New possibilities for using specialty optical fibers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of the development and creation of various specialized optical fibers (SOF) for use in science and technology are presented. Methods of creating SOFs with Bragg structures recorded in the light-guiding core are described directly during the process of extracting SOF. Reflective signal sensors and single-frequency laser complexes were created on the basis of these sensors. Fiber-based refractive index meters for liquids were obtained using precise thinning of reflective claddings and nanocoatings. Ways of using multi-core SOFs and possibilities for creating end devices based on them have been shown.

Full Text

Restricted Access

About the authors

Yu. K. Chamorovskiy

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: Dmitriisudas@mail.ru

Fryazino branch

Russian Federation, Vvedenskiy Sq., 1, Fryazino, Moscow region, 141190

S. M. Popov

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: Dmitriisudas@mail.ru

Fryazino branch

Russian Federation, Vvedenskiy Sq., 1, Fryazino, Moscow region, 141190

D. P. Sudas

Kotelnikov Institute of Radioengineering and Electronics RAS

Author for correspondence.
Email: Dmitriisudas@mail.ru

Fryazino branch

Russian Federation, Vvedenskiy Sq., 1, Fryazino, Moscow region, 141190

D. V. Ryakhovskiy

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: Dmitriisudas@mail.ru

Fryazino branch

Russian Federation, Vvedenskiy Sq., 1, Fryazino, Moscow region, 141190

S. A. Nikitov

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: Dmitriisudas@mail.ru
Russian Federation, Mokhovaya Str., 11, build. 7, Moscow, 125009

References

  1. Specialty Optical Fibers Handbook / Eds. by A. Méndez, T. F. Morse. Oxford: Academic Press, 2007.
  2. Paul M.C., Ferreira M.F.S. Specialty Optical Fibers. Materials, Fabrication Technology and Applications / Eds. by M. C. Paul, M.F. S. Ferreira. Sawston: Woodhead Publishing, 2024. P. 3.
  3. He J., Xu B., Xu X. et al. // Photonic Sensors. 2021. V. 11. P. 203.
  4. Dostovalov A.V., Wolf A.A., Parygin A.V. et al. // Opt. Express. 2016. V. 24. № 15. P. 16232.
  5. Chamorovskiy Yu.K., Starostin N.I., Ryabko M.V. et al. // Opt. Commun. 2009. V. 282. № 23. P. 4618.
  6. Уланов А.Е., Устимчик В.Е., Чаморовский Ю.К., Никитов С.А. // РЭ. 2014. Т. 59. № 5. С. 445.
  7. Ustimchik V.E., Rissanen J., Popov S.M. et al. // Opt. Express. 2017. V. 25. № 9. P. 10693.
  8. Li C., Tang J., Cheng C. et al. // Photonic Sensors. 2021. V. 11. P. 91.
  9. Wang Y., Gong J., Dong B. et al. // J. Lightwave Technol. 2012. V. 30. № 17. P. 2751.
  10. Przhiialkovskii D.V., Butov O.V. // Results in Phys. 2021. V. 30. Article No. 104902.
  11. Popov S.M., Ryakhovskii D.V., Kolosovskii A.O. et al. // Bull. Lebedev Phys. Inst. 2023. V. 50. № Suppl 13. P. S1464.
  12. Shatalin S.V., Treschikov V.N., Rogers A.J. // Appl.Opt. 1998. V. 37. № 24. P. 5600.
  13. Попов С.М., Бутов О.В., Колосовский А.О. и др. // Квантов. электрон. 2019. Т. 49. № 12. С. 1127.
  14. Харасов Д.Р., Бенгальский Д.М., Вяткин М.Ю. и др. // Квантов. Электрон. 2020. Т. 50. № 5. С. 510.
  15. Turitsyn S.K., Babin S.A., El-Taher A.E. et al. // Nature Photonics. 2010. V. 4. № 4. P. 231.
  16. Fotiadi A.A. // Nature Photonics. 2010. V. 4. № 4. P. 204.
  17. Popov S.M., Butova O.V., Chamorovski Y.K. et al. // Results in Phys. 2018. V. 9. P. 806.
  18. Popov S.M., Butov O.V., Bazakutsa A.P. et al. // Results in Phys. 2020. V. 16. Article No. 102868.
  19. Rybaltovsky A., Popov S., Ryakhovskiy D. et al. // Photonics. 2022. V. 9. № 11. P. 840.
  20. Кузнецов П.И., Судас Д.П., Савельев Е.А. // ПТЭ. 2020. № 4. С. 83.
  21. Kuznetsov P.I., Sudas D.P., Savelyev E.A. // Sensors and Actuators A: Physical. 2021. V. 321. Article No. 112576.
  22. Savelyev E.A., Sudas D.P., Kuztestov P.I. // Opt. Lett. 2022. V. 47. № 2. P. 361.
  23. Sudas D.P., Zakharov L.Yu., Jitov V.A. et al. // Sensors. 2022. V. 22. № 10. P. 3665.
  24. Chamorovskiy Yu.K., Butov O.V., Kolosovskiy A.O. et al. // Opt. Fiber Technol. 2017. V. 34. P. 30.
  25. Бутов О.В., Базакуца А.П., Федоров А.Н. и др. // Фотон-экспресс. 2021. № 6 (174). С. 262.
  26. Xue P., Qiang Liu Q., Lu Sh. et al. // Opt. Fiber Technol. 2023. V. 77. Article No. 103277.
  27. Pябко М.В., Никитов С.А., Чаморовский Ю.К. // Нано- и микросистемная техника. 2005. № 5. С. 33.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency reflectogram of the FBG array recorded in the G.652 type optical fiber. The recording density of the FBG array is 3% (3 FBGs per 1 meter).

Download (106KB)
3. Fig. 2. Dependence of optical losses on the number of FBGs in the array: curve 1 – G.652 (without FBGs); curve 2 – 4000 FBGs/km; curve 3 – 50000 FBGs/km. Insert – reflectance spectrum of a chirped array of 200 FBGs 1 km long.

Download (134KB)
4. Fig. 3. Optical scheme of a random laser: 1 – 976 nm pump diode, 2 – 976 nm isolator, 3 – multiplexer, 4 – artificial Rayleigh fiber doped with Er3+, 5 – oblique cleavage of the fiber, 6 – 1547 nm radiation output.

Download (61KB)
5. Fig. 4. Frequency (OFDR) reflectogram of the resonator of a random laser doped with erbium ions (a); radio frequency spectrum of the laser generation line (less than 1 kHz) (b).

Download (131KB)
6. Fig. 5. Thinned sections of the optical fiber for outputting the optical field from the reflective shell obtained using: chemical etching (a), lateral polishing (b). The insets show photographs obtained in an optical microscope of parts of the thinned segments of the optical fiber. 1 - Cylindrical segment, 2 - conical part, 3 - transition region, 4 - polished surface, 5 - untreated surface.

Download (124KB)
7. Fig. 6. Application of nanolayers to thinned segments of OF: scheme of coating application (a), cross-section of transmission spectrum at a wavelength of 1350 nm during nanomaterial synthesis (b). 1 – resistive furnace, 2 – purified fiber with a thinned segment, 3 – light source, 4 – spectrometer, 5 – personal computer, 6 – introduction of reagents into the reactor, 7 – discharge of reagents.

Download (121KB)
8. Fig. 7. Transmission spectra of refractive index sensors: transmission spectra when the sensor is immersed in various aqueous solutions of NaCl (a), comparison of the resonance shape obtained in sensors on multimode and single-mode fibers (b). Curves 1–6 correspond to the mass concentration of salt in the solution: 2.65, 4.70, 6.45, 7.60, 8.30, and 9.90%. Curves 7 and 8 are the transmission spectra of the sensor based on single-mode and multimode OF.

Download (131KB)
9. Fig. 8. Photograph of the end face of a seven-core fiber optic cable. External diameter 125 µm. The cores are circled.

Download (59KB)
10. Fig. 9. Reflection spectrum of the Bragg wavelength for samples (a) – central core, (b) – side core.

Download (140KB)
11. Fig. 10. Photograph of a multi-core radiation-resistant optical fiber for a shape sensor. The arrows indicate the position of the cores.

Download (51KB)
12. Fig. 11. Photograph of the end face of the waveguide with the suspended core.

Download (32KB)

Copyright (c) 2025 Russian Academy of Sciences