Stability of a three-dimensional boundary layer with s-shaped spanwise velocity profiles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The hydrodynamic stability of the flow with S-shaped spanwise velocity profiles simulating an incompressible flow in three-dimensional boundary layers is analyzed in a wide range of Reynolds numbers. The existence of an instability different from the known crossflow vortices and Tollmien-Schlichting waves is confirmed. The boundaries of the instabilities are estimated in terms of the wave vector angle.

Sobre autores

A. Boiko

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: boiko@itam.nsc.ru
Novosibirsk, Russia

N. Demidenko

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: demidenko@itam.nsc.ru
Novosibirsk, Russia

Bibliografia

  1. Дородницын А.А., Лойцянский Л.Г. К теории перехода ламинарного слоя в турбулентный // ПММ. 1945. Т. 9. № 4. С. 269–284. (In Russian)
  2. Saric W.S., Reed H.L., White E.B. Stability and transition of three-dimensional boundary layers // Annu. Rev. Fluid Mech. 2003. V. 35. P. 413–440. https://doi.org/10.1146/annurev.fluid.35.101101.161045
  3. Krimmelbein N., Krumbein A. Automatic transition prediction for three-dimensional configurations with focus on industrial application // J. Aircr. 2011. V. 48. № 6. P. 1878–1887.
  4. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 712 с.
  5. Mack L.M. On the stability of the boundary layer on a transonic swept wing: Reston, Virigina: AIAA Paper № 79-0264, 1979. 16 p.
  6. Wassermann P., Kloker M. Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover // J. Fluid Mech. 2005. V. 530. P. 265–293. https://doi.org/10.1017/S0022112005003708
  7. Gregory N., Stuart J.T., Walker W.S. On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk // Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 1955. V. 248. № 943. P. 155–199.
  8. Лутовинов В.М. Пример течения в пограничном слое с двумя областями неустойчивости // Уч. Зап. ЦАГИ. 1973. Т. 4. № 6. С. 88–93. (In Russian)
  9. Бойко А.В., Демиденко Н.В. Использование двухпараметрических профилей скорости для трехмерных пограничных слоев // ПМТФ. 2023. № 6. С. 144–154.
  10. Gaster M. A two-parameter family of laminar boundary layer profiles on swept wings: Reston, Virigina: AIAA Paper № 2008-4335, 2008. 6 p.
  11. Monkewitz P.A. The role of absolute and convective instability in predicting the behavior of fluid systems // Eur. J. Mech. — BFluids. 1990. V. 9. № 5. P. 395–413.
  12. Гапонов С.А., Смородский Б.В. Линейная устойчивость трехмерных пограничных слоев // ПМТФ. 2008. Т. 49. № 2. С. 3–14.
  13. Cooke J.C. The boundary layer of a class of infinite yawed cylinders // Math. Proc. Camb. Philos. Soc. 1950. V. 46. № 4. P. 645–648. https://doi.org/10.1017/S0305004100026220
  14. Hartree D.R. On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer // Math. Proc. Camb. Philos. Soc. 1937. V. 33. № 2. P. 223–239. https://doi.org/10.1017/S0305004100019575
  15. Shampine L.F., Reichelt M.W., Kierzenka J. Solving boundary value problems for ordinary differential equations in Matlab with bvp4c // Mathworks. 2000.
  16. Trefethen L.N. Spectral methods in MATLAB. Philadelphia, PA: SIAM, 2000. 163 p.
  17. Линь Ц.-Ц. Теория гидродинамической устойчивости. М.: Издательство иностранной литературы, 1958. 195 с.
  18. Foote J.R., Lin C.C. Some recent investigations in the theory of hydrodynamic stability // Q. Appl. Math. 1950. V. 8. № 3. P. 265–280. https://doi.org/10.1090/qam/38189
  19. Barston E.M. On the linear stability of inviscid incompressible plane parallel flow // J. Fluid Mech. 1991. V. 233. № 3. P. 157–163. https://doi.org/10.1017/S0022112091000435
  20. Dovgal A.V., Kozlov V.V., Michalke A. Laminar boundary layer separation: Instability and associated phenomena // Prog. Aerosp. Sci. 1994. V. 30. № 1. P. 61–94. https://doi.org/10.1016/0376-0421(94)90003-5

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025