Influence of solid surfaces on the evolution of incompressible fluid jets. Part 1. Jets emerging from an orifice perpendicular to an infinite solid plane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A review of works on submerged jets, the evolution of which occurs in the presence of infinite solid planes, is presented. In the first part of the review, problems related to jets emerging from an orifice perpendicular to an infinite plane are considered. The second part of the review will be devoted to jets emerging parallel to an infinite plane, as well as the interaction of jets.

About the authors

A. M. Gaifullin

Central Aerohydrodynamic Institute named after N.E. Zhukovksy

Email: gaifullin@tsagi.ru
Zhukovsky, Russia

A. S. Shcheglov

Central Aerohydrodynamic Institute named after N.E. Zhukovksy

Email: shcheglov@phystech.edu
Zhukovsky, Russia

References

  1. Schlichting H. Grenzschicht Theorie. Karlsruhe: Verlag G. Braun, 1965. 736 p. https://doi.org/10.1007/3-540-32985-4
  2. Loitsyanskiy L.G. Mechanics of Liquids and Gases. St. Petersburg: St. Petersburg St. Tech. Univ., 1995. 971 p. https://doi.org/10.1016/C2013-0-05328-5
  3. Schlichting H. Laminare Strahlausbreitung // Zeitschrift für Angewandte Mathematik und Mechanik, 1933, vol. 13, no. 4, pp. 260–263. https://doi.org/10.1002/zamm.19330130403
  4. Slezkin N.A. On one case of integrability of complete differential equations of a viscous fluid // Scientific notes of Moscow State University, 1934, no. 2, pp. 89–90. (in Russian)
  5. Landau L.D. On one exact solution of the Navier-Stokes equations // Reports of the USSR Academy of Sciences, 1944, vol. 43, no. 7, pp. 299–301. (in Russian)
  6. Kamke E. Differentialgleichungen Lösungsmethoden und Lösungen. Springer Fachmedien Wiesbaden GMBH, 1977. 670 p. https://doi.org/10.1007/978-3-663-05925-7
  7. Vulis L.A., Kashkarov V.P. Theory of viscous liquid jets. Moscow: Nauka, 1965. 432 p. (in Russian)
  8. Bickley W. The plane jet // The London, Edinburgh & Dublin Philosoph. Mag.& J. of Sci., 1937, vol. 23, no. 156, pp. 727–731. https://doi.org/10.1080/14786443708561847
  9. Gaifullin A.M., Zhvick V.V. Laminar submerged jets of incompressible fluid at large Reynolds numbers // Physics — Uspekhi, 2023, vol. 66, pp. 1142–1153. https://doi.org/10.3367/UFNe.2022.12.039301
  10. Squire H.B. Some viscous fluid flow problems I: Jet emerging from a hole in a plane wall // The London, Edinburgh&Dublin Philosoph. Mag.& J. of Sci., 1952, vol. 43, no. 344, pp. 942–945. https://doi.org/10.1080/14786440908521003
  11. Squire H.B. The Round Laminar Jet // The Quarterly J. of Mech.&Appl. Math., 1951, vol. 4, no. 3, pp. 321–329.
  12. Morgan A.J.A. On a class of laminar viscous flows within one or two bounding cones // Aeronautical Quarterly, 1956, vol. 7, no. 3, 225–239. https://doi.org/10.1017/S0001925900010258
  13. Potsch K. Laminare Freistrahlen im Kegelraum // Zeitscrift für Flugwissenschaften und Weltraumforschung, 1981, vol. 5, pp. 44–52.
  14. Taylor G.I. The boundary layer in the converging nozzle of a swirl atomizer // The Quarterly J. of Mech.& Appl. Math., 1950, vol. 3, pp. 129–130.
  15. Kraemer K. Die Potentialströmung in der Umgebung von Freistrahlem // Zeitschrift für Flugwissenschaften, 1971, vol. 19, no. 3, pp. 93–104.
  16. Golubinsky A.A., Sychev V.V. On one self-similar solution of the Navier-Stokes equations // Uch. Zap. TsAGI, 1976, vol. 7, no. 6, pp. 11–17. (in Russian)
  17. Sudakov V.G., Sychev V.V. Jet outflow from a small hole in a plane // Fluid Dynamics, 2003, no. 1, pp. 28–31. https://doi.org/10.1023/A:1023378726658
  18. Schneider W. Flow induced by jets and plumes // J. of Fluid Mech., 1981, vol. 108, pp. 55–65. https://doi.org/10.1017/S0022112081001985
  19. Gol’dshtik M.A., Shtern V.N., Yavorsky N.I. Viscous flows with paradoxical properties. Novosibirsk: Science. Siberian branch, 1989, 336 p. (in Russian)
  20. Schneider W. Decay of momentum flux in submerged jets // J. of Fluid Mech., 1985, vol. 154, pp. 91–110. https://doi.org/10.1017/S0022112085001434
  21. Zauner E. Vizualization of the viscous flow induced by a round jet // J. of Fluid Mech., 1985, vol. 154, pp. 111–119. https://doi.org/10.1017/S0022112085001446
  22. Long R.R. A vortex in an infinite viscous fluid // J. of Fluid Mech., 1961, vol. 11, no. 4, pp. 611–625. https://doi.org/10.1017/S0022112061000767
  23. Gol’dshtik M.A. On swirling jets // Fluid Dynamics, 1979, no. 1, pp. 19–26. https://doi.org/10.1007/BF01050807
  24. Zubtsov A.V. A self-similar solution for a weakly swirling jet // Fluid Dynamics, 1984, no. 4, pp. 550–554. https://doi.org/10.1007/BF01091075
  25. Gol’dshtik M.A. A paradoxical solution of the Navier-Stokes equations // J. of Appl. Math. and Mech., 1960, vol. 24, no. 4, pp. 913–939. https://doi.org/10.1016/0021-8928(60)90070-8
  26. Serrin J. The swirling vortex // Philosophical Transactions of the Royal Society of London. Series A, Math. and Phys. Sci., 1972, vol. 271, no. 1214, pp. 325–360. https://doi.org/10.1098/rsta.1972.0013
  27. Sudakov V.G., Sychev V.V. Asymptotic theory of the viscous interaction between a vortex and a plane. // Fluid Dynamics, 2002, no. 6, pp. 865–872. https://doi.org/10.1023/A:1022340027544
  28. Gaifullin A.M. On the problem of vortex interaction with a plane // Fluid Dynamics, 2013, no. 6, pp. 773–780. https://doi.org/10.1134/S0015462813060082
  29. Gaifullin A.M. Vortex flows. M.: Nauka, 2015. 320 p. (in Russian)
  30. Abdel-Rahman A.A., Chakroun W., AI-Fahed S.F. LDA measurements in the turbulent round jet // Mechanics Research Communications, 1997, vol. 24, no. 3, pp. 277–288. https://doi.org/10.1016/S0093-6413(97)00025-6
  31. Kotsovinos N.E. A note on the conservation of the volume flux in free turbulence // J. of Fluid Mech., 1978, vol. 86, no. 1, pp. 201–203. https://doi.org/10.1017/S002211207800107X
  32. Stewart R.W. Irrotational motion associated with free turbulent flows // J. of Fluid Mech., 1956, vol. 1, no. 6, pp. 593–606. https://doi.org/10.1017/S0022112056000391
  33. Taylor G.I. Flow induced by jets // J. of Aerospace Sci., 1958, vol. 25, pp. 464–465.
  34. Ginevsky A.S. Theory of turbulent jets and wakes. Moscow: Mashinostroenie, 1969. 400 p. (in Russian)
  35. Abramovich G.N., Girshovich T.A., Krashenninikov S.Yu. et al. Theory of turbulent jets / edited by G.N. Abramovich. Moscow: Nauka. Main editorial office of physical and mathematical literature, 1984. 717 p. (in Russian)
  36. Kotsovinos N.E. A note on the conservation of the axial momentum of a turbulent jet // J. Fluid Mech., 1978, vol. 87, no. 1, pp. 55–63. https://doi.org/10.1017/S002211207800292X
  37. Liepmann H.W., Laufer J. Investigations of free turbulent mixing // National advisory committee for aeronautics Technical Note, 1947. № 1257. 70 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences