SOME PRINCIPLES AND MEANS OF INCREASING THE ORGANISM’S RESISTANCE TO ADVERSE EFFECTS OF METALCONTAINING NANOPARTICLES

Cover Page

Cite item

Full Text

Abstract

Particularly high health risks associated with impacts of metal and metal oxide nanoparticles (Me-NPs), and their presence in the occupational environment, not only in nano-industry, but also in some long-existing technologies as well necessitates to maintain levels of hazardous exposures as low as possible and also to find ways to enhance the body’s resistance to them. The article briefly discusses the theoretical background of suсh a «bio-protection». The analysis of the most significant results of experiments with different Me-NPs, shows that against the background of properly selected combinations of certain biologically active agents used in harmless doses, it can be possible to significantly weaken integral and specific toxicity and even genotoxicity of metal-containing nanoparticles.

About the authors

L. I. Privalova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

B. A. Katsnelson

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

V. B. Gurvich

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

I. A. Minigalieva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

M. P. Sutunkova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

O. H. Makeyev

Central Research Laboratory, Ural State Medical University

Email: noemail@neicon.ru
Russian Federation

I. E. Valamina

Central Research Laboratory, Ural State Medical University

Email: noemail@neicon.ru
Russian Federation

V. Y. Shur

Ural Center for Shared Use «Modern Nanothechnologies»,Ural Federal University named after B.N. Eltsin, the first President of Russia

Email: noemail@neicon.ru
Russian Federation

E. V. Grigoryeva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

S. V. Klinova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Rospotrebnadzor

Email: noemail@neicon.ru
Russian Federation

E. V. Shishkina

Ural Center for Shared Use «Modern Nanothechnologies»,Ural Federal University named after B.N. Eltsin, the first President of Russia

Email: noemail@neicon.ru
Russian Federation

References

  1. Кацнельсон Б.А., Привалова Л.И., Сутункова М.П., Гурвич В.Б., Минигалиева И.А., Логинова Н.В. и др. Основные результаты токсикологических экспериментов «ин виво» с некоторыми металлическими и металло-оксидными наночастицами. Токсикологический Вестник. 2015; 3: 26-39.
  2. Katsnelson B.A., Privalova L.I., Kuzmin S.V., Gurvich V.B., Sutunkova M.P., Kireyeva E.P. et al. An approach to tentative reference levels setting for nanoparticles in the workroom air based on comparing their toxicity with that of their micrometric counterparts: A case study of iron oxide Fe3O4. J. ISRN Nanotechnol. 2012; 2012. Available at: https://www.hindawi.com/ journals/isrn/2012/143613/
  3. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Minigalieva I.A., Gurvich V.B., Shur V.Y. et al. Is it possible to enhance the organism’s resistance to toxic effects of metallic nanoparticles? J. Toxicol. 2015; 337: 79-82.
  4. Katsnelson B.A., Kuzmin S.V., Degtyareva T.D., Privalova L.I., Soloboyeva J.I. «Biological prophylaxis» – One of the ways to proceed from the analytical environmental epidemiology to the population health protection. Cent. Eur. J. Occup. Environ. Med. 2008; 14: 41–2.
  5. Katsnelson B.A., Privalova L.I., Kuzmin S.V., Degtyareva T.D., Soloboyeva J.I. Biological Prophylaxis of Adverse Health Effects Caused by Environmental and Occupational Impacts – Theoretical Premises, Experimental and Field Testing, Practical Realization. Cent. Eur. J. Occup. Environ. Med. 2009; 14 (1-2): 35-57.
  6. Katsnelson B.A., Privalova L.I., Gurvich V.B., Kuzmin S.V., Kireyeva E.P., Minigalieva I.A. et al. Enhancing Population’s Resistance to Toxic Exposures as an Auxilliary Tool of Decreasing Environmental and Occupational Health Risks (a SelfOverview). J. of Environ. Protect. 2014; 5: 1435–49.
  7. Katsnelson B.A., Privalova L.I., Gurvich V.B., Makeyev O.H., Shur V.Y., Beikin Y.B. et al. Comparative in vivo assessment of some adverse bio-effects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver’s effects with a complex of innocuous bioprotectors. Int. J. Mol. Sci. 2013; 14: 2449–83.
  8. Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E. et al. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors. Int. J. Mol. Sci. 2014; 15: 12379–406
  9. Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Ya. et al. Attenuation of combined nickel (II) oxide and manganese (II,III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int. J. of Mol. Sci. 2015; 16 (9): 22555-83.
  10. Katsnelson B.A., Privalova L.I., Sutunkova M.P., Minigaliyeva I.A., Panov V.G., Varaksin A.N. et al. Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. J. Food Chem. Toxicol. 2015; 86: 351-64.
  11. Morosova K.I., Katsnelson B.A., Rotenberg Yu.S., Belobragina G.V. A further experimental study of the antisilicotic effect of glutamate. Br. J. Ind. Med. 1984; 41(4): 518-25.
  12. Fröhlich E. Cellular targets and mechanisms in the cytotoxic action of nonbiodegradable engineered nanoparticles. J. Curr. Drug Metab. 2013; 14: 976–88.
  13. Karki P., Lee E., Aschner M. Manganese Neurotoxicity: a Focus on Glutamate Transporters. Ann. Occup. Environ. Med. 2013; 25 (1): 4.
  14. White L.D., Cory-Slechta D.A., Gilbert M.E., Tiffany-Castiglioni E., Zawia N.H., Virgolini M. et al. New and evolving concepts of the neurotoxicology of lead. Toxicol. Appl. Pharmacol. 2007; 225: 1-27.
  15. Desole M.S., Miele M., Esposito G., Migheli R., Fresu L., De Natale G. et al. Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese. Arch. Toxicol. 1994; 68: 566-70.
  16. Привалова Л.И., Кацнельсон Б.А., Логинова Н.В., Гурвич В.Б., Шур В.Я., Макеев О.Г. и др. Пути повышения устойчивости организма к вредному действию наноматериалов на примере наносеребра и нанооксида меди. Гигиена и санитария. 2015; 94 (2): 31-5.
  17. Кацнельсон Б.А., Минигалиева И.А., Привалова Л.И., Сутункова М.П., Гурвич В.Б., Шур В.Я. и др. Реакция глубоких дыхательных путей крысы на однократное интратрахеальное введения наночастиц оксидов никеля и марганца или их комбинации и ее ослабление биопротекторной премедикацией. Токсикологический вестник. 2014; 6: 8-14.
  18. Кацнельсон Б.А., Макеев О.Г., Привалова Л.И., Сутункова М.П., Киреева Е.П., Минигалиева И.А. и др. О сравнительной генотоксичности наносеребра и нанозолота и возможности ее снижения комплексом биопротекторов. Токсикологический вестник. 2013; 2: 20-5.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Privalova L.I., Katsnelson B.A., Gurvich V.B., Minigalieva I.A., Sutunkova M.P., Makeyev O.H., Valamina I.E., Shur V.Y., Grigoryeva E.V., Klinova S.V., Shishkina E.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 81728 от 11 декабря 2013.