Resting-state Network Functional Organization in Temporal Lobe Epilepsy: Effects of Comorbid Depression
- Authors: Ierusalimsky N.V.1,2, Karimova E.D.1, Samotaeva I.S.1,2, Luzin R.V.2, Zinchuk M.S.2, Rieder F.K.2, Guekht A.B.2,3
-
Affiliations:
- Laboratory of Applied Human Higher Nervous Activity Physiology, Institute of Higher Nervous Activity and Neurophysiology, RAS
- Moscow Research and Clinical Center for Neuropsychiatry
- Pirogov Russian National Research Medical University
- Issue: Vol 75, No 6 (2025)
- Pages: 678-694
- Section: ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ (КОГНИТИВНОЙ) ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
- URL: https://rjsocmed.com/0044-4677/article/view/696421
- DOI: https://doi.org/10.31857/S0044467725060021
- ID: 696421
Cite item
Abstract
This study aimed to investigate resting-state network functional connectivity in patients with temporal lobe epilepsy (TLE) with and without comorbid depression. Using resting-state functional magnetic resonance imaging (rs-fMRI) and the XCP-D software package, we assessed functional connectivity between nodes of major resting-state neural networks: the default mode network (DMN), salience network (SN), dorsal attention network (DAN), somatomotor network (SMN), and frontoparietal control network (FPCN). The study included 77 patients with TLE (36 with depression, 41 without) and 48 healthy controls. Compared with both TLE without depression and healthy controls, patients with TLE and depression demonstrated decreased functional connectivity between key nodes of the SN, DAN, and DMN. In contrast, TLE without depression was characterized by increased connectivity between nodes of the DMN, FPCN, and SMN. A common feature for both TLE groups was increased connectivity between prefrontal nodes of the DMN and FPCN. These findings suggest distinct mechanisms of network reorganization in TLE depending on the presence of comorbid depression and highlight the importance of an integrative neuroimaging approach to epilepsy research.
About the authors
N. V. Ierusalimsky
Laboratory of Applied Human Higher Nervous Activity Physiology, Institute of Higher Nervous Activity and Neurophysiology, RAS; Moscow Research and Clinical Center for Neuropsychiatry
Author for correspondence.
Email: e.d.karimova@gmail.com
Moscow, Russia; Moscow, Russia
E. D. Karimova
Laboratory of Applied Human Higher Nervous Activity Physiology, Institute of Higher Nervous Activity and Neurophysiology, RAS
Email: e.d.karimova@gmail.com
Moscow, Russia
I. S. Samotaeva
Laboratory of Applied Human Higher Nervous Activity Physiology, Institute of Higher Nervous Activity and Neurophysiology, RAS; Moscow Research and Clinical Center for Neuropsychiatry
Email: e.d.karimova@gmail.com
Moscow, Russia; Moscow, Russia
R. V. Luzin
Moscow Research and Clinical Center for Neuropsychiatry
Email: e.d.karimova@gmail.com
Moscow, Russia
M. S. Zinchuk
Moscow Research and Clinical Center for Neuropsychiatry
Email: e.d.karimova@gmail.com
Moscow, Russia
F. K. Rieder
Moscow Research and Clinical Center for Neuropsychiatry
Email: e.d.karimova@gmail.com
Moscow, Russia
A. B. Guekht
Moscow Research and Clinical Center for Neuropsychiatry; Pirogov Russian National Research Medical University
Email: e.d.karimova@gmail.com
Moscow, Russia; Moscow, Russia
References
- Аведисова А.С., Захарова К.В., Гаскин В.В., Самотаева И.С., Аркуша И.А. Апатическая депрессия-клинический и нейрофизиологический анализ. Неврологический вестник журнал им. В.М. Бехтерева. 2016. 4 (48): 5–9.
- Гехт А.Б., Ридер Ф.К., Герсамия А.Г., Теплышова А.М., Почигаева К.И., Павлов Н.А., Гудкова А.А., Гусев Е.И. Медико-социальные аспекты эпилепсии. Болезни нервной системы: механизмы развития, диагностики и лечения. Под редакцией Е.И., А.Б. Гехт. М.: Буки-Веди, 2017: 449–465.
- Иерусалимский Н.В., Каримова Е.Д., Самотаева И.С., Лузин Р.В., Зинчук М.С., Ридер Ф.К., Гехт А.Б. Структурные изменения головного мозга у пациентов с височной эпилепсией и коморбидной депрессией. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023. 123 (9): 83–89.
- Парфенова Е.В., Ридер Ф.К., Герсамия А.Г., Яковлев А.А., Гехт А.Б. Эпилепсия как социальная проблема. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. 118 (9): 77–85.
- Ридер Ф.К., Даниленко О.А., Гришкина М.Н., Кустов Г.В., Акжигитов Р.Г., Лебедева А.В., Гехт А.Б. Депрессия и эпилепсия: коморбидность, патогенетическое сходство, принципы терапии. Журнал неврологии и психиатрии им. C.C. Корсакова. 2016. 116 (9-2): 19–24.
- Andrews-Hanna J.R., Reidler J.S., Sepulcre J., Poulin R., Buckner R.L. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010. 65 (4): 550–562.
- Bartolomei F., Chauvel P., Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain. 2008. 131: 1818–1830.
- Berman M.G., Peltier S., Nee D.E., Kross E., Deldin P.J., Jonides J. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 2011. 6 (5): 548–555.
- Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995. 34 (4): 537–541.
- Boubela R.N., Kalcher K., Huf W., Kronnerwetter C., Filzmoser P., Moser E. Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Front Hum Neurosci. 2013. 7: 168.
- Broyd S.J., Demanuele C., Debener S., Helps S.K., James C.J., Sonuga-Barke E.J.S. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 2009. 33 (3): 279–296.
- Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008. 1124: 1–38.
- Butler T., Blackmon K., McDonald C.R., Zarahn E., Thompson J.L., Luks T.L. et al. Cortical thickness abnormalities associated with depressive symptoms in temporal lobe epilepsy. Epilepsy Behav. 2012. 23 (1): 64–67.
- Buzsáki G., Draguhn A. Neuronal oscillations in cortical networks. Science. 2004. 304 (5679): 1926–1929.
- Campo P., Garrido M.I., Moran R., Maestu F., Garcia-Morales I., Gil-Nagel A. et al. Remote effects of hippocampal sclerosis on effective connectivity during working memory encoding: a case of connectional diaschisis? Cereb Cortex. 2012. 22: 1225–1236.
- Cataldi M., Avoli M., de Villers-Sidani E. Resting state networks in temporal lobe epilepsy. Epilepsia. 2013. 54 (12): 2048–2059.
- Chen S., Wu X., Lui S., Wu Q., Zhang J., Yao L. et al. Resting-state fMRI study of treatment-naïve temporal lobe epilepsy patients with depressive symptoms. Neuroimage. 2012. 60 (1): 299–304.
- Ciric R., Rosen A.F.G., Erus G., Cieslak M., Adebimpe A., Cook P.A. et al. Mitigating Head Motion Artifact in Functional Connectivity MRI. Nature Protocols. 2018. 13 (12): 2801–2826.
- Cordes D., Haughton V.M., Arfanakis K., Carew J.D., Turski P.A., Moritz C.H. et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am. J. Neuroradiol. 2001. 22 (7): 1326–1333.
- Damoiseaux J.S., Rombouts S.A.R.B., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Beckmann C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A. 2006. 103 (37): 13848–13853.
- de Campos B.M., Coan A.C., Lin Yasuda C., Casseb R.F., Cendes F. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Hum. Brain Mapp. 2016. 37 (9): 3137–3152.
- Dumlu S.N., Ademoğlu A., Sun W. Investigation of functional variability and connectivity in temporal lobe epilepsy: a resting state fMRI study. Neurosci. Lett. 2020. 733: 135076.
- Elger C.E., Helmstaedter C., Kurthen M. Chronic epilepsy and cognition. Lancet Neurol. 2004. 3 (11): 663–672.
- Elkommos S, Mula M. A systematic review of neuroimaging studies of depression in adults with epilepsy. Epilepsy Behav. 2021. 115: 107695.
- Esteban O., Markiewicz C.J., Blair R.W., Moodie C.A., Isik A.I., Erramuzpe A. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019. 16 (1): 111–116.
- Fahoum F., Lopes R., Pittau F., Dubeau F., Gotman J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia. 2012. 53 (9): 1618–1627.
- Fischl B. Automatically Parcellating the Human Cerebral Cortex. Cereb. Cortex. 2004. 14 (1): 11–22.
- Fisher R.S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J.H., Elger C.E. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014. 55: 475–482.
- Fisher R.S., Cross J.H., French J.A., Higurashi N., Hirsch E., Jansen F.E. et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017. 58 (4): 522–530.
- Friston K.J. Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping. 1994. 2 (1–2): 56–78.
- Gaitzis C., Trimble M.R., Sander J.W. The psychiatric comorbidity of epilepsy. Acta Neurol Scand. 2004. 110: 207–220.
- Gao Y., Zhang L., Li W., Wang X., Zhou D. Abnormal default-mode network homogeneity in patients with temporal lobe epilepsy. Medicine. 2018. 97: e11239.
- Gohel S.R., Biswal B.B. Functional integration between brain regions at rest occurs in multiple-frequency bands. Brain Connect. 2015. 5 (1): 23–34.
- Gonen T., Shapira-Lichter I., Mlynash M., Hendler T., Shahar T., Bar M. et al. Resting-state functional MRI of the default mode network in epilepsy. Epilepsy Behav. 2020. 112: 107308.
- Greicius M.D., Flores B.H., Menon V., Glover G.H., Solvason H.B., Kenna H. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry. 2007. 62 (5): 429–437.
- Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 2003. 100 (1): 253–258.
- Greicius M.D., Srivastava G., Reiss A.L., Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA. 2004. 101 (13): 4637–4642.
- Haneef Z., Lenartowicz A., Yeh H.-J., Engel J., Stern J.M. Effect of lateralized temporal lobe epilepsy on the default mode network. Epilepsy Behav. 2012. 25 (3): 350–357.
- Holm S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics. 1979. 6 (2): 65–70.
- Honey C.J., Sporns O., Cammoun L., Gigandet X., Thiran J.-P., Meuli R., Hagmann P. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 2009. 106 (6): 2035–2040.
- Hu M.-L., Zong X.-F., Mann J.J., Zheng J.-J., Liao Y.-H., Li Z.-C. et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci. Bull. 2017. 33 (1): 73–84.
- Hua M., Luo C., Li Q., Li H., Zhang J., Gong Q. et al. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2020. 99: 109837.
- Ji J.L., Spronk M., Kulkarni K., Repovš G., Anticevic A., Cole M.W. Mapping the human brain’s cortical-subcortical functional network organization. NeuroImage. 2019. 185: 35–57.
- Jiang L.W., Lu S., Zhang Y., Wu Y., Yao Y., Bai H., Yang Z. Altered attention networks and DMN in refractory epilepsy: a resting-state functional and causal connectivity study. Epilepsy Behav. 2018. 88: 81–86.
- Jiang S., Li H., Liu L., Yao D., Luo C. Voxel-wise Functional Connectivity of the Default Mode Network in Epilepsies: A Systematic Review and Meta-Analysis. Curr Neuropharmacol. 2022. 20 (1): 254–266.
- Kaiser R.H., Andrews-Hanna J.R., Wager T.D., Pizzagalli D.A. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry. 2015. 72 (6): 603–611.
- Kajimura S., Nomura M., Ueda Y., Kochiyama T., Morita K., Abe N. Frequency-specific brain network architecture in resting-state fMRI. Sci Rep. 2023. 13 (1): 2964.
- Ke M., Hou Y., Zhang L., Liu G. Brain functional network changes in patients with juvenile myoclonic epilepsy: a study based on graph theory and Granger causality analysis. Front. Neurosci. 2024. 18: 1363255.
- Keller S.S., Baker G., Downes J.J., Roberts N. Quantitative MRI of the prefrontal cortex and executive function in patients with temporal lobe epilepsy. Epilepsy Behav. 2009. 15 (2): 186–195.
- Keller S.S., Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia. 2008. 49 (5): 741–757.
- Kemmotsu N., Kucukboyaci N.E., Cheng C.E., Girard H.M., Tecoma E.S., Iragui V.J., McDonald C.R. Alterations in functional connectivity between the hippocampus and prefrontal cortex as a correlate of depressive symptoms in temporal lobe epilepsy. Epilepsy Behav. 2013. 29 (3): 552–559.
- Kemmotsu N., Kucukboyaci N.E., Leyden K.M., Cheng C.E., Girard H.M., Iragui V.J. et al. Frontolimbic brain networks predict depressive symptoms in temporal lobe epilepsy. Epilepsy Res. 2014. 108 (9): 1554–1563.
- Lasa L., Ayuso-Mateos J., Vázquez-Barquero J., Dı́ez-Manrique F., Dowrick C. The use of the Beck Depression Inventory to screen for depression in the general population: a preliminary analysis. J. Affect. Disord. 2000. 57 (1-3): 261–265.
- Laufs H. Functional imaging of seizures and epilepsy: evolution from zones to networks. Curr. Opin. Neurol. 2012. 25 (2): 194–200.
- Li R., Wang S., Wang X., Liu Y., Yang J. Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy. Brain Imaging Behav. 2019. 14: 762–771.
- Li W., He H., Xu Y., Hu D. Altered resting state networks before and after temporal lobe epilepsy surgery. Brain Topogr. 2022. 35: 692–701.
- Liao W., Zhang Z., Pan Z., Mantini D., Ding J., Duan X. et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One. 2010. 5 (1): e8525.
- Liu J., Zhou X., Zhang Z., Qin L., Ye W., Zheng J. Disrupted functional network in patients with temporal lobe epilepsy with impaired alertness. Epilepsy Behav. 2019. 101 (Pt A): 106573.
- Ma Y., MacDonald III A.W. Impact of independent component analysis dimensionality on the test–retest reliability of resting-state functional connectivity. Brain Connect. 2021. 11: 875–886.
- Maguire J. Mechanisms of Psychiatric Comorbidities in Epilepsy. Curr Top Behav Neurosci. 2022. 55: 107–144.
- McCormick C., Protzner A.B., Barnett A.J., Cohn M., Valiante T.A., McAndrews M.P. Linking DMN connectivity to episodic memory capacity: what can we learn from patients with medial temporal lobe damage? NeuroImage Clin. 2014. 5: 188–196.
- Mehta K., Salo T., Madison T., Adebimpe A., Bassett D., Bertolero M. et al. XCP-d: A Robust Pipeline for the Post-Processing of fMRI Data. Imaging Neuroscience. 2024. 21–26.
- Muccioli L., Bianchi F., Martinelli I., Fabbri M., Benedetti F., Poletti M. et al. Cognitive and functional connectivity impairment in post-COVID-19 olfactory dysfunction. Neuroimage Clin. 2023. 38: 103410.
- Mula M. Developments in depression in epilepsy: screening, diagnosis, and treatment. Expert Rev Neurother. 2019. 19 (3): 269–276.
- Nadkarni S., Arnedo V., Devinsky O. Psychosis in epilepsy patients. Epilepsia. 2007; 48 (Suppl 9): 17–19.
- Pauli W.M., Nili A.N., Tyszka J.M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018. 5: 180063.
- Peng W., Mao L., Yin D., Sun W., Wang H., Zhang Q. et al. Functional network changes in the hippocampus contribute to depressive symptoms in epilepsy. Seizure. 2018. 60: 16–22.
- Piper R.J., Bonnett L., Dewar S., Gummadavelli A., Shorvon S., Koutroumanidis M., Richardson M.P. Towards network-guided neuromodulation for epilepsy. Brain. 2022. 145: 3347–3362.
- Pittau F., Grova C., Moeller F., Dubeau F., Gotman J. Patterns of altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia. 2012. 53 (6): 1013–1023.
- Power J.D., Cohen A.L., Nelson S.M., Wig G.S., Barnes K.A., Church J.A. et al. Functional network organization of the human brain. Neuron. 2011. 72: 665–678.
- Qin L., Jiang W., Zheng J., Zhou Z., Liu Z., Zhang Y. Alterations functional connectivity in temporal lobe epilepsy and their relationships with cognitive function: a longitudinal resting-state fMRI study. Front. Neurol. 2020. 11: 625.
- Qin B., Su S., Chen X., Sun Y., Zhou Q., Huoyou H., Qin L., Zheng J. Impaired degree centrality and effective connectivity contributed to deficits in cognition and depression in patients with temporal lobe epilepsy. Sci. Rep. 2025. 15: 20466.
- Raichle M.E. The brain’s default mode network. Annu. Rev. Neurosci. 2015. 38: 433–447.
- Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007. 37 (4): 1083–1090; discussion 1097-1099.
- Satterthwaite T.D., Elliott M.A., Gerraty R.T., Ruparel K., Loughead J., Calkins M.E. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage. 2013. 64: 240–256.
- Schaefer A., Kong R., Gordon E.M., Laumann T.O., Zuo X.N., Holmes A.J. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex. 2018. 28 (9): 3095–3114.
- Scheffer I.E., Berkovic S., Capovilla G., Connolly M.B., French J., Guilhoto L. et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017. 58 (4): 512–521.
- Spencer S.S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002. 43 (3): 219–227.
- Téllez-Zenteno J.F., Hernández-Ronquillo L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res. Treat. 2012. 2012: Article ID 630853, 5 p.
- van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010. 20: 519–534.
- van Diessen E., Diederen S.J.H., Braun K.P.J., Jansen F.E., Stam C.J. Functional and structural brain networks in epilepsy: what have we learned? Epilepsia. 2013. 54 (11): 1855–1865.
- Vlooswijk M.C., Jansen J.F., Jeukens C.R., Majoie H.J., Hofman P.A., de Krom M.C. et al. Memory processes and prefrontal network dysfunction in cryptogenic epilepsy. Epilepsia. 2011. 52: 1467–1475.
- Voets N.L., Beckmann C.F., Cole D.M., Hong S., Bernhardt B.C., Duncan J.S. Structural substrates for resting network disruption in temporal lobe epilepsy. Brain. 2012. 135 (8): 2350–2357.
- Winston G.P., Stretton J., Sidhu M.K., Symms M.R., Thompson P.J., Duncan J.S. Structural correlates of impaired working memory in hippocampal sclerosis. Epilepsia. 2013. 54 (7): 1143–1153.
- Yan M., Chen J., Liu F., Li H., Zhao J., Guo W. Abnormal Default Mode Network Homogeneity in Major Depressive Disorder with Gastrointestinal Symptoms at Rest. Front Aging Neurosci. 2022. 14: 804621.
- Yeo B.T.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology. 2011. 106 (3): 1125–1165.
- Yuen N.H., Osachoff N., Chen J.J. Intrinsic frequencies of the resting-state fMRI signal: The frequency dependence of functional connectivity and the effect of mode mixing. Front Neurosci. 2019. 13: 900.
- Zhang Z., Lu G., Zhong Y., Tan Q., Liao W., Wang Z. et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res. 2010. 1323: 152–160.
- Zinchuk M., Kustov G., Pashnin E., Gersamia A., Rider F., Voinova N. et al. Not always that EASI: Validating the Russian version of the epilepsy anxiety survey instrument and its brief counterpart. Epilepsy Behav. 2022. 133: 108801.
Supplementary files




