Influence of viscosity on the behavior of a drop (bubble) in liquid under the influence of vibrations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The paper studies the effect of viscosity on oscillations of a liquid or gaseous inclusion (a drop or a gas bubble) in a fluid of uniform density under the action of external vibrations. It is assumed that the vibration amplitude is small and the frequency is high, however, the vibration velocity and the thickness of the dynamic boundary layers are finite. Numerical modeling of the inclusion behavior in a non-averaged formulation using the liquid volume method is performed. The effect of viscous dissipation on the amplitude of inclusion oscillations and its averaged shape is studied. The fields of flows generated by vibrations near the inclusion for different vibration parameters are obtained. The numerical data are compared with known analytical results. Corrections are proposed that take into account viscous dissipation that occurs when the vibration frequency decreases.

Негізгі сөздер

Авторлар туралы

T. Lyubimova

Institute of Continuous Media Mechanics UB RAS

Email: lyubimovat@mail.ru
Perm, Russia

A. Ivantsov

Institute of Continuous Media Mechanics UB RAS

Email: aivantsov@yandex.ru
Perm, Russia

Әдебиет тізімі

  1. Ганиев Р.Ф., Лапчинский В.Ф. Проблемы механики в космической технологии. М.: Машиностроение, 1978. 119 c.
  2. Блехман И.И., Бутенин Н.В., Ганиев Р.Ф. и др. Вибрации в технике: справочник: в 6 томах. М.: Машиностроение. 1979.
  3. Любимов Д.В., Любимова Т.П., Черепанов А.А. Динамика поверхностей раздела в вибрационных полях. М.: Физматлит, 2003. 216 c.
  4. Блехман И.И. Что может вибрация? О “вибрационной механике” и вибрационной технике. М.: ЛЕНАНД, 2017. 216 c.
  5. Miller C.A., Scriven L.E. The oscillations of a fluid droplet immersed in another fluid // J. Fluid Mech. 1968. V. 32. № 3. P. 417–435. https://doi.org/10.1017/S0022112068000832
  6. Ламб Г. Гидродинамика. М.;Л.: Гостехиздат, 1947. 928 c.
  7. Lyubimov D.V., Lyubimova T.P., Cherepanov A.A. Resonance oscillations of a drop (bubble) in a vibrating fluid // J. Fluid Mech. 2021. V. 909. P. A18. https://doi.org/10.1017/jfm.2020.949
  8. Konovalov V.V., Lyubimov D.V., Lyubimova T.P. Resonance oscillations of a drop or bubble in a viscous vibrating fluid // Phys. Fluids. 2021. V. 33. № 9. P. 094107. https://doi.org/10.1063/5.0061979
  9. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969. 742 c.
  10. Longuet-Higgins M.S. Mass Transport in Water Waves // Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. Royal Society, 1953. V. 245. № 903. P. 535–581. https://www.jstor.org/stable/91480
  11. Dore B.D. On mass transport induced by interfacial oscillations at a single frequency // Math. Proc. Camb. Philos. Soc. 1973. V. 74. № 2. P. 333–347. https://doi.org/10.1017/S0305004100048118
  12. Klimenko L.S., Lyubimov D.V. Average flow generation by a pulsating flow near a curved interface // Eur. Phys. J. E. 2017. V. 40. № 1. P. 6. https://doi.org/10.1140/epje/i2017-11494-7
  13. Lyubimov D.V. et al. Vibration-induced wall-bubble interactions under zero-gravity conditions // J. Fluid Mech. 2024. V. 992. P. 1–41. https://doi.org/10.1017/jfm.2024.541
  14. Левич В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959. 700 c.
  15. Maxey M.R., Riley J.J. Equation of motion for a small rigid sphere in a nonuniform flow // Phys. Fluids. AIP. 1983. V. 26. P. 883–889. https://doi.org/10.1063/1.864230
  16. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. 3-е изд. М.: Наука, 1986. 736 с.
  17. Lyubimov D.V. et al. Deformation of gas or drop inclusion in high frequency vibrational field // Microgravity Q. 1996. V. 6. P. 69–73.
  18. Lyubimov D.V., Cherepanov A.A., Lyubimova T.P. et al. Interface orienting by vibration orientation d`une interface par vibration// Comptes Rendus Académie Sci. — Ser. IIB — Mech.-Phys.-Chem.-Astron. Elsevier Masson. 1997. V. 325. № 7. P. 391–396. https://doi.org/10.1016/S1251-8069(97)80068-1
  19. Zharikov E.V., Prihod’ko L.V., Storozhev N.R. Fluid flow formation resulting from forced vibration of a growing crystal // J. Cryst. Growth. 1990. V. 99. № 1–4 (2). P. 910–914. https://doi.org/10.1016/S0022-0248(08)80051-6
  20. Lyubimov D., Lyubimova T., Roux B. Mechanisms of vibrational control of heat transfer in a liquid bridge // Int. J. Heat Mass Transf. 1997. V. 40. № 17. P. 4031–4042. https://doi.org/10.1016/S0017-9310(97)00053-7
  21. Gershuni G.Z., Lyubimov D.V. Thermal vibrational convection // John Wiley & Sons., 1998. 358 p.
  22. Lyubimov D.V. Convective flows under the influence of high-frequency vibrations // Eur J. of Mech. — B/Fluids. 1995. V. 14. № 4. P. 439–458.
  23. Луговцов Б.А., Сенницкий В.Л. О движении тела в вибрирующей жидкисти // ДАН СССР. 1986. Т. 289. № 2. С. 314–317.
  24. Любимов Д.В., Любимова Т.П., Черепанов А.А. О движении твердого тела в вибрирующей жидкости // Конвективные Течения Пермь ПГПИ. 1987. C. 61–70.
  25. Клименко Л.С., Любимов Д.В. Генерация среднего течения пульсационным потоком около искривленной свободной поверхности // Изв РАН МЖГ. 2012. № 1. C. 33–43.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025