ИНГИБИТОРЫ ЦИНК-ЗАВИСИМЫХ ГИСТОНДЕАЦЕТИЛАЗ (HDAC): ТЕРАПЕВТИЧЕСКИЙ ПОТЕНЦИАЛ, СТРУКТУРА ФАРМАКОФОРА И МЕТОДЫ ТЕСТИРОВАНИЯ ДЕАЦИЛАЗНОЙ АКТИВНОСТИ
- Авторы: Земская А.С.1, Кочетков С.Н1, Козлов М.В.1
-
Учреждения:
- Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
- Выпуск: Том 59, № 5 (2025)
- Страницы: 726-750
- Раздел: ОБЗОРЫ
- URL: https://rjsocmed.com/0026-8984/article/view/696385
- DOI: https://doi.org/10.31857/S0026898425050021
- ID: 696385
Цитировать
Полный текст
Аннотация
В 1976 году среди метаболитов бактерии Streptomyces hygroscopicus был найден противогрибковый гидроксамовый антибиотик трихостатин А (TSA). Потребовалось 14 лет, чтобы выяснить, что TSA ингибирует активность гистондеацетилаз (HDAC) и влияет тем самым на пролиферацию и дифференцировку клеток млекопитающих. К 2015 году была создана единая база данных, содержащая структуры около 1050 синтетических и 400 природных ингибиторов HDAC. В настоящее время пять ингибиторов HDAC разрешены к применению в качестве противоопухолевых средств и еще десятки соединений проходят клинические испытания. Однако внедрение новых препаратов сильно тормозится многонаправленностью их действия и тяжестью побочных эффектов. Для преодоления этих проблем необходимы новые стратегии, включая разработку ингибиторов, нацеленных на определенный класс HDAC. В представленном обзоре обсуждаются не только важнейшие характеристики HDAC и их природных ингибиторов, рассматриваются также современные подходы к дизайну селективных ингибиторов HDAC и методы, применяемые для их тестирования.
Ключевые слова
Об авторах
А. С. Земская
Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наукМосква, 119991 Россия
С. Н Кочетков
Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наукМосква, 119991 Россия
М. В. Козлов
Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
Email: kozlovmavi@gmail.com
Москва, 119991 Россия
Список литературы
- Witt O., Deubzer H.E., Milde T., Oehme I. (2009) HDAC family: what are the cancer relevant targets? Cancer Lett. 277(1), 8–21.
- Ho T.C.S., Chan A.H.Y., Ganesan A. (2020) Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem. 63(21), 12460–12484.
- Hamze A. (2020) How do we improve histone deacetylase inhibitor drug discovery? Expert Opin. Drug Discov. 15(5), 527–529.
- Lv Z., Ji T., Liu J., Sun X., Liang H. (2025) Synthetic approaches and clinical applications of representative HDAC inhibitors for cancer therapy: a review. Eur. J. Med. Chem. 283, 117185.
- Shi M.Q., Xu Y., Fu X., Pan D.S., Lu X.P., Xiao Y., Jiang Y.Z. (2024) Advances in targeting histone deacetylase for treatment of solid tumors. J. Hematol. Oncol. 17(1), 37.
- Huang Z., Zeng L., Cheng B., Li D. (2024) Overview of class I HDAC modulators: Inhibitors and degraders. Eur. J. Med. Chem. 276, 116696.
- Huang Z., Li L., Cheng B., Li D. (2024) Small molecules targeting HDAC6 for cancer treatment: current progress and novel strategies. Biomed. Pharmacother. 178, 117218.
- Di Bello E., Noce B., Fioravanti R., Mai A. (2022) Current HDAC inhibitors in clinical trials. Chimia. 76(5), 448–453.
- Schroeder F.A., Lewis M.C., Fass D.M., Wagner F.F., Zhang Y.L., Hennig K.M., Gale J., Zhao W.N., Reis S., Barker D.D., Berry-Scott E., Kim S.W., Clore E.L., Hooker J.M., Holson E.B., Haggarty S.J., Petryshen T.L. (2013) A selective HDAC1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS One. 8(8), e71323.
- Zwinderman M.R.H., de Weerd S., Dekker F.J. (2019) Targeting HDAC complexes in asthma and COPD. Epigenomes. 3(3), 19.
- Bourguet E., Ozdarska K., Moroy G., Jeanblanc J., Naassila M. (2018) Class I HDAC inhibitors: potential new epigenetic therapeutics for alcohol use disorder (AUD). J. Med. Chem. 61, 1745–1766.
- Chang P.V., Hao L., Offermanns S., Medzhitov R. (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA. 111(6), 2247–2252.
- Dompierre J.P., Godin J.D., Charrin B.C., Cordelières F.P., King S.J., Humbert S., Saudou F. (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci. 27(13), 3571–3583.
- Shen S., Benoy V., Bergman J.A., Kalin J.H., Frojuello M., Vistoli G., Haeck W., Van Den Bosch L., Kozikowski A.P. (2016) Bicyclic-capped histone deacetylase 6 inhibitors with improved activity in a model of axonal Charcot-Marie-Tooth disease. ACS Chem. Neurosci. 7(2), 240–258.
- Potluri V., Shandil R.K., Gavara R., Sambasivam G., Campo B., Wittlin S., Narayanan S. (2020) Discovery of FNDR-20123, a histone deacetylase inhibitor for the treatment of Plasmodium falciparum malaria. Malar. J. 19(1), 365.
- Amnekar R.V., Khan S.A., Rashid M., Khade B., Thorat R., Gera P., Shrikhande S.V., Smoot D.T., Ashktorab H., Gupta S. (2020) Histone deacetylase inhibitor pre-treatment enhances the efficacy of DNA-interacting chemotherapeutic drugs in gastric cancer. W. J. Gastroenterol. 26(6), 598–613.
- Nguyen T.T., Chua J.K., Seah K.S., Koo S.H., Yee J.Y., Yang E.G., Lim K.K., Pang S.Y., Yuen A., Zhang L., Ang W.H., Dymock B., Lee E.J., Chen E.S. (2016) Predicting chemotherapeutic drug combinations through gene network profiling. Sci. Rep. 6, 18658.
- Yu Z., Spiegel J., Melidis L., Hui W. W.I., Zhang X., Radzevičius A., Balasubramanian S. (2023) Chem-map profiles drug binding to chromatin in cells. Nat. Biotechnol. 41(9), 1265–1271.
- Garmpis N., Damaskos C., Garmpi A., Georgakopoulou V.E., Sarantis P., Antoniou E.A., Karamouzis M.V., Nonni A., Schizas D., Diamantis E., Koustas E., Farmaki P., Syllaios A., Patsouras A., Kontzoglou K., Trakas N., Dimitroulis D. (2021) Histone deacetylase inhibitors in the treatment of hepatocellular carcinoma: current evidence and future opportunities. J. Pers. Med. 11, 223.
- Kubo M., Kanaya N., Petrossian K., Ye J., Warden C., Liu Z., Nishimura R., Osako T., Okido M., Shimada K., Takahashi M., Chu P., Yuan Y. C., Chen S. (2013) Inhibition of the proliferation of acquired aromatase inhibitor-resistant breast cancer cells by histone deacetylase inhibitor LBH589 (panobinostat). Breast Cancer Res. Treat. 137(1), 93–107.
- Liu T., Wan Y., Xiao Y., Xia C., Duan G. (2020) Dual-target inhibitors based on HDACs: Novel antitumor agents for cancer therapy. J. Med. Chem. 63, 8977–9002.
- Roy R., Ria T., RoyMahaPatra D., Sk U.H. (2023) Single inhibitors versus dual inhibitors: Role of HDAC in cancer. ACS Omega. 8(19), 16532–16544.
- Carafa V., Rotili D., Forgione M., Cuomo F., Serretiello E., Hailu G.S., Jarho E., Lahtela-Kakkonen M., Mai A., Altucci L. (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin. Epigenetics. 8, 61.
- Bure I.V., Nemtsova M.V., Kuznetsova E.B. (2022) Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis. Int. J. Mol. Sci. 23, 5801.
- Wang Z.A., Whedon S.D., Wu M., Wang S., Brown E.A., Anmangandla A., Regan L., Lee K., Du J., Hong J.Y., Fairall L., Kay T., Lin H., Zhao Y., Schwabe J.W.R., Cole P.A. (2022) Histone H2B deacylation selectivity: exploring chromatin’s dark matter with an engineered sortase. J. Am. Chem. Soc. 144, 3360–3364.
- Hayakawa T., Nakayama J. (2011) Physiological roles of class I HDAC complex and histone demethylase. J. Biomed. Biotechnol. 2011, 129383.
- Glozak M.A., Sengupta N., Zhang X., Seto E. (2005) Acetylation and deacetylation of non-histone proteins. Gene. 363, 15–23.
- Rettig I., Koeneke E., Trippel F., Mueller W.C., Burhenne J., Kopp-Schneider A., Fabian J., Schober A., Fernekorn U., von Deimling A., Deubzer H.E., Milde T., Witt O., Oehme I. (2015) Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis. 6, e1657.
- Oehme I., Deubzer H.E., Wegener D., Pickert D., Linke J.P., Hero B., Kopp-Schneider A., Westermann F., Ulrich S.M., von Deimling A., Fischer M., Witt O. (2009) Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res. 15(1), 91–99.
- Sun Z., Feng D., Fang B., Mullican S.E., You S.H., Lim H.W., Everett J.L, Christopher S. Nabel C.S., Li Y., Selvakumaran V., Won K.J., Lazar M.A. (2013). Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol. Cell. 52(6), 769–782.
- Bottomley M.J., Lo Surdo P., Di Giovine P., Cirillo A., Scarpelli R., Ferrigno F., Jones, P., Neddermann P., De Francesco R., Steinkühler C., Gallinari P., Carfí A. (2008) Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem. 283(39), 26694–26704.
- Asfaha Y., Bollmann L.M., Skerhut A.J., Fischer F., Horstick N., Roth D., Wecker M., Mammen C., Smits S.H.J., Fluegen G., Kassack M.U., Kurz T. (2024) 5-(Trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based highly selective class IIa HDAC inhibitors exhibit synergistic anticancer activity in combination with bortezomib. Eur. J. Med. Chem. 263, 115907.
- Agarwal R., Pattarawat P., Duff M.R., Wang H.R., Baudry J., Smith J.C. (2024) Structure-based identification of novel histone deacetylase 4 (HDAC4) inhibitors. Pharmaceuticals. 17, 867.
- Urwanisch L., Unger M.S., Sieberer H., Dang H.H., Neuper T., Regl C., Vetter J., Schaller S., Winkler S.M., Kerschbamer E., Weichenberger C.X., Krenn P.W., Luciano M., Pleyer L., Greil R., Huber C.G., Aberger F., Horejs-Hoeck J. (2023) The class IIa histone deacetylase (HDAC) inhibitor TMP269 downregulates ribosomal proteins and has anti-proliferative and pro-apoptotic effects on AML cells. Cancers. 15, 1039.
- Stott A.J., Maillard M.C., Beaumont V., Allcock D., Aziz O., Borchers A.H., Blackaby W., Breccia P., Creighton-Gutteridge G., Haughan A.F., Jarvis R.E., Luckhurst C.A., Matthews K.L., McAllister G., Pollack S., Saville-Stones E., Van de Poël A.J., Vater H.D., Vann J., Williams R., Yates D., Muñoz-Sanjuán I., Dominguez C. (2021) Evaluation of 5-(trifluoromethyl)-1,2,4-oxadiazole-based class IIa HDAC inhibitors for Huntington’s disease. ACS Med. Chem. Lett. 12, 380–388.
- Hubbert C., Guardiola A., Shao R., Kawaguchi Y., Ito A., Nixon A., Yoshida M., Wang X.F., Yao T.P. (2002) HDAC6 is a microtubule-associated deacetylase. Nature. 417, 455–458.
- Zhang X., Yuan Z., Zhang Y., Yong S., Salas-Burgos A., Koomen J., Olashaw N., Parsons J.T., Yang X.J., Dent S.R., Yao T.P., Lane W.S., Seto E. (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell. 27, 197–213.
- Parmigiani R.B., Xu W.S., Venta-Perez G., Erdjument-Bromage H., Yaneva M., Tempst P., Marks P.A. (2008) HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc. Natl. Acad. Sci. USA. 105(28), 9633–9638.
- Kovacs J.J., Murphy P.J., Gaillard S., Zhao X., Wu J.T., Nicchitta C.V., Yoshida M., Toft D.O., Pratt W.B., Yao T.P. (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell. 18, 601–607.
- de Ruijter A.J., van Gennip A.H., Caron H.N., Kemp S., van Kuilenburg A.B. (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749.
- Thakur N., Hamidi A., Song J., Itoh S., Bergh A., Heldin C.H., Landström M. (2020) Smad7 enhances TGF-β-induced transcription of c-Jun and HDAC6 promoting invasion of prostate cаncer cells. iScience. 23, 101470.
- Valenzuela-Fernández A., Cabrero J.R., Serrador J.M., Sánchez-Madrid F. (2008) HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 18(6), 291–297.
- Seidel C., Schnekenburger M., Dicato M., Diederich M. (2015) Histone deacetylase 6 in health and disease. Epigenomics 7(1), 103–118.
- Liang T., Liu S., Dang B., Luan X., Guo Y., Steimbach R.R., Hu J., Lu L., Yue P., Wang R., Zheng M., Gao J., Yin X., Chen X. (2024) Multimechanism biological profiling of tetrahydro-β-carboline analogues as selective HDAC6 inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 275, 116624.
- Li Y., Yang H., Zhao X., Zhao X., Quan J., Wang L., Ma E., Ma C. (2024) Discovery of novel pyrrolo[2,1-c][1,4]benzodiazepine-3,11-dione (PBD) derivatives as selective HDAC6 inhibitors for the efficient treatment of idiopathic pulmonary fibrosis (IPF) in vitro and in vivo. Eur. J. Med. Chem. 275, 116608.
- Hai Y., Shinsky S.A., Porter N.J., Christianson D.W. (2017) Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat. Commun. 8, 15368.
- Fischer D.D., Cai R., Bhatia U., Asselbergs F.A., Song C., Terry R., Trogani N., Widmer R., Atadja P., Cohen D. (2002) Isolation and characterization of a novel class II histone deacetylase, HDAC10. J. Biol. Chem. 277(8), 6656–6666.
- Tong J.J., Liu J., Bertos N.R., Yang X.J. (2002) Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucl. Acids Res. 30(5), 1114–1123.
- Gao L., Cueto M.A., Asselbergs F., Atadja P. (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277(28), 25748–25755.
- Sun L., de Evsikova C.M., Bian K., Achille A., Telles E., Pei H., Seto E. (2018) Programming and regulation of metabolic homeostasis by HDAC11. EBioMedicine. 33, 157–168.
- Moreno-Yruela C., Galleano I., Madsen A S., Olsen C. A. (2018) Histone deacetylase 11 is an ε-N-myristoyllysine hydrolase. Cell Chem. Biol. 25, 849–856.e8.
- Miyake Y., Keusch J.J., Wang L., Saito M., Hess D., Wang X., Melancon B.J., Helquist P., Gut H., Matthias P. (2016) Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol. 12(9), 748–754.
- Prejanò M., Vidossich P., Russo N., De Vivo M., Marino T. (2021) Insights into the catalytic mechanism of domains CD1 and CD2 in histone deacetylase 6 from quantum calculations. ACS Catal. 11, 3084–3093.
- Bertrand P. (2010) Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem. 45, 2095–2116.
- Finnin M.S., Donigian J.R., Cohen A., Richon V.M., Rifkind R.A., Marks P.A., Breslow R., Pavletich N.P. (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 401, 188–193.
- Frühauf A., Meyer-Almes F.J. (2021) Non-hydroxamate zinc-binding groups as warheads for histone deacetylases. Molecules. 26, 5151.
- King K., Hauser A.T., Melesina J., Sippl W., Jung M. (2018) Carbamates as potential prodrugs and a new warhead for HDAC inhibition. Molecules. 23, 321.
- Pan D., Yang Q., Fu X., Shan S., Zhu J., Zhang K., Li Z., Ning Z., Lu X. (2014) Discovery of an orally active subtype-selective HDAC inhibitor, chidamide, as an epigenetic modulator for cancer treatment. Med. Chem. Commun. 5, 1789–1796.
- Kozlov M.V., Konduktorov K.A., Shcherbakova A.S., Kochetkov S.N. (2019) Synthesis of N’-propylhydrazide analogs of hydroxamic inhibitors of histone deacetylases (HDACs) and evaluation of their impact on activities of HDACs and replication of hepatitis C virus (HCV). Bioorg. Med. Chem. Lett. 29, 2369–2374.
- Taha T.Y., Aboukhatwa S.M., Knopp R.C., Ikegaki N., Abdelkarim H., Neerasa J., Lu Y., Neelarapu R., Hanigan T.W., Thatcher G.R.J., Petukhov P.A. (2017) Design, synthesis, and biological evaluation of tetrahydroisoquinoline-based histone deacetylase 8 selective inhibitors. ACS Med. Chem. Lett. 8(8), 824–829.
- Luckhurst C.A., Aziz O., Beaumont V., Bürli R.W., Breccia P., Maillard M.C., Haughan A.F., Lamers M., Leonard P., Matthews K.L., Raphy G., Stott A.J., Munoz-Sanjuan I., Thomas B., Wall M., Wishart G., Yates D., Dominguez C. (2019) Development and characterization of a CNS-penetrant benzhydryl hydroxamic acid class IIa histone deacetylase inhibitor. Bioorg. Med. Chem. Lett. 29, 83–88.
- Butler K.V., Kalin J., Brochier C., Vistoli G., Langley B., Kozikowski A.P. (2010) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 132, 10842–10846.
- Curcio A., Rocca R., Alcaro S., Artese A. (2024) The histone deacetylase family: structural features and application of combined computational methods. Pharmaceuticals. 17, 620.
- Kim K., Lee Y., Jeong S., Kim D., Chon S., Pak Y.K., Kim S., Ha J., Kang I., Choe W. (2020) A small molecule, 4-phenylbutyric acid, suppresses HCV replication via epigenetically induced hepatic hepcidin. Int. J. Mol. Sci. 21(15), 5516.
- Carreiras M.D.C., Marco-Contelles J. (2024) Hydrazides as inhibitors of histone deacetylases. J. Med. Chem. 67, 13512–13533.
- He B., Moreau R. (2020) R-α-Lipoic acid and 4-phenylbutyric acid have distinct hypolipidemic mechanisms in hepatic cells. Biomedicines. 8(8), 289.
- Lechner S., Steimbach R.R., Wang L., Deline M.L., Chang Y.C., Fromme T., Klingenspor M., Matthias P., Miller A.K., Médard G., Kuster B. (2023) Chemoproteomic target deconvolution reveals histone deacetylases as targets of (R)-lipoic acid. Nat. Commun. 14, 3548.
- Huang H., Liu N., Guo H., Liao S., Li X., Yang C., Liu S., Song W., Liu C., Guan L., Li B., Xu L., Zhang C., Wang X., Dou Q.P., Liu J. (2012) L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro. PloS One. 7(11), e49062.
- Huang H., Liu N., Yang C., Liao S., Guo H., Zha K., Li X., Liu S., Guan L., Liu C., Xu L., Zhang C., Song W., Li B., Tang P., Dou Q.P., Liu J. (2012) HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo. PloS One. 7(12), e52576.
- Li W., Kou J., Qin J., Li L., Zhang Z., Pan Y., Xue Y., Du W. (2021) NADPH levels affect cellular epigenetic state by inhibiting HDAC3-Ncor complex. Nat. Metab. 3, 75–89.
- Tsuji N., Kobayashi M., Nagashima K., Wakisaka Y., Koizumi K. (1976) A new antifungal antibiotic, trichostatin. J. Antibiot. 29(1), 1–6.
- Ueda H., Nakajima H., Hori Y., Fujita T., Nishimura M., Goto T., Okuhara M. (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. 47(3), 301–310.
- Furumai R., Matsuyama A., Kobashi N., Lee K.H., Nishiyama M., Nakajima H., Tanaka A., Komatsu Y., Nishino N., Yoshida M., Horinouchi S. (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62(17), 4916–4921.
- Kim B., Hong J. (2015) An overview of naturally occurring histone deacetylase inhibitors. Curr. Top. Med. Chem. 14(24), 2759–2782.
- Jo S., Kim J.H., Lee J., Park Y., Jang J. (2022) Azumamides A-E: isolation, synthesis, biological activity, and structure-activity relationship. Molecules. 27(23), 8438.
- Taunton J., Collins J.L., Schreiber S.L. (1996) Synthesis of natural and modified trapoxins, useful reagents for exploring histone deacetylase. J. Am. Chem. Soc. 118, 10412–10422.
- Quiñoà E., Crews P. (1987) Phenolic constituents of Psammaplysilla. Tetrahedron Lett. 28(28), 3229–3232.
- Kim D.H., Shin J., Kwon H.J. (2007) Psammaplin A is a natural prodrug that inhibits class I histone deacetylase. Exp. Mol. Med. 39(1), 47–55.
- Pavlik C.M., Wong C.Y., Onony S., Lopez D.D., Engene N., McPhail K.L., Gerwick W.H., Balunas M.J. (2013) Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp. J. Nat. Prod. 76(11), 2026–2033.
- Yoshida M., Kijima M., Akita M., Beppu T. (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265(28), 17174–17179.
- Khan N., Jeffers M., Kumar S., Hackett C., Boldog F., Khramtsov N., Qian X., Mills E., Berghs S.C., Carey N., Finn P.W., Collins L.S., Tumber A., Ritchie J.W., Jensen P.B., Lichenstein H.S., Sehested M. (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409(2), 581–589.
- Ganesan A. (2012) Romidepsin and the zinc-binding thiol family of natural product HDAC inhibitors. In: Successful drug discovery. v. 2. Eds Fischer J., Childers W. E. Weinheim: Wiley-VCH, pp.13–29.
- Itazaki H., Nagashima K., Sugita K., Yoshida H., Kawamura Y., Yasuda Y., Matsumoto K., Ishii K., Uotani N., Nakai H. (1990) Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiot. 43(12), 1524–1532.
- Furumai R., Komatsu Y., Nishino N., Khochbin S., Yoshida M., Horinouchi S. (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA. 98(1), 87–92.
- Melesina J., Simoben C.V., Praetorius L., Bülbül E.F., Robaa D., Sippl W. (2021) Strategies to design selective histone deacetylase inhibitors. ChemMedChem. 16(9), 1336–1359.
- Murugan K., Sangeetha S., Ranjitha S., Vimala A., Al-Sohaibani S., Rameshkumar G. (2015) HDACiDB: a database for histone deacetylase inhibitors. Drug Des. Devel. Ther. 9, 2257–2264.
- Ruzic D., Djokovic N., Nikolic K. (2021). Fragment-based drug design of selective HDAC6 inhibitors. In: Protein-Ligand Interactions and Drug Design. Methods in Molecular Biology. v. 2266. Ed. Ballante F. New York: Humana Press, pp.155–170.
- Stopper D., Biermann L., Watson P., Li J., König B., Gaynes M., de Carvalho L.P., Hanl M., Hamacher A., Schäker-Hübner L., Held J., Christianson D., Kassack M., Hansen F.K. (2025) Exploring alternative zinc-binding groups in histone deacetylase (HDAC) inhibitors uncovers DS-103 as a potent ethylhydrazide-based HDAC inhibitor with chemosensitizing properties. J. Med. Chem. 68, 4426–4452.
- Steimbach R.R., Herbst-Gervasoni C.J., Lechner S., Stewart T.M., Klinke G., Ridinger J., Géraldy M.N.E., Tihanyi G., Foley J.R., Uhrig U., Kuster B., Poschet G., Casero R.A., Jr Médard G., Oehme I., Christianson D.W., Gunkel N., Miller A.K. (2022) Aza-SAHA derivatives are selective histone deacetylase 10 chemical probes that inhibit polyamine deacetylation and phenocopy HDAC10 knockout. J. Am. Chem. Soc. 144, 18861–18875.
- Rosser C.A., Feeney S.V., Roth L., Hibbs D.E., Gotsbacher M.P., Codd R. (2025) Carboxamide-bearing panobinostat analogues designed to interact with E103-D104 at the cavity opening of class I HDAC isoforms. ACS Med. Chem. Lett. 16(2), 250–257.
- Nguyen H.P., Tran Q., Nguyen C.Q., Hoa T.P., Binh T.D., Thao H.N., Hue B.T.B., Tuan N.T., Dang Q.L., Thanh N.Q.C., Ky N.V., Pham M.Q., Yang S.G. (2022) Anti-multiple myeloma potential of resynthesized belinostat derivatives: an experimental study on cytotoxic activity, drug combination, and docking studies. RSC Adv. 12, 22108–22118.
- Zhang L., Zhang J., Jiang Q., Zhang L., Song W. (2018) Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem. 33(1), 714–721.
- Lechner S., Malgapo M.I.P., Grätz C., Steimbach R.R., Baron A., Rüther P., Nadal S., Stumpf C., Loos C., Ku X., Prokofeva P., Lautenbacher L., Heimburg T., Würf V., Meng C., Wilhelm M., Sippl W., Kleigrewe K., Pauling J.K., Kramer K., Miller A.K., Pfaffl M.W., Linder M.E., Kuster B., Médard G. (2022) Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nat. Chem. Biol. 18, 812–820.
- Shen S., Kozikowski A.P. (2016) Why hydroxamates may not be the best histone deacetylase inhibitors – What some may have forgotten or would rather forget? ChemMedChem. 11(1), 15–21.
- Lobera M., Madauss K.P., Pohlhaus D.T., Wright Q.G., Trocha M., Schmidt D.R., Baloglu E., Trump R.P., Head M.S., Hofmann G.A., Murray-Thompson M., Schwartz B., Chakravorty S., Wu Z., Mander P.K., Kruidenier L., Reid R.A., Burkhart W., Turunen B.J., Rong J.X., Wagner C., Moyer M.B., Wells C., Hong X., Moore J.T., Williams J.D., Soler D., Ghosh S., Nolan M.A. (2013) Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 9, 319–325.
- Cellupica E., Caprini G., Cordella P., Cukier C., Fossati G., Marchini M., Rocchio I., Sandrone G., Vanoni M.A., Vergani B., Źrubek K., Stevenazzi A., Steinkühler C. (2023) Difluoromethyl-1,3,4-oxadiazoles are slow-binding substrate analog inhibitors of histone deacetylase 6 with unprecedented isotype selectivity. J. Biol. Chem. 299(1), 102800.
- Géraldy M., Morgen M., Sehr P., Steimbach R. R., Moi D., Ridinger J., Oehme I., Witt O., Malz M., Nogueira M. S., Koch O., Gunkel N., Miller A. K. (2019) Selective inhibition of histone deacetylase 10: hydrogen bonding to the gatekeeper residue is implicated. J. Med. Chem. 62, 4426–4443.
- Marek L., Hamacher A., Hansen F.K., Kuna K., Gohlke H., Kassack M.U., Kurz T. (2013) Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J. Med. Chem. 56, 427–436.
- Negmeldin A.T., Knoff J.R., Pflum M.K.H. (2018) The structural requirements of histone deacetylase inhibitors: C4-modified SAHA analogs display dual HDAC6/HDAC8 selectivity. Eur. J. Med. Chem. 143, 1790–1806.
- Li B., Chen Y., Wang S., Jin B., Yang J., Niu Q., Hao G., Wang N., Zhang W., Zhao L., Wen J., Liu D. (2025) Discovery of 4,5-dihydro-benzo[g]indazole-based hydroxamic acids as HDAC3/BRD4 dual inhibitors and anti-tumor agents. Eur. J. Med. Chem. 285, 117230.
- McClure J.J., Inks E.S., Zhang C., Peterson Y.K., Li J., Chundru K., Lee B., Buchanan A., Miao S., Chou C.J. (2017) Comparison of the deacylase and deacetylase activity of zinc-dependent HDACs. ACS Chem. Biol. 12(6), 1644–1655.
- Heltweg B., Jung M. (2002) A microplate reader-based nonisotopic histone deacetylase activity assay. Anal. Biochem. 302, 175–183.
- Ciossek T., Julius H., Wieland H., Maier T., Beckers T. (2008) A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening. Anal. Biochem. 372, 72–81.
- Padige G., Negmeldin A.T., Pflum M.K. (2015) Development of an ELISA-based HDAC activity assay for characterization of isoform-selective inhibitors. J. Biomol. Screen. 20(10), 1277–1285.
- Zwick V., Simões-Pires C., Cuendet M. (2016) Cell-based multi-substrate assay coupled to UHPLC-ESI–MS/MS for a quick identification of class-specific HDAC inhibitors. J. Enzyme Inhib. Med. Chem. 31(suppl. 1), 209–214.
- Bantscheff M., Hopf C., Savitski M.M., Dittmann A., Grandi P., Michon A.M., Schlegl J., Abraham Y., Becher I., Bergamini G., Boesche M., Delling M., Dümpelfeld B., Eberhard D., Huthmacher C., Mathieson T., Poeckel D., Reader V., Strunk K., Sweetman G., Kruse U., Neubauer G., Ramsden N.G., Drewes G. (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29(3), 255–265.
- Hsu C.W., Shou D., Huang R., Khuc T., Dai S., Zheng W., Klumpp-Thomas C., Xia M. (2016) Identification of HDAC inhibitors using a cell-based HDAC I/II assay. J. Biomol. Screen. 21(6), 643–652.
- Kozlov M.V., Konduktorov K.A., Malikova A.Z., Kamarova K.A., Shcherbakova A.S., Solyev P.N., Kochetkov S.N. (2019) Structural isomers of cinnamic hydroxamic acids block HCV replication via different mechanisms. Eur. J. Med. Chem. 183, 111723.
- Nong Y., Hou Y., Pu Y., Li S., Lan Y. (2021) Development and validation of high-content analysis for screening HDAC6-selective inhibitors. SLAS Discov. 26(5), 628–641.
- Bonfils C., Kalita A., Dubay M., Siu L.L., Carducci M.A., Reid G., Martell R.E., Besterman J.M., Li Z. (2008) Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human using a novel HDAC enzyme assay. Clin. Cancer Res. 14(11), 3441–3449.
- Kleymenova A., Zemskaya A., Kochetkov S., Kozlov M. (2024) In-cell testing of zinc-dependent histone deacetylase inhibitors in the presence of class-selective fluorogenic substrates: potential and limitations of the method. Biomedicines. 12(6), 1203.
- Riester D., Wegener D., Hildmann C., Schwienhorst A. (2004) Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates. Biochem. Biophys. Res. Commun. 324(3), 1116–1123.
- Sankaranarayanapillai M., Tong W.P., Yuan Q., Bankson J.A., Dafni H., Bornmann W.G., Soghomonyan S., Pal A., Ramirez M.S., Webb D., Kaluarachchi K., Gelovani J.G., Ronen S.M. (2008) Monitoring histone deacetylase inhibition in vivo: noninvasive magnetic resonance spectroscopy method. Mol. Imaging. 7(2), 92–100.
- Allfrey V.G., Faulkner R., Mirsky A.E. (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA. 51(5), 786–794.
- Vidali G., Gershey E.L., Allfrey V.G. (1968) Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones. J. Biol. Chem. 243(24), 6361–6366.
- DeLange R.J., Fambrough D.M., Smith E.L., Bonner J. (1969) Calf and pea histone IV. II. The complete amino acid sequence of calf thymus histone IV; presence of epsilon-N-acetyllysine. J. Biol. Chem. 244(2), 319–334.
- Vidali G., Boffa L.C., Bradbury E.M., Allfrey V.G. (1978) Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc. Natl. Acad. Sci. USA. 75(5), 2239–2243.
- Marvin K.W., Yau P., Bradbury E.M. (1990) Isolation and characterization of acetylated histones H3 and H4 and their assembly into nucleosomes. J. Biol. Chem. 265(32), 19839–19847.
- Thorne A.W., Kmiciek D., Mitchelson K., Sautiere P., Crane-Robinson C. (1990) Patterns of histone acetylation. Eur. J. Biochem. 193(3), 701–713.
- Wagner F.F., Zhang Y.L., Fass D.M., Joseph N., Gale J.P., Weïwer M., McCarren P., Fisher S.L., Kaya T., Zhao W.N., Reis S.A., Hennig K.M., Thomas M., Lemercier B.C., Lewis M.C., Guan J.S., Moyer M.P., Scolnick E., Haggarty S.J., Tsai L.H., Holson E.B. (2015) Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem. Sci. 6(1), 804–815.
- Nalawansha D.A., Gomes I.D., Wambua M.K., Pflum M.K.H. (2017) HDAC inhibitor-induced mitotic arrest is mediated by Eg5/KIF11 acetylation. Cell Сhem. Biol. 24, 481–492.
- Nalawansha D.A., Zhang Y., Herath K., Pflum M.K.H. (2018) HDAC1 Substrate profiling using proteomics-based substrate trapping. ACS Chem. Biol. 13(12), 3315–3324.
- Gomes I.D., Pflum M.K.H. (2019) Optimal substrate-trapping mutants to discover substrates of HDAC1. Chembiochem. 20(11), 1444–1449.
- Martínez-Balbás M.A., Bauer U.M., Nielsen S.J., Brehm A., Kouzarides T. (2000) Regulation of E2F1 activity by acetylation. EMBO J. 19(4), 662–671.
- Chen L.F., Fischle W., Verdin E., Greene W.C. (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 293(5535), 1653–1657.
- Chen L.F., Greene W.C. (2004) Shaping the nuclear action of NF-kappaB. Nat. Rev. Mol. Cell Biol. 5(5), 392–401.
- Grégoire S., Xiao L., Nie J., Zhang X., Xu M., Li J., Wong J., Seto E., Yang X.J. (2007) Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell. Biol. 27(4), 1280–1295.
- Dasgupta T., Antony J., Braithwaite A.W., Horsfield J.A. (2016) HDAC8 Inhibition blocks SMC3 deacetylation and delays cell cycle progression without affecting cohesin-dependent transcription in MCF7 cancer cells. J. Biol. Chem. 291(24), 12761–12770.
- Wolfson N.A., Pitcairn C.A., Fierke C.A. (2013) HDAC8 substrates: histones and beyond. Biopolymers. 99(2), 112–126.
- Olson D.E., Udesh N.D., Wolfson N.A., Pitcairn C.A., Sullivan E.D., Jaffe J.D., Svinkina T., Natoli T., Lu X., Paulk J., McCarren P., Wagner F.F., Barker D., Howe E., Lazzaro F., Gale J.P., Zhang Y.L., Subramanian A., Fierke C.A., Carr S.A., Holson E.B. (2014) An unbiased approach to identify endogenous substrates of “histone” deacetylase 8. ACS Chem. Biol. 9(10), 2210–2216.
- Zhang Y., Li N., Caron C., Matthias G., Hess D., Khochbin S., Matthias P. (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22(5), 1168–1179.
- Scroggins B.T., Robzyk K., Wang D., Marcu M.G., Tsutsumi S., Beebe K., Cotter R.J., Felts S., Toft D., Karnitz L., Rosen N., Neckers L. (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell. 25, 151–159.
- Zhang M., Xiang S., Joo H.Y., Wang L., Williams K.A., Liu W., Hu C., Tong D., Haakenson J., Wang C., Zhang S., Pavlovicz R.E., Jones A., Schmidt K.H., Tang J., Dong H., Shan B., Fang B., Radhakrishnan R., Glazer P.M., Matthias P., Koomen J., Seto E., Bepler G., Nicosia S.V., Chen J., Li C., Gu L., Li G.M., Bai W., Wang H., Zhang X. (2014) HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSα. Mol. Cell. 55, 31–46.
- Radhakrishnan R., Li Y., Xiang S., Yuan F., Yuan Z., Telles E., Fang J., Coppola D., Shibata D., Lane W.S., Zhang Y., Zhang X., Seto E. (2015) Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2. J. Biol. Chem. 290(37), 22795–22804.
- Cao J., Sun L., Aramsangtienchai P., Spiegelman N.A., Zhang X., Huang W., Seto E., Lin H. (2019) HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl. Acad. Sci. USA. 116(12), 5487–5492.
- Kervabon A., Mery J., Parello J. (1979) Enzymatic deacetylation of a synthetic peptide fragment of histone H4. FEBS Lett. 106(1), 93–96.
- Darkin-Rattray S.J., Gurnett A.M., Myers R.W., Dulski P.M., Crumley T.M., Allocco J.J., Cannova C., Meinke P.T., Colletti S.L., Bednarek M.A., Singh S.B., Goetz M.A., Dombrowski A.W., Polishook J.D., Schmatz D.M. (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA. 93(23), 13143–13147.
- Wegener D., Wirsching F., Riester D., Schwienhorst A. (2003) A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem. Biol. 10(1), 61–68.
- Hoffmann K., Brosch G., Loidl P., Jung M. (1999) A non-isotopic assay for histone deacetylase activity. Nucl. Acids Res. 27(9), 2057–2058.
- Heltweg B., Dequiedt F., Marshall B.L., Brauch C., Yoshida M., Nishino N., Verdin E., Jung M. (2004) Subtype selective substrates for histone deacetylases. J. Med. Chem. 47, 5235–5243.
- Herp D., Ridinger J., Robaa D., Shinsky S.A., Schmidtkunz K., Yesiloglu T.Z., Bayer T., Steimbach R.R., Herbst-Gervasoni C.J., Merz A., Romier C., Sehr P., Gunkel N., Miller A.K., Christianson D.W., Oehme I., Sippl W., Jung M. (2022) First fluorescent acetylspermidine deacetylation assay for HDAC10 identifies selective inhibitors with cellular target engagement. Chembiochem. 23, e202200180.
- Kölle D., Brosch G., Lechner T., Lusser A., Loidl P. (1998) Biochemical methods for analysis of histone deacetylases. Methods. 15(4), 323–331.
- Zhang Y., Sun Z.W., Iratni R., Erdjument-Bromage H., Tempst P., Hampsey M., Reinberg D. (1998) SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell. 1, 1021–1031.
- Zhang Y., LeRoy G., Seelig H.P., Lane W.S., Reinberg D. (1998) The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 95(2), 279–289.
- Sule R., Rivera G., Gomes A.V. (2023) Western blotting (immunoblotting): history, theory, uses, protocols and problems. BioTechniques. 75(3), 99–114.
- Wegener D., Hildmann C., Riester D., Schwienhorst A. (2003) Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Anal. Biochem. 321, 202–208.
- Bradner J.E., West N., Grachan M.L., Greenberg E.F., Haggarty S.J., Warnow T., Mazitschek R. (2010) Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol. 6, 238–243.
- Schweipert M., Amurthavasan A., Meyer-Almes F.J. (2023) Continuous enzyme activity assay for high-throughput classification of histone deacetylase 8 inhibitors. Explor. Target. Anti-Tumor Ther. 4(3), 447–459.
- Fan J., Alsarraf O., Chou C.J., Yates, P.W., Goodwin N.C., Rice D.S., Crosson C.E. (2016) Ischemic preconditioning, retinal neuroprotection and histone deacetylase activities. Exp. Eye Res. 146, 269–275.
- Asfaha Y., Skerhut A., Alves-Avelar L., Horstick-Muche N., Lungerich B., Klinken S., Kassack M., Kurz T. (2020) Synthesis of thiazolyl-based hydroxamic acids as histone deacetylase inhibitors. Arkivoc. 2020, 228–241.
- Halley F., Reinshagen J., Ellinger B., Wolf M., Niles A.L., Evans N.J., Kirkland T.A., Wagner J.M., Jung M., Gribbon P., Gul S. (2011) A bioluminogenic HDAC activity assay: Validation and screening. J. Biomol. Screen. 16(10), 1227–1235.
- Березин Б.Д., Бровко Л.Ю., Угарова Н.Н. (1977) Люцифераза светляков. Биорган. химия. 3(12), 1598–1604.
- Mofford D.M., Reddy G.R., Miller S.C. (2014) Aminoluciferins extend firefly luciferase bioluminescence into the near-infrared and can be preferred substrates over D-luciferin. J. Am. Chem. Soc. 136, 13277–13282.
- Smith E.R., Pannuti A., Gu W., Steurnagel A., Cook R.G., Allis C.D., Lucchesi J.C. (2000) The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol. 20(1), 312–318.
- Kirkland T., Niles AL., O’Brien M., Hitko C.W. (2014) Patent US8,632,992 B2. (https://patents.google.com/patent/US8632992B2)
- Slaughter M.J., Shanle E.K., Khan A., Chua K.F., Hong T., Boxer L.D., Allis C.D., Josefowicz S.Z., Garcia B.A., Rothbart S.B., Strahl B.D., Davis I.J. (2021) HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep. 34(3), 108638.
Дополнительные файлы




