Artificial blood vessels based on Russian fluoropolymers: pilot study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Artificial blood vessels made from fluoropolymer using electrospinning have high biocompatibility. They have unique combinations of strength, chemical resistance, and open interconnected porosity. This provides favourable conditions for endothelialization. The aim of this study is to investigate the structures and properties of these artificial vessels, formed from Russian fluoropolymer materials such as poly(tetrafluoroethylene), copolymers of vinidene fluoride and tetraflouroethylene, and polyvinylidenefluoroide. Depending on the fluoropolymer used, structural characteristics of vessel walls, surface free energies, strengths, elongations, and interactions with human mesenchymal stem cells are investigated. It has been demonstrated that a copolymer of vinidenedifluoride with tetraflouroethylene represents the most promising material for vessel manufacturing using electrospinning technology.

About the authors

O. V. Kukartseva

National Research Tomsk Polytechnic University; Zueva Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

V. M. Buznik

National Research Tomsk State University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

E. Y. Melnik

National Research Tomsk Polytechnic University; Zueva Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

A. I. Mishanin

Almazov National Medical Research Center, Ministry of Health of the Russian Federation

Email: Ftoroplast@tpu.ru
Saint Petersburg, Russia

A. S. Golovkin

Almazov National Medical Research Center, Ministry of Health of the Russian Federation

Email: Ftoroplast@tpu.ru
Saint Petersburg, Russia

E. N. Bolbasov

National Research Tomsk Polytechnic University; Zueva Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

References

  1. Kumar V. A., Brewster L. P., Caves J.M., Chaikof E.L. // Cardiovasc. Eng. Technol. 2011. V. 2. P. 137. https://doi.org/10.1007/s13239-011-0049-3
  2. Kochervinskii V.V., Gradov O.V., Gradova M.A. // Russ. Chem. Rev. 2022. V. 91. №11. RCR5037. https://doi.org/10.57634/RCR5037
  3. Durán-Rey D., Sánchez-Rumboet C., Brito-Pereira R. et al. // British J. Surg. 2025. V. 112. Issue Suppl. 2. https://doi.org/10.1093/bjs/znae322.012
  4. Wenbin Sun, Chuang Gao, Huazhen Liu et al. // ACS Biomat. Sci. Eng. 2024. V.10. № 5. P. 2805. https://doi.org/10.1021/acsbiomaterials.3c01989
  5. Zhou Siqi, Liu Yulu, Yu Xueke et al. // ACS Appl. Bio Mater. 2024. V.7. № 10. P. 6985. https://doi.org/10.1021/acsabm.4c01098
  6. Mel’nik E.Y., Martynov G.A., Lozovskii M.S. et al. // Biomed. Eng. 2025. V. 58. P. 397. https://doi.org/10.1007/s10527-025-10443-1
  7. Melnik E., Stankevich K., Zinovyev A. et al. // J. Fluor. Chem. 2022. V. 264. P. 110062 https://doi.org/10.1016/j.jfluchem.2022.110062
  8. Goreninskii S., Yuriev Y., Runts A. et al. // Polymers. 2024. V. 16. P. 3524. https://doi.org/10.3390/polym16243524
  9. Shershnev I.V., Kopylov A.S., Cherkasova A. V., Solovieva A.B. // Russ. J. Phys. Chem. B. 2022. V. 16. № 7. P. 1277. https://doi.org/10.1134/S1990793122070156
  10. Dongfang Wang, Yiyang Xu, Qian Li, Lih-Sheng Turng // J. Mater. Chem. B. 2020. V. 8. P. 1801. https://doi.org/10.1039/C9TB01849B
  11. Vorobyev A. O., Kulbakin D. E, Chistyakov S. G. et al. // Chem. Phys. Polym. Mater. 2024. V. 17 P. 1316. https://doi.org/10.1134/S1990793123060106
  12. Hamed Amani, Hamidreza Arzaghi, Mehrdad Bayandori et al. // Adv. Mater. Interfaces. 2019. V. 6. № 13. P. 1900572. https://doi.org/10.1002/admi.201900572

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences