Theta-band oscillatory responses to the onset and offset of cyclic sound motion

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this study, wavelet analysis of EEG was performed during cyclic motion of auditory stimuli. EEG was recorded during passive listening to stimuli designed to model binaural beats by means of cyclic changes in interaural time differences (ΔT). We analyzed the changes in event-related spectral perturbation (ERSP) and phase coherence (ITC) of oscillatory activity underlying the responses to motion onset (motion-onset response, MOR) and motion offset (omitted-stimulus response, OSR). In the response to motion onset, the ERSP and ITC of theta oscillations were highest when the stimulus was near the head midline, and decreased when the stimulus was 45 or 90 deg away from the midline. Right-hemispheric ERSP and ITC were most sensitive to the motion onset position. Responses to motion offset were similar for all spatial positions of the stimulus, and were mainly generated by the phase synchronization (ITC) of theta oscillations that continued after the motion offset.

Texto integral

Acesso é fechado

Sobre autores

L. Shestopalova

Pavlov Institute of Physiology, RAS

Autor responsável pela correspondência
Email: shestopalovalb@infran.ru
Rússia, Saint-Petersburg

Е. Petropavlovskaia

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
Rússia, Saint-Petersburg

P. Letyagin

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
Rússia, Saint-Petersburg

D. Salikova

Pavlov Institute of Physiology, RAS

Email: shestopalovalb@infran.ru
Rússia, Saint-Petersburg

Bibliografia

  1. Варфоломеев А.Л., Старостина Л.В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа. Рос. физиол. журн. им. Сеченова. 2006. 92 (9): 1046–1057.
  2. Шестопалова Л.Б., Петропавловская Е.А. 2024. Вызванные потенциалы на движение звуковых стимулов при межушных различиях по интенсивности. Журн. высш. нерв. деят. им. И.П. Павлова. 2024. 74 (3): 311–323.
  3. Шестопалова Л.Б., Петропавловская Е.А., Семенова В.В., Никитин Н.И. Ритмическая активность мозга человека, связанная с движением звуковых стимулов. Журн. высш. нерв. деят. им. И.П. Павлова. 2020. 70 (5): 616–634.
  4. Шестопалова Л.Б., Петропавловская Е.А., Летягин П.И., Саликова Д.А. Вызванные потенциалы при циклическом движении звукового сигнала. Журн. высш. нерв. деят. им. И.П. Павлова. 2025. №3 (в печати).
  5. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Летягин П.И. Воспринимаемые траектории циклического движения звуковых образов. Сенсорные системы. 2024a. 38 (3): 51–62.
  6. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Летягин П.И. Локализация точек поворота при ритмическом движении звукового образа. Физиология человека. 2024b. 50 (5): 3–12.
  7. Шестопалова Л.Б., Семенова В.В., Петропавловская Е.А. Вызванный
  8. ответ мозга человека на начало движения звука (motion-onset response). Успехи Физиол. наук. 2024с. 55 (3): 22–44.
  9. Ahissar M.V., Ahissar E., Bergman H., Vaadia E. Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J. Neurophysiol. 1992. 67: 203–15.
  10. Akeroyd M.A. A binaural beat constructed from a noise. J. Acoust. Soc. Am. 2010. 128: 3301–4.
  11. Auksztulewicz R., Rajendran V.G., Peng F., Schnupp J.W.H., Harper N.S. Omission responses in local field potentials in rat auditory cortex. BMC Biology. 2023. 21 (1):130.
  12. Bernstein L.R., Trahiotis C., Akeroyd M.A., Hartung K. Sensitivity to brief changes of interaural time and interaural intensity. J. Acoust. Soc. Am. 2001. 109 (4): 1604–1615.
  13. Braga A., Schönwiesner M. Neural substrates and models of omission responses and predictive processes. Front. Neural Circuits. 2022. 16: 799581.
  14. Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for Opponent Process Analysis of Sound Source Location in Humans. J. Assoc. Res. Otolaryngol. 2013. 14 (1): 83–101.
  15. Carlile S., Leung J. The perception of auditory motion. Trends Hear. 2016. 20: 1–19.
  16. Carlini A., Bordeau C., Ambard M. Auditory localization: a comprehensive practical review. Front Psychol. 2024.15: 1408073.
  17. Demarchi G., Sanchez G., Weisz N. Automatic and feature-specific prediction-related neural activity in the human auditory system. Nat. Commun. 2019. 10: 3440.
  18. Forseth K.J., Hickok G., Rollo P.S., Tandon N. Language prediction mechanisms in human auditory cortex. Nature commun. 2020.11: 5240.
  19. Garcia-Argibay M., Santed M.A., Reales J.M. Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis. Psychol. Res. 2019. 83(2): 357–372.
  20. Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia. 2009. 47: 2625–2633.
  21. Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages. Eur. J. Neurosci. 2011. 33: 1339–1350.
  22. Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hear Res. 2010. 259: 44–54.
  23. Getzmann S., Lewald J. Cortical processing of change in sound location: smooth motion versus discontinuous displacement. Brain Res. 2012. 1466: 119–127.
  24. Grantham D.W., Wightman F.L. Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 1978. 63: 511–523.
  25. Hauswald A., Benz K.R., Hartmann T., Demarchi G., Weisz N. Carrier-frequency specific omission-related neural activity in ordered sound sequences is independent of omission predictability. Eur. J. Neurosci. 2024. 60: 3812–3820.
  26. Hirnstein M., Hausmann M., Lewald J. Functional cerebral asymmetry in auditory motion perception. Laterality. 2007. 12: 87–99.
  27. Ingham N.J., Hart H.C., McAlpine D. Spatial receptive fields of inferior colliculus neurons to auditory apparent motion in free field. J. Neurophysiol. 2001. 85: 23–33.
  28. Karamürsel S., Bullock T.H. Human auditory fast and slow omitted stimulus potentials and steady-state responses. Int. J. Neuroscience. 2000. 100: 1-20.
  29. Kreitewolf J., Lewald J., Getzmann S. Effect of attention on cortical processing of sound motion: An EEG study. NeuroImage. 2011. 54: 2340–2349.
  30. Krumbholz K., Eickhoff S.B., Fink G.R. Feature- and object-based attentional modulation in the human auditory «where» pathway. J. Cogn. Neurosci. 2007a. 19: 1721–1733.
  31. Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J. Neurophysiol. 2007b. 97: 1649–1655.
  32. Lao-Rodríguez A.B., Przewrocki K., Pérez-González D., Alishbayli A., Yilmaz E., Malmierca M.S., Englitz B. Neuronal responses to omitted tones in the auditory brain: A neuronal correlate for predictive coding. Sci. Adv. 2023. 9(24): eabq8657.
  33. Lewald J., Staedtgen M., Sparing R., Meister I.G. Processing of auditory motion in inferior parietal lobule: Evidence from transcranial magnetic stimulation. Neuropsychologia. 2011. 49: 209–215.
  34. Magezi D.A., Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J Neurophysiol. 2010. 104: 1997–2007.
  35. Malone B.J., Scott B.H., Semple M.N. Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J. Neurosci. 2002. 22: 4625–4638.
  36. McAlpine D., Jiang D., Shackleton T.M., Palmer A.R. Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation. J. Neurophysiol. 2000. 83: 1356–65.
  37. Neophytou D., Arribas D.M., Arora T., Levy R.B., Park I.M., Oviedo H.V. Differences in temporal processing speeds between the right and left auditory cortex reflect the strength of recurrent synaptic connectivity. PLoS Biol. 2022. 20(10): e3001803.
  38. Obleser J., Kayser C. Neural entrainment and attentional selection in the listening brain. Trends in Cognitive Sciences. 2019. 23(11): 913–926.
  39. Ozmeral E.J., Eddins D.A., Eddins A.C. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences. J. Neurophysiol. 2019. 122(2): 737–748.
  40. Perrott D.R., Musicant A.D. Minimum audible movement angle: Binaural localization of moving sound sources. J. Acoust. Soc. Am. 1977. 62 (6): 1463–1466.
  41. Saberi K., Hickok G. Forward entrainment: Psychophysics, neural correlates, and function. Psychon. Bull. Rev. 2023. 30(3): 803–821.
  42. Salminen N.H., Tiitinen H., May P.J.C. Auditory Spatial Processing in the Human Cortex. Neuroscientist. 2012. 18 (6): 602–612.
  43. SanMiguel I., Saupe K., Schröger E. I know what is missing here: electrophysiological prediction error signals elicited by omissions of predicted “what” but not “when”. Front. Hum. Neurosci. 2013. 7. Article 407.
  44. Shestopalova L.B., Petropavlovskaia E.A., Vaitulevich S.Ph., Nikitin N.I. Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion. Neuropsychologia. 2016. 91: 465–479.
  45. Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Brain Oscillations evoked by sound motion. Brain Research. 2021a. 1752: 147232.
  46. Shestopalova L.B., Petropavlovskaia E.A., Semenova V.V., Nikitin N.I. Lateralization of brain responses to auditory motion: A study using single-trial analysis. Neurosci. Res. 2021b. 162: 31–44.
  47. Teshiba T.M., Ling J., Ruhl D.A., Bedrick B.S., Peña A., Mayer A.R. Evoked and intrinsic asymmetries during auditory attention: implications for the contralateral and neglect models of functioning. Cereb. Cortex. 2013. 23 (3): 560–569.
  48. Vilà-Balló A., Marti-Marca A., Torralba M., Soto-Faraco S., Pozo-Rosich P. The influence of temporal unpredictability on the electrophysiological mechanisms of neural entrainment. Psychophysiol. 2022. 59(11): e14108.
  49. Yaron A., Shiramatsu-Isoguchi T., Kern F.B., Ohki K., Takahashi H., Chao Z.C. Omission-responsive neurons encode negative prediction error and probability in the auditory cortex. bioRxiv. 2024.09.09.612166. doi.org/10.1101/2024.09.09.612166.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Stimulus structure, ERPs to the motion onset and offset, layout of the recording sites. (a) – the structure of the dichotic stimulus within a single trial. X axis is time (ms), Y axis is interaural delay (ITD, μs). Dashed rectangles outline 500-ms time intervals (100 ms before and 400 ms after) around the events under consideration. (б) – left panel shows the ERPs elicited by the first ITD change at 500 ms after the motion onset (MOR), right panel shows the ERPs elicited by omission of motion at 8500 ms after 8 cyclic location changes (OSR). Curves of different shades represent responses for the three angular positions relative to the head midline. The ERPs were averaged between symmetric left-side and right-side stimuli, over the central electrode cluster and across all subjects (n = 22). (в) – dashed lines highlight the electrode clusters used for analysis.

Baixar (243KB)
3. Fig. 2. Difference wavelet spectrograms of brain activity at the onset of cyclic motion (n = 22), scalp distributions, and dynamics of theta rhythm. A, Б, B: time frequency representations of spectral perturbation (ERSP). Г, Д, Е: time frequency representations of phase coherence (ITC). (a) and (г) – difference wavelet spectrograms of activity over eight frontocentral electrodes (8Ц). The white line indicates the motion onset, and the black rectangle outlines the frequency and time windows used for averaging; (б) and (д) – topographies of ERSP and ITC of theta-oscillations (4 to 7 Hz), averaged over a 100-ms time windows. Dashed arrows indicate the direction of sound motion; (в) and (е) – grand-averaged curves of theta-ERSP and theta-ITC (n = 22) at three angular positions of motion onset (0, 45, and 90 deg), over three electrode clusters (left: 5Л, central: 8Ц, right: 5П).

Baixar (371KB)
4. Fig. 3. Difference wavelet spectrograms of brain activity at the offset of cyclic motion (n = 22), scalp distributions, and dynamics of theta rhythm. The panel arrangement and labels are the same as in Fig. 2. The white line on the wavelet spectrograms indicates the time of the motion offset.

Baixar (395KB)
5. Fig. 4. The effect of motion onset position on the ERSP and ITC of theta oscillations in three electrode clusters. Dashed and solid lines indicate statistically significant differences (p < 0.05 and p < 0.01, respectively).

Baixar (83KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025