Ni-Al2O3-катализаторы пиролиза природного газа: зависимость физико-химических свойств и каталитической активности от температуры прокалки
- Авторы: Виноградов Н.А.1, Галеева Ю.Е.1, Елизарова В.И.1, Долгих В.Д.1, Кудинов И.В.1
-
Учреждения:
- Самарский государственный технический университет
- Выпуск: Том 65, № 5 (2025)
- Страницы: 391-399
- Раздел: Статьи
- URL: https://rjsocmed.com/0028-2421/article/view/696440
- DOI: https://doi.org/10.31857/S0028242125050058
- ID: 696440
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Н. А. Виноградов
Самарский государственный технический университетСамара, 443100 Россия
Ю. Е. Галеева
Самарский государственный технический университет
Email: yulya.galeeva.01@mail.ru
Самара, 443100 Россия
В. И. Елизарова
Самарский государственный технический университетСамара, 443100 Россия
В. Д. Долгих
Самарский государственный технический университетСамара, 443100 Россия
И. В. Кудинов
Самарский государственный технический университетСамара, 443100 Россия
Список литературы
- Desmukh M.K.G., SameeroddinM., Abdul D., Sattar M.A. Renewable energy in the 21st century: A review// Mater. Today: Proc. 2023. V. 80. Pt. 3. P. 1756–1759. https://doi.org/10.1016/j.matpr.2021.05.501
- Agrawal D., MahajanN., Singh S.A., Sreedhar I. Green hydrogen production pathways for sustainable future with net zeroemissions//Fuel.2024. V. 359. ID 130131. https://doi.org/10.1016/j.fuel.2023.130131
- Vostricov S.V., Konnova M.E., Turovtzev V.V.,Müller K., Verevkin S.P.Thermodynamics of hydrogen storage: Equilibrium study of the LOHC systemindole/octahydroindole//Fuel. 2023. V. 334. № 1. P. 127025 https://doi.org/10.1016/j.fuel.2022.127025
- Hermesmann M., Müller T.E. Green, turquoise, blue,or grey? Environmentally friendly hydrogen production in transforming energy systems// Progress in Energy and Combustion Science. 2022. V. 90.P. 100996. https://doi.org/10.1016/j.pecs.2022.100996
- YanD., Mebrahtu C., Wang S.,Palkovits R.Innovative elektrochemische Strategien für die Wasserstoffproduction: Von derStromspeicherung bis zur Stromerzeugung// Angew. Chem. 2023. V. 135.№ 16. ID e202214333. https://doi.org/10.1002/ange.202214333
- Rafique M., Hajra S.,Irshad M., Usman M., Imran M., Assiri M.A., Ashraf W.M. Hydrogen production using TiO2-based photocatalysts: a comprehensive review //ACS Omega. 2023. V. 8. № 29. P. 25640–25648. https://doi.org/10.1021/acsomega.3c00963
- Qian Q., Zhu Y., Ahmad N., Feng Y., ZhangH., Cheng M., Liu H., Xiao C., Zhang G., XieY.Recent advancements in electrochemical hydrogen production via hybrid watersplitting // Adv. Mater. 2024. V. 36. № 4. P. 2306108. https://doi.org/10.1002/adma.202306108
- Afanasev P.,Askarova A., Alekhina T., PopovE., Markovic S., Mukhametdinova A., Cheremisin A., Mikhina E. Anoverview of hydrogen production methods: Focus on hydrocarbon feedstock//Int. J. Hydrog. Energy. 2024. V.78. P. 805–828. https://doi.org/10.1016/j.ijhydene.2024.06.369
- Onwuemezie L., Darabkhani H.G., Montazeri-Gh. M.Pathways for lowcarbon hydrogen production from integrated hydrocarbon reforming and water electrolysisfor oil and gas exporting countries//Sustain. Energy Technol.Assess. 2024. V. 61. P. 103598. https://doi.org/10.1016/j.seta.2023.103598
- Guo Q.,Geng J., Pan J., ZouL., Tian Y., Chi B.,Pu J.Brief review of hydrocarbon-reforming catalysts map for hydrogenproduction // Energy Rev. 2023. V. 2. № 3. P. 100037. https://doi.org/10.1016/j.enrev.2023.100037
- Mokheimer E.M.A., Shakeel M.R., Harale A.,Paglieri S., Mansour R.B.Fuel reforming processes for hydrogen production// Fuel. 2024. V. 359. P. 130427. https://doi.org/10.1016/j.fuel.2023.130427
- IbrahimA.A., Fakeeha A.H., Al-Fatesh A.S.,Abasaeed A.E., Khan W.U. Methanedecomposition over iron catalysts for hydrogen production //Int. J. Hydrog. Energy. 2015. V. 40. № 24. P. 7593–7600. https://doi.org/10.1016/j.ijhydene.2014.10.058
- Hantoko D., Khan W.U., Osman A.I., Nasr M., Rashwan A.K., GamboY., Shoaibi A.A., Chandrasekar S., Hossain M. Carbon-neutral hydrogen productionby catalytic methane decomposition: a review // Environmental Chemistry Letters.2024. V. 22. № 4. P. 1623‒1663. https://doi.org/10.1007/s10311-024-01732-4
- dosSantos Junior J.M., Gomes J.G., de FreitasA.C.D., Guirardello R.An analysis of the methane cracking process for CO2-freehydrogen production using thermodynamics methodologies // Methane. 2022. V. 1.№ 4. P. 243–261. https://doi.org/10.3390/methane1040020
- Kudinov I.V., Velikanova Yu.V.,Nenashev M.V., Amirov T.F., Pimenov A.A.Methane pyrolysis in moltenmedia for hydrogen production: a review of current advances //Petrol. Chemistry. 2024. V. 63. № 9. P. 1017–1026. https://doi.org/10.1134/S0965544123080078
- Ashik U.P.M., WanDaud W.M.A., AbbasH.F.Production of greenhouse gas free hydrogen by thermocatalyticdecomposition of methane—A review// Renew. Sustain. EnergyRev. 2015. V. 44. P. 221–256. https://doi.org/10.1016/j.rser.2014.12.025
- McConnachie M.,Konarova M., Smart S.Literature review of the catalytic pyrolysisof methane for hydrogen and carbon production // Int. J. Hydrog. Energy. 2023. V. 48. № 66. P. 25660–25682. https://doi.org/10.1016/j.ijhydene.2023.03.123
- Cepeda F., Liddo L.D.,Thomson M.J.Enhancing hydrogen production:Modelling the role of activated carbon catalyst in methane pyrolysis// Int. J. Hydrog. Energy. 2024. V. 83. P. 410–420. https://doi.org/10.1016/j.ijhydene.2024.08.056
- RahimiN., Kang D., Gelinas J., Menon A.,Gordon M.J., MetiuH., McFarland E.W.Solid carbon production and recovery from hightemperature methane pyrolysis in bubble columns containing molten metals andmolten salts// Carbon. 2019. V. 151. P. 181–191. https://doi.org/10.1016/j.carbon.2019.05.041
- Plevan M., Geißler T., Abánades A., Mehravaran K., Rathnam R.K.,Rubbia C., SalmieriD., Stoppel L., Stückrad S., Wetzel Th.Thermal cracking of methane in a liquid metal bubble columnreactor: Experiments and kinetic analysis// Int. J. Hydrog. Energy.2015. V. 40. № 25. P. 8020–8033. https://doi.org/10.1016/j.ijhydene.2015.04.062
- RahimiN., Kang D., Gelinas J., Menon A.,Gordon M.J., MetiuH., McFarland E.W. Solid carbon production and recovery from hightemperature methane pyrolysis in bubble columns containing molten metals andmolten salts // Carbon. 2019. V. 151. P. 181‒191. https://doi.org/10.1016/j.carbon.2019.05.041
- Kudinov I.V., Kosareva E.A., Dolgikh V.D., Vinogradov N.A., Pimenov A.A.Hydrogen productionby thermocatalytic decomposition of methane: modern achievements (a review)//Pet. Chem. 2025. V. 65. P. 10–34. https://doi.org/10.1134/S0965544124080176
- Goula M.A.,Charisiou N.D., PapageridisK.N., Delimitis A.,Pachatouridou E., Iliopoulou E.F.Nickel on alumina catalysts for the production of hydrogen richmixtures via the biogas dry reforming reaction: Influence of thesynthesis method//Int. J. Hydrog. Energy. 2015. V. 40.№ 30. P. 9183–9200. https://doi.org/10.1016/j.ijhydene.2015.05.129
- Papageridis K.N., Siakavelas G.,Charisiou N.D., AvraamD.G., Tzounis L., Kousi K., Goula M.A.Comparative study of Ni, Co, Cu supported onγ-alumina catalysts forhydrogen production via the glycerol steam reforming reaction// FuelProcess. Technol. 2016. V. 152. P. 156–175. https://doi.org/10.1016/j.fuproc.2016.06.024
- Kim J.,Kim J., Lee D.Glycerol steam reforming on Ru catalystssupported on core-shell metal–ceramic microcomposites developed by a microwave-induced hydrothermalmethod// Appl. Catal. A: Gen. 2015. V. 499. P. 197–204. https://doi.org/10.1016/j.apcata.2015.04.012
- KozlovS.M., Neyman K.M.Insights from methanedecomposition on nanostructured palladium // J. Catal. 2016. V. 337.P. 111–121. https://doi.org/10.1016/j.jcat.2016.02.010
- Nichele V., Signoretto M.,Menegazzo F., GalloA., Dal Santo V., Cruciani G., Cerrato G.Glycerol steamreforming for hydrogen production: Design of Ni supported catalysts//Appl. Catal. B: Environ. 2012. V. 111–112. P. 225–232. https://doi.org/10.016/j.apcatb.2011.10.003
- Karimi S., Bibak F., Meshkani F., Rastegarpanah A., Deng J., LiuY., Dai H.Promotional roles of second metals in catalyzingmethane decomposition over the Ni-based catalysts for hydrogen production: Acritical review// Int. J. Hydrog. Energy. 2021. V. 46.№ 39. P. 20435–20480. https://doi.org/10.1016/j.ijhydene.2021.03.160
- Li J., Zhao L.,He J., Dong L., XiongL., Du Y., Yang Y.,Wang H., Peng S. Methane decomposition over high-loaded Ni–Cu–SiO2catalysts// Fusion Eng. Des. 2016. V. 113. P. 279–287. https://doi.org/10.1016/j.fusengdes.2016.06.046
- López E., Kim J., Shanmugharaj A.M., Ryu S.H.Multiwalledcarbon nanotubes-supported Nickel catalysts for the steam reforming of propane// J. Mater. Sci. 2012. V. 47. P. 2985–2994. https://doi.org/10.1007/s10853-011-6132-1
- Abbas H.F., Wan Daud W.M.A.Hydrogen production by methane decomposition:A review// Int. J. Hydrog. Energy. 2010. V. 35.№ 3. P. 1160–1190. https://doi.org/10.1016/j.ijhydene.2009.11.036
- Takenaka S., Ogihara H., YamanakaI., Otsuka K.Decomposition of methane over supported-Ni catalysts: effectsof the supports on the catalytic lifetime// Appl. Catal.A: Gen. 2001. V. 217. № 1‒2. P. 101–110. https://doi.org/10.1016/S0926-860X(01)00593-2
- Sinkler W., Bradley S.A., Ziese U.,de Jong K.P.3D-TEM Study of gamma aluminacatalyst supports// Microsc. Microanal. 2006. V. 12. № S02.P. 52–53. https://doi.org/10.1017/S1431927606067869
- SalamM.A., Abdullah B.Catalysis mechanismof Pd-promotedγ-alumina in the thermal decomposition of methane tohydrogen: A density functional theory study//Mater. Chem. Phys.2017. V. 188. P. 18–23. https://doi.org/10.1016/j.matchemphys.2016.12.022
- Morales-Anzures F., Salinas-Hernández P.,Mondragon-Galicia G., Gutiérrez-Martínez A.G., Tzompantzi-Morales F.J.,Romero M.A., Perez-Hernández R.Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2catalysts: High H2/CO ratio// Int.J. Hydrog. Energy. 2021. V. 46. № 51.P. 26224–26233. https://doi.org/10.1016/j.ijhydene.2021.05.073
- Chiarello G.L., Rossetti I., Forni L.Flame-spraypyrolysis preparation of perovskites for methane catalytic combusition// J. Catal. 2005. V. 236. № 2. P. 251–261. https://doi.org/10.1016/j.cat.2005.10.003
- Echegoyen Y., Suelves I., Lázaro M.J., Sanjuán M.L., Moliner R.Thermo catalytic decomposition of methaneover Ni–Mg and Ni–Cu–Mg catalysts: Effect of catalyst preparation method// Appl. Catal. A: Gen. 2007. V. 333. № 2.P. 229–237. https://doi.org/10.1016/j.apcata.2007.09.012
- Wang Z., Liu Q., Yu J.,Wu T., Wang G.Surface structure and catalytic behavior ofsilica-supported copper catalysts prepared by impregnation and sol–gel methods //Appl. Catal. A: Gen. 2003. V. 239. № 1‒2. P. 87–94. https://doi.org/10.1016/S0926-860X(02)00421-0
- Cauqui M.A., Rodríguez-Izquierdo J.M. Application of the sol-gelmethods to catalyst preparation// J. Non-Cryst. Solids. 1992. V.147‒148. P. 724–738. https://doi.org/10.1016/S0022-3093(05)80707-0
- Thommes M., Kaneko K., NeimarkA.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S. Physisorptionof gases, with special reference to the evaluation of surfacearea and pore size distribution (IUPAC Technical Report) // Pureand Applied Chemistry. 2015. V. 87. № 9‒10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Sohlberg K., Pantelides S.T., PennycookS.J.Interactions of hydrogen with CeO2// J. Am. Chem.Soc. 2001. V. 123. № 27. P. 6609–6611. https://doi.org/10.1021/ja004008k
- Tsybulya S.V., Kryukova G.N.Nanocrystalline transition aluminas: Nanostructure and featuresofX-ray powder diffraction patterns of low-temperature Al2O3polymorphs// Phys. Rev. B. 2008. V. 77. P. 024112. https://doi.org/10.1103/PhysRevB.77.024112
- Kirumakki S.R., Shpeizer B.G., SagarG.V., Chary K.V.R., Clearfield A.Hydrogenation of naphthalene over NiO/SiO2-Al2O3catalysts: structure-activitycorrelation // J. Catal. 2006. V. 242. № 2. P. 319–331. https://doi.org/10.1016/j.jcat.2006.06.014
- XuY., Du X.H., Li J., Wang P.,Zhu J., Ge F.J., Zhou J., Song M., Zhu W.Y.A comparison of Al2O3and SiO2supported Ni-basedcatalysts in their performance for the dry reforming of methane// J. Fuel Chem. Technol. 2019. V. 47. № 2.P. 199–208. https://doi.org/10.1016/S1872-5813(19)30010-6
- Hasnan N.S.N., Timmiati S.N., Lim K.L., Yaakob Z., Kamaruddin N.H.N.,Teh L.P. Recent developments in methane decomposition over heterogeneous catalysts:an overview // Mater. Renew. Sustain. Energy. 2020. V. 9.№ 8. P. 1–18. https://doi.org/10.1007/s40243-020-00167-5
Дополнительные файлы




