Dynamics of carbon dioxide emissions from chernozem soils under the forest belt and adjacent arable land in the southern forest-steppe conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this study is to quantitatively assess the dynamics of carbon dioxide emissions from chernozems of the southern forest-steppe under different agricultural uses in the Kamennaya Steppe: under a long-living forest belt and adjacent arable lands. The studies were carried out during the 2024 growing season using the closed chamber method. It was found that the average CO₂ emission rate was significantly higher in the forest belt (2.68 ± 1.02 μmol CO₂ /m2 · s) than on arable land (1.83 ± 1.31 μmol CO₂ /m2 · s), with the exception of June. According to the results of multiple linear regression, in the forest belt area, temperature, humidity and their interaction had a significant effect on emissions (R2 = 0.750, p < 0.0001), while in the arable land, statistically significant predictors were temperature and its interaction with humidity (R2 = 0.767, p < 0.0001). An assessment of the contribution of heterotrophic and autotrophic respiration showed that in the forest belt the share of microbial respiration was more than half of the total flow (58.6%). The results obtained allow to quantitatively assess the differences in the intensity of carbon dioxide emissions from chernozems under two types of land use within the same agricultural landscape.

Full Text

Restricted Access

About the authors

S. S. Sheshnitsan

Voronezh State University of Forestry and Technologies

Author for correspondence.
Email: sheshnitsan@gmail.com
Russian Federation, 394087 Voronezh

N. S. Gorbunova

Voronezh State University of Forestry and Technologies; Voronezh State University

Email: sheshnitsan@gmail.com
Russian Federation, 394087 Voronezh; 394006 Voronezh

A. M. Bakhtin

Voronezh State University of Forestry and Technologies

Email: sheshnitsan@gmail.com
Russian Federation, 394087 Voronezh

Yu. A. Podrezova

Voronezh State University of Forestry and Technologies

Email: sheshnitsan@gmail.com
Russian Federation, 394087 Voronezh

References

  1. Кудеяров В.Н. Дыхание почв и биогенный сток углекислого газа на территории России (аналитический обзор) // Почвоведение. 2018. № 6. С. 643–658. https://doi.org/10.7868/S0032180X18060011
  2. Kopittke P.M., Dalal R.C., McKenna B.A. et al. Soil is a major contributor to global greenhouse gas emissions and climate change // Soil. 2024. V.10. P. 873–885. https://doi.org/10.5194/soil-10-873-2024
  3. Van den Bergh S.G., Chardon I., Leite M.F. A. et al. Soil aggregate stability governs field greenhouse gas fluxes in agricultural soils // Soil Biology and Biochemistry. 2024. V. 191. Art. 109354. https://doi.org/10.1016/j.soilbio.2024.109354
  4. Mukhortova L., Schepaschenko D., Moltchanova E. et al. Respiration of Russian soils: climatic drivers and response to climate change // Science of the Total Environment. 2021. V. 785. Art. 147314. https://doi.org/10.1016/j.scitotenv.2021.147314
  5. Lisetskii F.N., Buryak Z.A., Marinina O.A. et al. Features of soil organic carbon transformations in the southern area of the East European Plain // Geosciences. 2023. V. 13. № 9. Art. 278. https://doi.org/10.3390/geosciences13090278
  6. Amadi C.C., Van Rees K.C.J., Farrell R. E. Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in shelterbelts compared with adjacent cropped fields // Agriculture, Ecosystems & Environment. 2016. V. 223. P. 123–134. https://doi.org/10.1016/j.agee.2016.02.026
  7. Турусов В.И., Чевердин Ю.И., Беспалов В.А. и др. Изменения физических свойств черноземов сегрегационных в агролесоландшафтах Центрального Черноземья // Изв. вузов. Лесной журнал. 2020. № 4. С. 95–112. https://doi.org/10.37482/0536-1036-2020-4-95-112
  8. Чевердин Ю.И., Беспалов В.А., Титова Т.В. Изменение показателей эффективного плодородия почв Каменной степи под влиянием лесных полос различной ландшафтной принадлежности // Агрохимия. 2023. № 9. С. 3–13. https://doi.org/10.31857/S0002188123090041
  9. Чевердин Ю.И., Чевердин А.Ю. Современное соленакопление в черноземах под старовозрастными лесополосами Каменной степи // Агрохимия. 2022. № 2. С. 65–75. https://doi.org/10.31857/S0002188122020053
  10. Чендев Ю.Г., Соэр Т.Д., Геннадиев А.Н. и др. Накопление органического углерода в черноземах (моллисолях) под полезащитными лесными насаждениями в России и США // Почвоведение. 2015. № 1. С. 49–60. https://doi.org/10.7868/S0032180X15010037
  11. Чендев Ю.Г., Геннадиев А.Н., Лукин С.В. и др. Изменение лесостепных черноземов под влиянием лесополос на юге Среднерусской возвышенности // Почвоведение. 2020. № 8. С. 934–947. https://doi.org/10.31857/S0032180X20080031
  12. Ананьева Н.Д., Сушко С.В., Иващенко К.В. и др. Микробное дыхание почв подтайги и лесостепи европейской части России: полевой и лабораторный подходы // Почвоведение. 2020. № 10. С. 1276–1286. https://doi.org/10.31857/S0032180X20100044
  13. Звягинцева Е.Н., Семенова Ю.В. Современные климатические изменения и их взаимосвязь с эмиссией CO₂ в агроэкосистемах на агросерой почве лесостепи Прибайкалья // Сибирский экологический журнал. 2015. № 3 (22). С. 461–467. https://doi.org/10.15372/SEJ20150313
  14. Семенов В.М., Когут Б.М., Зинякова Н.Б. и др. Биологически активное органическое вещество в почвах европейской части России // Почвоведение. 2018. № 4. С. 457–472. https://doi.org/10.7868/S0032180X1804007X
  15. Замолодчиков Д.Г., Каганов В.В., Мостовая А.С. Влияние лесных посадок на эмиссию диоксида углерода из почвы в Поволжье и Подонье // Лесоведение. 2022. № 4. С. 339–350. https://doi.org/10.31857/S0024114822040118
  16. Amadi C. C., Farrell R. E., Van Rees K. C. J. Greenhouse gas emissions along a shelterbelt-cropped field transect // Agriculture, Ecosystems & Environment. 2017. V. 241. P. 110–120. https://doi.org/10.1016/j.agee.2016.09.037
  17. Rudd L., Kulshreshtha S., Belcher K. et al. Carbon life cycle assessment of shelterbelts in Saskatchewan, Canada // Journal of Environmental Management. 2021. V. 297. Art. 113400. https://doi.org/10.1016/j.jenvman.2021.113400
  18. Szajdak L. W., Gaca W., Augustin J. et al. Impact of shelterbelts on oxidation-reduction properties and greenhouse gases emission from soils // Ecological Chemistry and Engineering S. 2018. V. 25. № 4. P. 643–658. https://doi.org/10.1515/eces-2018-0043
  19. Kurganova I.N., Karelin D.V., Kotlyakov V.M. et al. A pilot national network for monitoring soil respiration in Russia: first results and prospects of development // Doklady Earth Sciences. 2024. V. 519. № 1. P. 1947–1954. https://doi.org/10.1134/S1028334X24603377
  20. Кулакова Е.Н., Шешницан С.С., Кулаков В.Ю. и др. Тенденции смены породного состава лесомелиоративных насаждений Каменной степи (на примере вековой лесной полосы Г.Ф. Морозова) // Политематический сетевой электронный научный журнал Кубанского гос. аграрного ун-та. 2023. № 192. С. 69–82. https://doi.org/10.21515/1990-4665-192-006
  21. Курганова И.Н., Гончарова О.Ю., Замолодчиков Д. Г. и др. Определение эмиссии CO₂ из почв камерным методом в различных типах экосистем (краткая инструкция). Пущино, 2023. 18 с.
  22. Евдокимов И.В., Ларионова А.А., Шмитт М. и др. Определение вклада дыхания корней растений в эмиссию CO₂ из почвы методом субстрат-индуцированного дыхания // Почвоведение. 2010. № 3. С. 349–355.
  23. Карелин Д.В., Замолодчиков Д.Г., Каганов В.В. и др. Микробная и корневая составляющие дыхания дерново-подзолистых почв южной тайги // Лесоведение. 2017. № 3. С. 183–195.
  24. Tanaka S., Tanizawa T., Sano H. et al. Studies on the preventive function of wood-belt against frost damage (1). Preventive function of wood-belt against frost damage on level ground // Journal of Agricultural Meteorology. 1957. V. 12. № 3. P. 97–100. https://doi.org/10.2480/agrmet.12.97
  25. Wu Y., Wang Q., Wang H. et al. Shelterbelt poplar forests induced soil changes in deep soil profiles and climates contributed their inter-site variations in dryland regions, Northeastern China // Frontiers in Plant Science. 2019. V. 10. Art. 220. https://doi.org/10.3389/fpls.2019.00220
  26. Feng J., He K., Zhang Q. et al. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems // Global Change Biology. 2022. V. 28. № 10. P. 3426–3440. https://doi.org/10.1111/gcb.16107
  27. Shao P., Liang C., Lynch L. et al. Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers // Soil Biology and Biochemistry. 2019. V. 131. P. 182–190. https://doi.org/10.1016/j.soilbio.2019.01.012
  28. Hursh A., Ballantyne A., Cooper L. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale // Global Change Biology. 2017. V. 23. P. 2090–2103. https://doi.org/10.1111/gcb.13489
  29. Guntiñas M., Gil-Sotres F., Leirós M. et al. Sensitivity of soil respiration to moisture and temperature // Journal of Soil Science and Plant Nutrition. 2013. V. 13. P. 445–461. https://doi.org/10.4067/S0718-95162013005000035
  30. Widanagamage N., Santos E., Rice C., Patrignani A. Study of soil heterotrophic respiration as a function of soil moisture under different land covers // Soil Biology and Biochemistry. 2024. V. 200. Art. 109593. https://doi.org/10.1016/j.soilbio.2024.109593

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of average daily air temperature (dashed curve) and average daily precipitation (columns) during March – September 2024 according to data from the Kamennaya Steppe AMS.

Download (251KB)
3. Fig. 2. Dynamics of carbon dioxide emissions from chernozems under the forest belt (LB) and arable land (P) in Kamennaya Steppe during the 2024 growing season: median is the middle line, 25th and 75th quartiles are the box, whiskers are the minimum and maximum values. The significance level of differences according to the results of the Mann-Whitney U test: * p < 0.05, ** p < 0.001, *** p < 0.0001.

Download (150KB)
4. Fig. 3. Comparison of carbon dioxide emissions from chernozems under the forest belt (LB) and arable land (P) in Kamennaya Steppe (a) in different experimental variants and the microbial respiration enhancement coefficient (b). Experimental variants: K – with roots, BC – without roots, I – original soil (control), +B – soil with the addition of distilled water, +B+C – soil with the addition of a glucose solution in distilled water. The significance level of differences according to the t-test results: * p < 0.05, ** p < 0.0001.

Download (131KB)

Copyright (c) 2025 Russian Academy of Sciences