Generalization of Formulas for Queue Length Moments under Nonordinary Poissonian Arrivals for Batch Queues in Telecommunication Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We propose an approach for generalization of formulas previously obtained by the authors for the first and second queue length moments in a queueing system with a nonordinary Poissonian arrival flow, single server, and constant service time to the case of a variable service time. The service time is assumed to be a random variable with a finite set of values. This model is adequate for a vast class of batch transmission systems, since the batch transmission time in real-world systems can take only finitely many values.

About the authors

B. Ya. Likhttsinder

Povolzhskiy State University of Telecommunications and Informatics

Email: b.lihtcinder@psuti.ru
Samara, Russia

A. Yu. Privalov

Korolyov Samara National Research University; Povolzhskiy State University of Telecommunications and Informatics

Author for correspondence.
Email: privalov1967@gmail.com
Samara, Russia; Samara, Russia

References

  1. Лихтциндер Б.Я., Привалов А.Ю., Моисеев В.И. Неординарные пуассоновские модели трафика мультисервисных сетей // Пробл. передачи информ. 2023. Т. 59. № 1. С. 71–79. https://www.mathnet.ru/ppi2392
  2. Лихтциндер Б.Я. Трафик мультисервисных сетей доступа (интервальный анализ и проектирование). М.: Науч.-тех. изд-во «Горячая линия – Телеком», 2019. 3. Yunhua R. Evaluation and Estimation of Second-Order Self-similar Network Traffic // Comput. Commun. 2004. V. 27. № 9. P. 898–904. https://doi.org/10.1016/j.comcom.2004.02.003
  3. Privalov A.Yu., Tsarev A. Analysis and Simulation of WAN Traffic by Self-similar Traffic Model with OMNET // Proc. 10th Int. Wireless Communications and Mobile Computing Conf. (IWCMC’2014). Nicosia, Cyprus. Aug. 4–8, 2014. P. 629–634. https://doi.org/10.1109/IWCMC.2014.6906429
  4. Mill´an Naveas G., San Juan Urrutia E., Vargas Guzm´an M. A Simple Multifractal Model for Self-similar Traffic Flows in High-Speed Computer Networks // Comp. y Sist. 2019. V. 23. № 4. P. 1517–1521. https://doi.org/10.13053/cys-23-4-2831
  5. Вишневский В.М., Дудин А.Н. Системы массового обслуживания с коррелированными входными потоками и их применение для моделирования телекоммуникационных сетей // Автомат. и телемех. 2017. № 8. С. 3–59. https://www.mathnet.ru/rus/at14562

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences