular compounds in the brain were detected under the action of a mixture of HCs in a concentration of 160 ± 20.5 mg/m3 for 90 days, while the action of the HCs mixture at lower concentrations of 31.4 ± 5.6 mg/m3 and 5.2 ± 1.08 mg/m3 only leads to minor changes in profiles. A significant increase in lysophospholipids concentrations, mainly of lysophosphatidylcholine, in the extract from the brain and blood plasma was revealed. The increase in the content of lysophospholipids in brain tissues can be considered as a consequence of the destruction of cell membranes, specific to neurodegenerative processes. At the same time, an increase in the lysophosphatidylcholine concentration in the brain is accompanied by a statistically significant decrease in the concentration of glycerol-3-phosphate and is not followed by changes in the concentrations of glycerophosphocholine, glycerophosphoethanolamine, choline, acetylcholine, FFA, or lysophosphatidic acid. It was shown that concentrations of lysophosphatidylcholine and lysophosphatidylethanamine, referred to the concentrations of glycerophosphocholine and glycerophosphoethanolamine in blood plasma, may serve as potential markers of the effect of HC on the brain.

About the authors

A. I. Ukolov

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

E. D. Kessenikh

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Email: noemail@neicon.ru
Russian Federation

T. I. Orlova

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Email: noemail@neicon.ru
Russian Federation

A. S. Radilov

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Email: noemail@neicon.ru
Russian Federation

N. V. Goncharov

Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency

Email: noemail@neicon.ru
Russian Federation

References

  1. Spencer P.S., Schaumburg H.H., Sabri M.I., Veronesi B. The enlarging view of hexacarbon neurotoxicity. Crit. Rev. Toxicol. 1980; 7: 279-356.
  2. Huang C.C. Polyneuropathy induced by n-hexane intoxication in Taiwan. Acta Neurol. Taiwan. 2008; 17: 3-
  3. Уколов А.И., Мигаловская Е.Д., Радилов А.С. Хроматомасс-спектрометрическое исследование биологических образцов крыс подвергавшихся воздействию алифатических углеводородов с числом атомов углерода от 6 до MEDLINE.RU. 2015; 16: 335-343.
  4. Simonati A., Rizzuto N., Cavanagh J.B. The Effects of 2,5-Hexanedione on Axonal Regeneration After Nerve Crush in the Rat. Acta Neuropathol. 1983; 59: 216-224.
  5. Pereira M.E., Adams A.I.H., Silva N.S. 2,5-Hexanedione inhibits rat brain acetylcholinesterase activity in vitro. Toxicol. Lett. 2004; 146: 269-274.
  6. Tshala-Katumbay D.D., Palmer V.S., Kayton R.J., Sabri M.I., Spencer P.S. A new murine model of giant proximal axonopathy. Acta Neuropathol. 2005; 109: 405-410.
  7. Yokoyama K., Araki S., Akabayashi A., Kato T., Sakai T., Sato H. Decrease of Glucose Utilization Rate in the Spinal Cord of Experimental 2,5-Hexanedione Poisoning Rats: Application of Microdetermination Technique. Industrial Health. 2000; 38: 189-194.
  8. Гончаров Н.В., Уколов А.И., Орлова Т.И., Мигаловская Е.Д., Войтенко Н.Г. Метаболомика: на пути интеграции биохимии, аналитической химии, информатики. Успехи совр. биол. 2015; 11: 3-17.
  9. Уколов А.И., Кессених Е.Д., Радилов А.С., Гончаров Н.В. Токсикометаболомика: поиск маркеров хронического воздействия низких концентраций алифатических углеводородов. Журнал эволюционной биохимии и физиологии. 201: 24-32.
  10. Уколов А.И., Орлова Т.И., Савельева Е.И., Радилов А.С. Хроматомасс-спектрометрическое определение свободных жирных кислот в плазме крови и моче с использованием экстрактивного алкилирования. Журнал аналитической химии. 2015; 9: 968-975.
  11. Орлова Т.И., Уколов А.И., Савельева Е.И., Радилов А.С. Определение свободных и этерифицированных жирных кислот в плазме крови методом газовой хроматоматографии с масс-селективным детектированием. Аналитика и контроль. 2015; 2: 183-188.
  12. Bhatt A., Khan S., Pandya K.P. Effect of Hexacarbons on Selected Lipids in Developing Rat Brain and Peripheral Nerves. J. Appl. Tox. 1988; 8; 1: 53-57.
  13. Gillies P.J., Norton R.M., Bus J.S. Inhibition of sterologenesis but not glycolysis in 2.5-hexanedione induced distal axonopathy in the rat. Toxicol. Appl. Pharm. 199: 287-292.
  14. Taranova N.P. Intensity of acetate-2- 14C incorporation into brain and spinal cord phospholipids and cholesterol of healthy guinea pigs and those poisoned with Tri-o-cresylphosphate. Bull. Exp. Biol. Med. 1976; 85: 427-429.
  15. Kharroubi W., Dhibi M., Mekni M., Haouas Z., Chreif I., Neffati F., Hammami M., Sakly R. Sodium arsenate induce changes in fatty acids profiles and oxidative damage in kidney of rats. Environ Sci Pollut Res Int. 2014; 20: 12040- 12049.
  16. Cocchi M. Tonello L. Gabrielli F. (2011). Platelet, Fatty Acids, Membrane Viscosity, Depression and Ischemic Heart Disease - Biological-Molecular Path, with Medical-Anthropology Insights. In: Coronary Angiography – Advances in Noninvasive Imaging Approach for Evaluation of Coronary Artery Disease. Editor: Branislav Baskot. InTech Ed. ISBN 978-953-307-675-1.
  17. Damiano F., Gnoni G.V., Siculella L. Functional analysis of rat liver citrate carrier promoter: differential responsiveness to polyunsaturated fatty acids. Biochem J. 2009; 42: 561-71.
  18. Su Z., Yan X.D., Li Y.J., Chen X. Effects of hydrogen peroxide on membrane fluidity and Ca(2+)-transporting ATPase activity of rabbit myocardial sarcoplasmic reticulum. Acta pharmacologica Sinica. 1993; 5: 393-396.
  19. Yehuda S., Rabinovitz S., Carasso R.L., Mostofsky D.I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging. 2002; 5: 843-853.
  20. Adedara I.A., Abolaji A.O., Odion B.E., Okwudi I.J., Omoloja A.A., Farombi E.O. Impairment of Hepatic and Renal Functions by 2,5-Hexanedione Is Accompanied by Oxidative Stress in Rats J. Toxicol. 2014; 2014: 1-9.
  21. Pereira M.E., Bordignon A.M., Bürger C., Huang C.I., Rocha J.B. Long-term treatment with 2,5-hexanedione has no effect on the specific activity of some brain and liver glycolytic enzymes of adult rats. Braz. J. Med. Biol. Res. 1924; 7: 735-740.
  22. Goel S.K., Rao G.S., Pandya K.P. Hepatotoxic effects elicited by n-hexane or n- heptane. J. Appl. Toxicol. 1988; 2: 81-84.
  23. Conquer J.A., Martin J.B., Tummon I., Watson L.T.F. Fatty acid analysis of blood serum, seminal plasma. Lipids. 1999; 34: 793-799.
  24. Разработка предельно допустимой концентрации (ПДК) смесей предельных углеводородов С1-С5 и С6-С10 в атмосферном воздухе населенных мест // Отчет о НИР / ФГУП «НИИ ГПЭЧ» ФМБА России, рук. д.м.н., проф. Радилов А.С. Санкт-Петербург, 2015 г.
  25. Dotan Y., Lichtenberg D., Pinchuk I. Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res. 2004; 43: 200-227.
  26. Suciu M., Gruia A.T., Nica D.V., Azghadi S.M., Mic A.A., Mic F.A. Acetaminophen-induced liver injury: implications for temporal homeostasis of lipid metabolism and eicosanoid signaling pathway. Chemico-Biological Interactions. 2015; 242: 335-344.
  27. Al-Assaf A.H. Preventive Effect of Corosolic Acid on Lipid Profile Against Carbon Tetrachloride-Induced Hepatotoxic Rats. Pakistan Journal of Nutrition. 2013; 8: 748-752.
  28. Kosicek M., Hecimovic S. Phospholipids and Alzheimer’s Disease: Alterations, Mechanisms and Potential Biomarkers. Int. J. Mol. Sci. 2013; 14: 1310-1322.
  29. Sun G.Y., Huang H.M., Chandrasekhar R., Lee D.Z., Sun A.Y. Effects of chronic ethanol administration on rat brain phospholipid metabolism. J. Neurochem. 1987; 48: 974-980.
  30. Morell P., Quarles R.H. Characteristic Composition of Myelin. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999.
  31. Klein J. Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm. 2000; 107: 1027-1063.
  32. Fonteh A.N., Chiang J., Cipolla M., Hale J., Diallo F., Chirino A., Arakaki X., Harrington M.G. Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J Lipid Res. 2013; 10: 2884-2897.
  33. Yung Y.C., Stoddard N.C., Mirendil H., Chun J. Lysophosphatidic Acid signaling in the nervous system. Neuron. 2015; 4: 669-682.
  34. Matas-Rico E., Moolenaar W.H., Oude Elferink R.P., Perrakis A. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling. Nat Commun. 2016; 7: 11240-11248.
  35. Divecha N., Irvine R.F. Phospholipid signalling. Cell. 1995; 80: 269-278.
  36. O’Regan M.H., Alix S., Woodbury D.J. Phospholipase A2-evoked destabilization of planar lipid membranes. Neurosci Lett. 1996; 202: 201-203.
  37. Lauber K., Bohn E., Kröber M., Xiao Y., Blumenthal S. Apoptotic Cells Induce Migration of Phagocytes via Caspase-3- Mediated Release of a Lipid Attraction Signal. Cell. 2003; 16: 717-730.
  38. Munder P.G., Modolell M., Andreesen R., Weltzien H.U., Westphal O. Lysophosphatidylcholine (lysolecithin) and its synthetic analogues. Immunemodulating and other biologic effects. Springer Seminars in Immunopathology. 1979; 2: 187-203.
  39. Bazan N.G., de Turco E.B., Allan G. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J Neurotrauma. 1912: 791-814.
  40. Pasini A.F., Stranieri C., Pasini A., Vallerio P., Mozzini C., Solani E., Cominacini M., Cominacini L., Garbin U. Lysophosphatidylcholine and Carotid Intima-Media Thickness in Young Smokers: A Role for Oxidized LDL-Induced Expression of PBMC Lipoprotein-Associated Phospholipase A2? PLoS One. 2013; 12: e83092.
  41. Bazan N.G. Effects of ischemia and electroconvulsic shock on free fatty acid pool in the brain. Biochim Biophys Acta. 19218: 1-10.
  42. Söderberg M., Edlund C., Kristensson K., Dallner G. Fatty acid composition of brain phospholipids in aging and Alzheimer’s disease. Lipids 1991; 26: 421-425.
  43. Andreoli V.M., Maffei F., Tonon G.C., Zibetti A. Significance of plasma lysolecithin in patients with multiple sclerosis: a longitudinal study. J. Neurology, Neurosurgery, and Psychiatry. 1973; 36: 661-667.
  44. Войтенко Н.Г., Прокофьева Д.С., Гончаров Н.В. Проблемы диагностики при интоксикации фосфорорганическими соединениями. Токс. Вестн. 2013; 5: 2-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Ukolov A.I., Kessenikh E.D., Orlova T.I., Radilov A.S., Goncharov N.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.