Structure of a locally turbulent flow formed when a part of the fluid leaves into the side branch of a circular tube

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of a numerical study of unsteady viscous fluid flow in the area of the branching of a circular cross-section channel at an angle of 60° are presented for four values of the inlet Re number that are less than or equal to 1475; in the upstream region, the channel flow is assumed to be unperturbed and fully-developed. The main results relate to the case of equality of the flow rates in two branches, with flow separation regions in both branches. It was shown, in particular, that at Re = 750, intense quasi-periodic oscillations develop in the computational domain due to the Kelvin-Helmholtz instability. At Re = 1475, a zone of locally turbulent motion is formed in the flow, the size of which depends on the proportion of the flow going into the side branch. The vortex pattern of the flow and the type of the velocity pulsation spectrum at various points in the region are analyzed.

About the authors

E. M. Smirnov

Peter the Great St. Petersburg Polytechnic University

Email: smirnov_em@spbstu.ru
St. Petersburg, Russia

Ya. A. Gataulin

Peter the Great St. Petersburg Polytechnic University

Email: gataulin_yaa@spbstu.ru
St. Petersburg, Russia

E. V. Kolesnik

Peter the Great St. Petersburg Polytechnic University

Email: kolesnik.ev1@spbstu.ru
St. Petersburg, Russia

References

  1. Mallinger F., Drikakis D. Instability in three-dimensional unsteady stenotic flows // Int. J. Heat Fluid Flow, 2002, vol. 23, pp. 657–663. https://doi.org/10.1016/S0142-727X(02)00161-3
  2. Sherwin S. J., Blackburn H. M. Three-dimensional instabilities of steady and pulsatile axisymmetric stenotic flows // J. Fluid Mech., 2005, vol. 533, pp. 297–327. https://doi.org/10.1017/S0022112005004271
  3. Varghese S.S., Frankel S.H., Fischer P.F. Direct numerical simulation of stenotic flows. Part 1. Steady flow // J. Fluid Mech., 2007, vol. 582, pp. 253–280. https://doi.org/10.1017/S0022112007005848
  4. Varghese S.S., Frankel S.H., Fischer P.F. Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow // J. Fluid Mech., 2007, vol. 582, pp. 281–318. https://doi.org/10.1017/S0022112007005836
  5. Paul M.C., Molla M.M. Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations // Appl. Math. Modelling, 2012, vol. 36, no. 9, pp. 4393–4413. https://doi.org/10.1016/j.apm.2011.11.065
  6. Choi W., Park J.H., Byeon H. et al. Flow characteristics around a deformable stenosis under pulsatile flow condition // Physics of Fluids, 2018, vol. 30, pp. 1–11. https://doi.org/10.1063/1.5009063
  7. Freidoonimehr N., Chin R., Zander A. et al. Effect of shape of the stenosis on the hemodynamics of a stenosed coronary artery // Physics of Fluids, 2021, vol. 33, no. 8, pp. 081914. https://doi.org/10.1063/5.0058765
  8. Gataulin Ya. A., Smirnov E. M., A flow in the blood vessel with a one-side stenosis: numerical study of the structure and local turbulization // St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 2021, vol. 14, no. 1, рр. 72–84.
  9. Mazo A.B., Kalinin E.I., Molochnikov V.M. et al. Simulation of a pulsating flow in a pipe with local constrictions as applied to hemodynamics of blood vessels // Thermophys. Aeromech., 2022, vol. 29, pp. 249–265. https://doi.org/10.1134/S0869864322020093
  10. Molochnikov, V.M., Dushin, N.S., Pashkova, N.D. et al. Flow structure and transition to local turbulence downstream of an asymmetric narrowing that imitates arterial stenosis // Fluid Dynamics, 2023, vol. 58, no. 2, pp. 214–226. https://doi.org/10.1134/S0015462822602303
  11. Loth F., Fischer P.F., Bassiouny H.S. Blood flow in end-to-side anastomoses // Annu Rev Fluid Mech., 2008, vol. 40, pp. 367–393. https://doi.org/10.1146/annurev.fluid.40.111406.102119
  12. Li X., Liu X., Li X. et al. Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis // Biomech Model Mechanobiol., 2019, vol. 18, no. 2, pp. 883–896. https://doi.org/10.1007/s10237-019-01118-4
  13. Ivanova Y., Yukhnev A., Tikhomolova L. et al. Experience of patient-specific CFD simulation of blood flow in proximal anastomosis for femoral popliteal bypass // Fluids, 2022, vol. 7, no. 10, pp. 314. https://doi.org/10.3390/fluids7100314
  14. Loth F., Jones S.A., Zarins C.K. et al. Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses // J. Biomech. Eng., 2002, vol. 124, no. 1, pp. 44–51. https://doi.org/10.1115/1.1428554
  15. Haruguchi H., Teraoka S.J. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review // J. Artificial Organs, 2003, vol. 6, no. 4, pp. 227–235. https://doi.org/10.1007/s10047-003-0232-x
  16. Jackson M., Wood N.B., Zhao S. et al. Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts // Artery Research, 2009, vol. 3, no. 1, pp. 32–38. https://doi.org/10.1016/j.artres.2009.01.001
  17. Gataulin Ya.A., Smirnov E.M., Molochnikov V.M. et al. The structure of a 3D flow with local turbulence in the branching juncture of a circular-section channel // St.-P. St. Polytech. Univ. J. Physics and Mathematics, 2022, vol. 15, no. 4, pp. 81–94. https://doi.org/10.18721/JPM.15406
  18. Mikheev N. I., Dushin N. S. A method for measuring the dynamics of velocity vector fields in a turbulent flow using smoke image-visualization videos // Instruments and Experimental Techniques, 2016, vol. 59, no. 6, pp. 882–889. https://doi.org/10.1134/S0020441216060063
  19. Molochnikov V.M., Mikheev A.N., Mazo A.B. et al. Structure of the proximal anastomosis flow in stationary mode at moderate Reynolds numbers // Thermophys. Aeromech., 2022, vol. 29, pp. 905–911. https://doi.org/10.1134/S0869864322060105
  20. Smirnov E.M., Zaitsev D.K., Smirnovsky A.A. et al. Assessment of several advanced numerical algorithms implemented in the CFD code SINF/Flag-S for supercomputer simulations // Supercomp. Frontiers&Innovations, 2024, vol. 11, no. 2, pp. 14–31. https://doi.org/10.14529/jsfi240202
  21. Smirnov E.M., Smirnovsky A.A., Schur N.A. et al. Comparison of RANS and IDDES solutions for turbulent flow and heat transfer past a backward-facing step // Heat and Mass Transfer, 2018, vol.54, no. 8, pp. 2231–2241. https://doi.org/10.1007/s00231-017-2207-0
  22. Smirnov S.I., Smirnov E.M. Direct numerical simulation of the turbulent Rayleigh — Bénard convection in a slightly tilted cylindrical container // St.-P. St. Polytech.Univ. J. Phys.&Math., 2020, vol. 13, no. 1. pp. 14–25. (in Russian) https://doi.org/10.18721/JPM.13102
  23. Kolesnik E.V., Smirnov E.M. Duality of the stream pattern of supersonic viscous gas flow past a blunt-fin junction: the effect of a low sweep angle // Fluid Dynamics, 2023, vol. 58, no. 1, pp. 1–8. https://doi.org/10.1134/S0015462822601887

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences