Challenges and Features of Polysaccharide Visualization in Sorbent Layers During Planar Chromatography
- 作者: Malakhova I.I.1, Kirillov A.S.1, Gorshkov N.I.1, Eremin A.V.1, Krasikov V.D.1
-
隶属关系:
- Branch of Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute» – Institute of Macromolecular Compounds
- 期: 卷 80, 编号 11 (2025)
- 页面: 1163-1174
- 栏目: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 18.11.2025
- URL: https://rjsocmed.com/0044-4502/article/view/696455
- DOI: https://doi.org/10.7868/S3034512X25110043
- ID: 696455
如何引用文章
详细
The features of planar (thin-layer) chromatography of several linear non-ionic polysaccharides (amylose, pullulan), their visualization by post-chromatographic derivatization with iodine, and the factors influencing this process are described. It is shown that the coloration of pullulan results from the formation of pseudoclathrate complexes of molecular iodine–iodide–pullulan in short helical segments of the polysaccharide, as well as iodine absorption in the bends of the polymer chain. It was established that the shift of the spectral absorption maximum of amylose (λmax ~ 600 nm, blue coloration) to the shorter wavelength region (λmax = 560 nm, red-brown coloration) is associated with specific interactions of starch with silica and the formation of a molecular iodine–iodide-anion–amylose–silica gel complex. It was demonstrated that the intensity of iodine staining of high-molecular-weight polysaccharides does not depend on their degree of polymerization, and polysaccharide visualization by the iodine reaction in thin-layer chromatography is possible only on neutral forms of silica sorbents.
作者简介
I. Malakhova
Branch of Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute» – Institute of Macromolecular Compounds
Email: a.kirillov2622@gmail.com
St. Petersburg, 199904, Russia
A. Kirillov
Branch of Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute» – Institute of Macromolecular Compounds
Email: a.kirillov2622@gmail.com
St. Petersburg, 199904, Russia
N. Gorshkov
Branch of Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute» – Institute of Macromolecular Compounds
Email: a.kirillov2622@gmail.com
St. Petersburg, 199904, Russia
A. Eremin
Branch of Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute» – Institute of Macromolecular Compounds
Email: a.kirillov2622@gmail.com
St. Petersburg, 199904, Russia
V. Krasikov
Branch of Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Centre «Kurchatov Institute» – Institute of Macromolecular Compounds
编辑信件的主要联系方式.
Email: a.kirillov2622@gmail.com
St. Petersburg, 199904, Russia
参考
- Kooyk Y., Rabinovich G.A. Protein-glycan interactions in the control of innate and adaptive immune responses // Nat. Immunol. 2008. V. 9. № 6. P. 593. https://doi.org/10.1038/ni.f.203
- Lepenies В., Yin J., Seeberger Р.Н. Applications of synthetic carbohydrates to chemical biology // Curr. Opin. Chem. Biol. 2010. V. 14. P. 404. https://doi.org/10.1016/j.cbpa.2010.02.016
- Venkatesan J., Lowe B., Anil S., Venkatesan J., Lowe B., Anil S., Manivasagan P., Kheraif A.A.A., Kang K.H., Kim S.K. Seaweed polysaccharides and their potential biomedical applications // Starch-Stärke. 2015. V. 67. № 5-6. P. 381. http://dx.doi.org/10.1002/star.201400127
- Aliev W.R., Mann B.F., Novotny M.V. High-sensitivity analytical approaches for the structural characterization of glycoproteins // Chem. Rev. 2013. V. 113. P. 2668. https://doi.org/10.1021/cr3003714
- Душкин А.В., Метелева Е.С., Чистяченко Ю.С., Поляков Н.Э. Химические трансформации и молекулярная динамика полисахаридов и их межмолекулярных комплексов с лекарственными веществами в растворах и твердых фазах // Фундаментальные исследования. 2013. № 1-3. С. 789.
- Оводов Ю.С. Современные представления о пектиновых веществах // Биоорганическая химия. 2009. Т. 35. № 3. С. 293.
- Красиков В.Д., Малахова И.И., Сантурян Ю.Г., Панарин Е.Ф. Планарная хроматография – метод аналитического контроля композитных фармацевтических препаратов на основе N-виниламидов // Журн. аналит. химии. 2023. Т. 78. № 11. С. 1019. https://doi.org/10.31857/S0044450223110099 (Krasikov V.D., Malakhova I.I., Santuryan Y.G., Panarin E.F. Planar chromatography as a method for the analytical control of composite pharmaceutical preparations based on N-vinylamides // J. Anal. Chem. 2023. V. 78. № 11. P.1537. https://doi.org/10.1134/S1061934823110047
- Гейсс Ф. Основы тонкослойной хроматографии (Планарная хроматография). Пер. с англ. под ред. Березкина В.Г. М., 1999. Т. 1. 405 с., Т. 2. 348 с.
- Spangenberg B., Poole C.F., Weins Ch. Quantitative thin-layer chromatography. A practical survey. Heidelberg: Springer. 2011. 388 p. https://doi.org/10.1007/978-3-642-10729-0
- Саканян К.М., Гаккель В.А., Малахова И.И., Красиков В.Д., Сокольская Т.А., Захаров В.И. Изучение состава моносахаридов полисахаридных комплексов фукуса пузырчатого Fucus vesiculosus L. и селеницереуса крупноцветкового Selenicereus grandiflorus (L.) Britten et Rose // Вопросы биологической, медицинской и фармацевтической химии. 2009. № 5. С. 44.
- Дудкина М.М., Котельникова Н.Е., Ганкина Э.С., Малахова И.И., Петропавловский Г.А. Применение тонкослойной хроматографии для определения сахаров в микрокристаллической целлюлозе // Химия природных соединений. 1988. № 3. C. 869.
- Reiffová K. Analysis of food bioactive oligosaccharides by thin-layer chromatography / Food Oligosaccharides: Production, Analysis and Bioactivity. 2014. P. 350. https://doi.org/10.1016/j.chroma.2006.01.039
- Doner L.W., Biller L.M. High-performance thin-layer chromatographic separation of sugars: preparation and application of aminopropyl bonded-phase silica plates impregnated with monosodium phosphate // J. Chromatogr. A. 1984. V. 287. P. 391. https://doi.org/10.1016/S0021-9673(01)87716-5
- Lee K.Y., Nuro, D., Zlatkis A. Determination of glucose, fructose and sucrose in molasses by high-performance thinlayer chromatography // J. Chromatogr. A. 1979. V. 174. № 1. P. 187. https://doi.org/10.1016/S0021-9673(00)87049-1
- Martinez-Castro I., Olano A. Ready detection of small amounts of lactulose in dairy products by thin-layer chromatography // Chromatographia. 1981. V. 14. № 11. P. 621. https://doi.org/10.1007/bf02291098
- Damonte A., Lombard A., Tourn L.M., Cassone M.C. A modified solvent system and multiple detection technique for the separation and identification of mono- and oligosaccharides on cellulose thin layers // J. Chromatogr. A. 1971. V. 60. P. 203. https://doi.org/10.1016/S0021-9673(00)95551-1
- Hoton-Dorge M. Séparation des aldoses et des polysaccharides par chromatographie en couche mince de cellulose et nouveau réactif de pulvérisation permettant leur révélation sensible // J. Chromatogr. A. 1976. V. 116. № 2. P. 417. https://doi.org/10.1016/s0021-9673(00)89911-2
- Cockburn D., Koropatkin N. Product analysis of starch active enzymes by TLC // Bio-protocol. 2015. V. 5. № 20. P. e1621. http://doi.org/10.21769/BioProtoc.1621
- Zhang Z., Xiao Z., Linhardt R. J. Thin layer chromatography for the separation and analysis of acidic carbohydrates // J. Liq. Chromatogr. Relat. Technol. 2009. V. 32 № 11–12. P. 1711. https://doi.org/10.1080/10826070902956402
- Pop C.R., Ancuţa M.R., Liana C.S., Sindic M. Fingerprint profiling of polysaccharide kefiran extracted from kefir grains biomass // J. Agroaliment. Processes Technol. 2015. V. 21. № 2. P. 207.
- Шталь Э. Хроматография в тонких слоях. М.: Мир, 1965. 508 с.
- Кирхнер Ю. Тонкослойная хроматография. В 2-х тт. Пер. с англ. М: Мир, 1981. 616 с.
- Schacht E., Ruys L., Vermeersch J., Remon J.P., Duncan R. Dextran and inulin derivatives of procainamide // Ann. N. Y. Acad. Sci. 1985. V. 446. № 1. P. 199. https://doi.org/10.1111/j.1749-6632.1985.tb18401.x
- Sherma, J., Fried B. Handbook of Thin-Layer Chromatography. CRC Press, 2003. P. 1048. https://doi.org/10.1201/9780203912430
- Мохнач В.О. Йод и проблемы жизни. Теория биологической активности йода и проблемы практического применения соединений йода с высокополимерами. Л.: Наука, 1974. 254 с.
- Bele A.A., Khale A. An overview on thin layer chromatography // Int. J. Pharm. Sci. Res. 2011. V. 2. № 2. P. 256. http://dx.doi.org/10.13040/IJPSR.0975-8232.2(2).256-67
- Isenberg I.H. Pulp and Paper Microscopy. 3rd Ed. Appleton, Wisconsin: The Institute of Paper Chemistry, 1967. 395 p.
- Rundle R.E. The configuration of starch in the starch-iodine complex. V. Fourier projections from X-ray diagrams // J. Am. Chem. Soc. 1947. V. 69. № 7. P. 1769. https://doi.org/10.1021/ja01199a054
- Yang J, Sato T. Conformation of pullulan in aqueous solution studied by small-angle X-ray scattering // Polymers. 2020. V. 12. № 6. P. 1266. https://doi.org/10.3390/polym12061266
- Савинкина Е.В., Козлова И.А., Палкина К.К. Структурные перестройки водных растворов при кристаллизации комплексных полииодидов переходных элементов / Тезисы докладов IX Международной конференции “Проблемы сольватации и комплексообразования в растворе”. Плес. 2004. С. 154.
- Thoma J.A., French D. Studies on the Schardinger dextrins. X. The interaction of cyclohexaamylose, iodine and iodide. Part I. Spectrophotometric studies // J. Am. Chem. Soc. 1958. V. 80. 22. P. 6142. https://doi.org/10.1021/ja01555a060
- Reddy, J. M.; Knox, K.; Robin, M. B. Crystal structure of HI3·2C6H5CONH2: A model of the starch-iodine complex // J. Chem. Phys. 1964. 40 № 4. P. 1082. https://doi.org/10.1063/1.1725252
- Pesek S., Silaghi-Dumitrescu R. The iodine/iodide/starch supramolecular complex // Molecules. 2024. V. 29. P. 641. https://doi.org/10.3390/molecules29030641
- Gilbert G.A, Marriott J.V.R. Starch-iodine complexes. Part I. Trans. // Faraday Soc. 1948. V. 44. P. 84. https://doi.org/10.1039/TF9484400084
- Yajima H.; Nishimura T.; Ishii T.; Handa T. Effect of concentration of iodide on the bound species of I2/I–3 in the amylose-iodine complex // Carbohydr. Res. 1987. V. 163. № 2. P. 155. https://doi.org/10.1016/0008-6215(87)80179-9
- Knutson C.A., Cluskey J.E., Dintzis F.R. Properties of amylose-Iodine complexes prepared in the presence of excess iodine // Carbohydr. Res. 1982. V. 101. № 1. P. 117. https://doi.org/10.1016/S0008-6215(00)80800-9
- Saenger W. The structure of the blue starch-iodine complex // Naturwissenschaften. 1984. V. 71. № 1. P. 31. https://doi.org/10.1007/BF00365977
- Fonslick J., Khan A. Thermal stability and composition of the amylose–iodine complex // J. Polym. Sci. A Polym. Chem. 1989, V. 27. № 12. P. 4161. https://doi.org/10.1002/pola.1989.080271222
- Yu X., Houtman C., Atalla R. H. The complex of amylose and iodine // Carbohydr. Res. 1996. V. 292. P. 129. https://doi.org/10.1016/S0008-6215(96)91037-X
- Prajapati V.D., Jani G.K., Khanda S.M. Pullulan: An exopolysaccharide and its various applications // Carbohydr. Polym. 2013. V. 95. P. 540. https://doi.org/10.1016/j.carbpol.2013.02.082
- Singh R.S., Kaur N.; Rana V., Kennedy J.F. Pullulan: A novel molecule for biomedical applications // Carbohydr. Polym. 2017. V. 171. P. 102. https://doi.org/10.1016/j.carbpol.2017.04.089
- Sasaki Y., Akiyoshi K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications // Chem. Rec. 2010. V. 10. P. 366. https://doi.org/10.1002/tcr.201000008
- Liu J.H.-Y., Brant D.A., KitAmura S., Kajiwara K., Mimura M. Equilibrium spatial distribution of aqueous pullulan: Small-angle x-ray scattering and realistic computer modeling // Macromolecules. 1999. V. 32. P. 8611. http://dx.doi.org/10.1021/ma990591h
- Jaud S., Tobias D.J., Brant D.A. Molecular dynamics simulations of aqueous pullulan oligomers // Biomacromolecules. 2005. V. 6. P. 1239. https://doi.org/10.1021/bm049463d
- Buliga G.S., Brant D.A. Theoretical interpretation of the unperturbed aqueous solution configuration of pullulan // Int. J. Biol. Macromol. 1987. V. 9. P. 77. http://dx.doi.org/10.1016/0141-8130(87)90030-4
- Bruneel D., Schacht E. Chemical modification of pullulan: 1. Periodate oxidation // Polymer. 1993. V. 34. № 12. P. 2628. https://doi.org/10.1016/0032-3861(93)90600-F
- Nypelö T., Berke B., Spirk S., Sirviö J.A. Periodate oxidation of wood polysaccharides – Modulation of hierarchies // Carbohydr. Polym. 2021. V. 252. Article 117105. https://doi.org/10.1016/j.carbpol.2020.117105
- Breugst M., Heiden D. Mechanisms in iodine catalysis // Chem. – Eur. J. 2018. V. 24. № 37. P. 9187. https://doi.org/10.1002/chem.201706136
- Adachi M., Eguchi W., Tohdo F., Yoneda M. Reactions of iodine in aqueous solutions containing sodium hydroxide // J. Chem. Eng. Jpn. 1974. V. 7. № 5. P. 360. https://doi.org/10.1252/jcej.7.360
- Thoma J.A., French D. The starch-iodine-iodide interaction. Part II. Potentiometric investigations // J. Phys. Chem. 1961. V. 65. № 10. P. 1825. https://doi.org/10.1021/j100827a032
- Buliga G.S., Brant D.A. Temperature and molecular weight dependence of the unperturbed dimensions of aqueous pullulan // Int. J. Biol. Macromol. 1987. V. 9. № 2. P. 71. http://dx.doi.org/10.1016/0141-8130(87)90029-8
- Ring S.G., L’Anson K.J., Morris V.J. Static and dynamic light scattering studies of amylose solutions // Macromolecules. 1985. V. 18. № 2. P. 182. http://dx.doi.org/10.1021/ma00144a013
- Banks W., Greenwood C.T. The conformation of amylose in neutral, aqueous salt solution // Carbohydr. Res. 1968. V. 7. № 3. P. 349. http://dx.doi.org/10.1016/S0008-6215(00)81207-0
- Nakanishi Y., Norisuye T., Teramoto A., Kitamura S. Conformation of amylose in dimethyl sulfoxide // Macromolecules. 1993. V. 26. № 16. P. 4220. http://dx.doi.org/10.1021/ma00068a023
- Fujii M., Nagasaka K., Shimada J., Yamakawa H. The model parameters of helical wormlike chains // Macromolecules. 1983. V. 16. № 10. P. 1613. http://dx.doi.org/10.1021/ma00244a012
- Yamamoto M., Sano T., Yasunaga T. Interaction of amylose with Iodine. I. Characterization of cooperative binding isotherms for amyloses // Bull. Chem. Soc. Jpn. 1982. V. 55. № 6. P. 1886. https://doi.org/10.1246/bcsj.55.1886
- Nguyen Q. T., Aptel P., Neel J. Investigation of the amylose-lodine complexation in aqueous solution by ultrafiltration // Biopolymers. 1976. V. 15. P. 2097. https://doi.org/10.1002/bip.1976.360151016
- Senior M. B., Hamori E. Investigation of the effect of amylose/iodine complexation on the conformation of amylose in aqueous solution // Biopolymers. 1973. V. 12. № 1. P. 65. https://doi.org/10.1002/bip.1973.360120107
- Moulay S. Molecular iodine/polymer complexes // J. Polym. Eng. 2013 V. 33. № 5. P. 389. http://dx.doi.org/10.1515/polyeng-2012-0122
- Guzenko N.V., Voronina O.E., Vlasova N.N., Voronin E.F. Absorption of iodine on the surface of silica modified by polyvinylpyrrolidone and albumin // J. Appl. Spectrosc. 2004. V. 71. P. 151. http://dx.doi.org/10.1023/B:JAPS.0000032868.98836.4d
- Pushpamalar V., Langford S.J., Ahmad M., Lim Y.Y. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste // Carbohydr. Polym. 2006. V. 64. № 2. P. 312. https://doi.org/10.1016/J.CARBPOL.2005.12.003
- Tan L., Kong L. Starch-guest inclusion complexes: Formation, structure, and enzymatic digestion // Crit. Rev. Food Sci. Nutr. 2020. V. 60. № 5. P. 780. https://doi.org/10.1080/10408398.2018.1550739
- Mould D.L. Potentiometric and spectrophotometric studies of complexes of hydrolysis products of amylose with iodine and potassium iodide // Biochem. J. 1954. V. 58. № 4. P. 593. https://doi.org/10.1042/bj0580593
补充文件



