Analogs and conjugates of natural proline-arginine-rich antimicrobial peptides: their potential for practical applications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Antimicrobial peptides, particularly proline-arginine-rich cationic antimicrobial peptides (PRAMPs), have recently attracted the attention of researchers as potential candidates for the development of new generation antibacterial drugs. This interest stems from PRAMPs’ ability to target bacteria resistant to currently used antibiotics, through a unique mechanism involving interaction with bacterial ribosomes and inhibition of protein synthesis. Additionally, PRAMPs exhibit a broad spectrum of activity against Gram-negative bacteria, low rates of bacterial resistance, and relative ease of structural modification. The use of antimicrobial peptides in practice is limited due to several factors, including their susceptibility to proteolytic degradation in biological media and their insufficiently broad spectrum of antibacterial activity against Gram-positive bacteria. Additionally, there is a possibility of resistance developing in bacteria against AMPs, as well as toxic effects resulting from the interaction of PRAMPs with certain components of eukaryotic cells. To overcome these challenges, researchers have explored various strategies, such as modifying the structure of PRAMPs and conjugating them with other molecules. This review examines recent literature on analogues and conjugates of PRAMPs, along with information on methods of modifying PRAMPs. The analysis of new properties of these compounds highlights the potential for creating effective antibacterial agents based on PRAMPs.

About the authors

P. R. Bazhutov

Lomonosov Moscow State University, Department of Chemistry

Moscow, 119991 Russia

Z. Z. Khairullina

Lomonosov Moscow State University, Department of Chemistry

Moscow, 119991 Russia

A. G. Tereshchenkov

Lomonosov Moscow State University, Department of Chemistry; Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology

Moscow, 119991 Russia; Moscow, 119992 Russia

N. V. Sumbatyan

Lomonosov Moscow State University, Department of Chemistry

Email: sumbtyan@belozersky.msu.ru
Moscow, 119991 Russia

References

  1. Сафронова В.Н., Болосов И.А., Пантелеев П.В., Баландин С.В., Овчинникова Т.В. (2023) Терапевтический потенциал и перспективы применения антимикробных пептидов в эпоху глобального распространения антибиотикорезистентности. Биоорган. химия. 49, 243–258. https://doi.org/10.31857/S0132342323030181
  2. Magana M., Pushpanathan M., Santos A.L., Leanse L., Fernandez M., Ioannidis A., Giulianotti M.A., Apidianakis Y., Bradfute S., Ferguson A.L., Cherkasov A., Seleem M.N., Pinilla C., de la Fuente-Nunez C., Lazaridis T., Dai T., Houghten R.A., Hancock R.E.W., Tegos G.P. (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 20, e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3
  3. Mahlapuu M., Björn C., Ekblom J. (2020) Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit. Rev. Biotechnol. 40, 978–992. https://doi.org/10.1080/07388551.2020.1796576
  4. Kumar P., Kizhakkedathu J.N., Straus S.K. (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 8, 4. https://doi.org/10.3390/biom8010004
  5. Zasloff M. (2002) Antimicrobial peptides of multicellular organisms. Nature. 415, 389–395. https://doi.org/10.1038/415389a
  6. Hancock R.E.W., Chapple D.S. (1999) Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317–1323. https://doi.org/10.1128/AAC.43.6.1317
  7. Sun S. (2025) Progress in the identification and design of novel antimicrobial peptides against pathogenic microorganisms. Probiotics Antimicrob. Proteins. 17, 918–936. https://doi.org/10.1007/s12602-024-10402-4
  8. Chakrapani S., Panigrahi A., Palanichamy E., Thangaraj S.K., Radhakrishnan N., Panigrahi P., Nagarathnam R. (2024) Evaluation of therapeutic efficiency of stylicin against Vibrio parahaemolyticus infection in shrimp Penaeus vannamei through comparative proteomic approach. Probiotics Antimicrob. Proteins. 16, 76–92. https://doi.org/10.1007/s12602-022-10006-w
  9. Decker A.P., Mechesso A.F., Wang G. (2022) Expanding the landscape of amino acid-rich antimicrobial peptides: definition, deployment in nature, implications for peptide design and therapeutic potential. Int. J. Mol. Sci. 23, 12874. https://doi.org/10.3390/ijms232112874
  10. Zouhir A., Semmar N. (2022) Structure-activity trends analysis between amino acid compositions and minimal inhibitory concentrations of antimicrobial peptides. Chem. Biol. Drug Des. 99, 438–455. https://doi.org/10.1111/cbdd.14003
  11. Жаркова М.С., Орлов Д.С., Кокряков В.Н., Шамова О.В. (2014) Антимикробные пептиды млекопитающих: классификация, биологическая роль, перспективы практического применения. Вестник СПбГУ. 1, 98–114.
  12. Otvos L.Jr. (2002) The short proline-rich antibacterial peptide family. Cell. Mol. Life Sci. 59, 1138–1150. https://doi.org/10.1007/s00018-002-8493-8
  13. Маркосян К.А., Замятнин А.А., Курганов Б.И. (2004) Антибактериальные богатые пролином природные олигопептиды и их белки-мишени. Биохимия. 69, 1332–1344.
  14. Li W., Tailhades J., OʹBrien-Simpson N.M., Separovic F., Otvos L., Hossain M.A., Wade J.D. (2014) Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids. 46, 2287–2294. https://doi.org/10.1007/s00726-014-1820-1
  15. Graf M., Mardirossian M., Nguyen F., Seefeldt A.C., Guichard G., Scocchi M., Innis C.A., Wilson D.N. (2017) Proline-rich antimicrobial peptides targeting protein synthesis. Nat. Prod. Rep. 34, 702–711. https://doi.org/10.1039/C7NP00020K
  16. Graf M., Wilson D.N. (2019) Intracellular antimicrobial peptides targeting the protein synthesis machinery. Adv. Exp. Med. Biol. 1117, 73–89. https://doi.org/10.1007/978-981-13-3588-4_6
  17. Scocchi M., Tossi A., Gennaro R. (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell. Mol. Life Sci. 68, 2317–2330. https://doi.org/10.1007/s00018-011-0721-7
  18. Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387–2391. https://doi.org/10.1002/j.1460-2075.1989.tb08368.x
  19. Casteels P., Ampe C., Riviere L., Van Damme J., Elicone C., Fleming M., Jacobs F., Tempst P. (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381–386. https://doi.org/10.1111/j.1432-1033.1990.tb15315.x
  20. Bulet P., Dimarcq J.L., Hetru C., Lagueux M., Charlet M., Hegy G., Van Dorsselaer A., Hoffmann J.A. (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268, 14893–14897. https://doi.org/10.1016/S0021-9258(18)82417-6
  21. Cociancich S., Dupont A., Hegy G., Lanot R., Holder F., Hetru C., Hoffmann J.A., Bulet P. (1994) Novel inducible antibacterial peptides from a Hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem. J. 300 (Pt 2), 567–575. https://doi.org/10.1042/bj3000567
  22. Chernysh S., Cociancich S., Briand J.-P., Hetru C., Bulet P. (1996) The inducible antibacterial peptides of the Hemipteran insect Palomena prasina: identification of a unique family of prolinerich peptides and of a novel insect defensin. J. Insect Physiol. 42, 81–89. https://doi.org/10.1016/0022-1910(95)00085-2
  23. Mackintosh J.A., Veal D.A., Beattie A.J., Gooley A.A. (1998) Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J. Biol. Chem. 273, 6139–6143. https://doi.org/10.1074/jbc.273.11.6139
  24. Schneider M., Dorn A. (2001) Differential infectivity of two Pseudomonas species and the immune response in the milkweed bug, Oncopeltus fasciatus (Insecta: Hemiptera). J. Invertebr. Pathol. 78, 135–140. https://doi.org/10.1006/jipa.2001.5054
  25. Knappe D., Piantavigna S., Hansen A., Mechler A., Binas A., Nolte O., Martin L.L., Hoffmann R. (2010) Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens. J. Med. Chem. 53, 5240–5247. https://doi.org/10.1021/jm100378b
  26. Gennaro R., Skerlavaj B., Romeo D. (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun. 57, 3142–3146. https://doi.org/10.1128/iai.57.10.3142-3146.1989
  27. Huttner K.M., Lambeth M.R., Burkin H.R., Burkin D.J., Broad T.E. (1998) Localization and genomic organization of sheep antimicrobial peptide genes. Gene. 206, 85–91. https://doi.org/10.1016/s0378-1119(97)00569-6
  28. Shamova O., Brogden K.A., Zhao C., Nguyen T., Kokryakov V.N., Lehrer R.I. (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect. Immun. 67, 4106–4111. https://doi.org/10.1128/IAI.67.8.4106-4111.1999
  29. Agerberth B., Gunne H., Odeberg J., Kogner P., Boman H.G., Gudmundsson G.H. (1996) PR-39, a proline-rich peptide antibiotic from pig, and FALL-39, a tentative human counterpart. Vet. Immunol. Immunopathol. 54, 127–131. https://doi.org/10.1016/s0165-2427(96)05676-0
  30. Agerberth B., Lee J.Y., Bergman T., Carlquist M., Boman H.G., Mutt V., Jörnvall H. (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 202, 849–854. https://doi.org/10.1111/j.1432-1033.1991.tb16442.x
  31. Holani R., Shah C., Haji Q., Inglis G.D., Uwiera R.R.E., Cobo E.R. (2016) Proline-arginine rich (PR-39) cathelicidin: structure, expression and functional implication in intestinal health. Comp. Immunol. Microbiol. Infect. Dis. 49, 95–101. https://doi.org/10.1016/j.cimid.2016.10.004
  32. Stensvåg K., Haug T., Sperstad S.V., Rekdal Ø., Indrevoll B., Styrvold O.B. (2008) Arasin 1, a proline–arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev. Comp. Immunol. 32, 275–285. https://doi.org/10.1016/j.dci.2007.06.002
  33. Schnapp D., Kemp G.D., Smith V.J. (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur. J. Biochem. 240, 532–539. https://doi.org/10.1111/j.1432-1033.1996.0532h.x
  34. Panteleev P.V., Bolosov I.A., Kalashnikov A.À., Kokryakov V.N., Shamova O.V., Emelianova A.A., Balandin S.V., Ovchinnikova T.V. (2018) Combined antibacterial effects of goat cathelicidins with different mechanisms of action. Front. Microbiol. 9, 2983. https://doi.org/10.3389/fmicb.2018.02983
  35. Panteleev P.V., Safronova V.N., Kruglikov R.N., Bolosov I.A., Bogdanov I.V., Ovchinnikova T.V. (2022) A novel proline-rich cathelicidin from the alpaca Vicugna pacos with potency to combat antibiotic-resistant bacteria: mechanism of action and the functional role of the C-terminal region. Membranes (Basel). 12, 515. https://doi.org/10.3390/membranes12050515
  36. Panteleev P.V., Safronova V.N., Kruglikov R.N., Bolosov I.A., Ovchinnikova T.V. (2023) Genomic insights into bacterial resistance to proline-rich antimicrobial peptide Bac7. Membranes (Basel). 13, 438. https://doi.org/10.3390/membranes13040438
  37. Kopeikin P.M., Zharkova M.S., Kolobov A.A., Smirnova M.P., Sukhareva M.S., Umnyakova E.S., Kokryakov V.N., Orlov D.S., Milman B.L., Balandin S.V., Panteleev P.V., Ovchinnikova T.V., Komlev A.S., Tossi A., Shamova O.V. (2020) Caprine bactenecins as promising tools for developing new antimicrobial and antitumor drugs. Front. Cell. Infect. Microbiol. 10, 552905. https://doi.org/10.3389/fcimb.2020.552905
  38. Shen S., Sun Y., Ren F., Blair J.M.A., Siasat P., Fan S., Hu J., He J. (2023) Characteristics of antimicrobial peptide OaBac5mini and its bactericidal mechanism against Escherichia coli. Front. Vet. Sci. 10, 1123054. https://doi.org/10.3389/fvets.2023.1123054
  39. Шамова О.В., Орлов Д.С., Жаркова М.С., Баландин С.В., Ямщикова, E.В., Кнаппе Д., Хоффманн Р., Кокряков В.Н., Овчинникова Т.В. (2016) Мини-бактенецины ChBac7.5Nα и ChBac7.5Nβ – антимикробные пептиды из лейкоцитов козы Capra hircus. Acta Naturae. 8, 136–146. https://doi.org/10.32607/20758251-2016-8-3-136-146
  40. Болосов И.А., Пантелеев П.В., Баландин С.В., Шамова О.В., Овчинникова Т.В. (2022) Структурно-функциональная характеристика пролин-богатого антимикробного пептида минибактенецина из лейкоцитов козы Capra hircus. Бюлл. эксп. биол. мед. 174, 445–451. https://doi.org/10.47056/0365-9615-2022-174-10-445-451
  41. Mardirossian M., Pérébaskine N., Benincasa M., Gambato S., Hofmann S., Huter P., Müller C., Hilpert K., Innis C.A., Tossi A., Wilson D.N. (2018) The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem. Biol. 25, 530–539.e7. https://doi.org/10.1016/j.chembiol.2018.02.004
  42. Sola R., Mardirossian M., Beckert B., Sanghez De Luna L., Prickett D., Tossi A., Wilson D.N., Scocchi M. (2020) Characterization of cetacean proline-rich antimicrobial peptides displaying activity against ESKAPE pathogens. Int. J. Mol. Sci. 21, 7367. https://doi.org/10.3390/ijms21197367
  43. Panteleev P.V., Pichkur E.B., Kruglikov R.N., Paleskava A., Shulenina O.V., Bolosov I.A., Bogdanov I.V., Safronova V.N., Balandin S.V., Marina V.I., Kombarova T.I., Korobova O.V., Shamova O.V., Myasnikov A.G., Borzilov A.I., Osterman I.A., Sergiev P.V., Bogdanov A.A., Dontsova O.A., Konevega A.L., Ovchinnikova T.V. (2024) Rumicidins are a family of mammalian host-defense peptides plugging the 70S ribosome exit tunnel. Nat. Commun. 15, 8925. https://doi.org/10.1038/s41467–024–53309-y
  44. Mardirossian M., Grzela R., Giglione C., Meinnel T., Gennaro R., Mergaert P., Scocchi M. (2014) The host antimicrobial peptide Bac71–35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol. 21, 1639–1647. https://doi.org/10.1016/j.chembiol.2014.10.009
  45. Krizsan A., Volke D., Weinert S., Sträter N., Knappe D., Hoffmann R. (2014) Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew. Chem. Int. Ed. Engl. 53, 12236–12239. https://doi.org/10.1002/anie.201407145
  46. Polikanov Y.S., Aleksashin N.A., Beckert B., Wilson D.N. (2018) The mechanisms of action of ribosome-targeting peptide antibiotics. Front. Mol. Biosci. 5, 48. https://doi.org/10.3389/fmolb.2018.00048
  47. Roy R.N., Lomakin I.B., Gagnon M.G., Steitz T.A. (2015) The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat. Struct. Mol. Biol. 22, 466–469. https://doi.org/10.1038/nsmb.3031
  48. Seefeldt A.C., Nguyen F., Antunes S., Pérébaskine N., Graf M., Arenz S., Inampudi K.K., Douat C., Guichard G., Wilson D.N., Innis C.A. (2015) The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat. Struct. Mol. Biol. 22, 470–475. https://doi.org/10.1038/nsmb.3034
  49. Seefeldt A.C., Graf M., Pérébaskine N., Nguyen F., Arenz S., Mardirossian M., Scocchi M., Wilson D.N., Innis C.A. (2016) Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucl. Acids Res. 44, 2429–2438. https://doi.org/10.1093/nar/gkv1545
  50. Gagnon M.G., Roy R.N., Lomakin I. B., Florin T., Mankin A.S., Steitz T.A. (2016) Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucl. Acids Res. 44, 2439–2450. https://doi.org/10.1093/nar/gkw018
  51. Florin T., Maracci C., Graf M., Karki P., Klepacki D., Berninghausen O., Beckmann R., Vázquez-Laslop N., Wilson D.N., Rodnina M.V., Mankin A.S. (2017) An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat. Struct. Mol. Biol. 24, 752–757. https://doi.org/10.1038/nsmb.3439
  52. Graf M., Huter P., Maracci C., Peterek M., Rodnina M.V., Wilson D.N. (2018) Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1. Nat. Commun. 9, 3053. https://doi.org/10.1038/s41467-018-05465-1
  53. Baliga C., Brown T.J., Florin T., Colon S., Shah V., Skowron K.J., Kefi A., Szal T., Klepacki D., Moore T.W., Vázquez-Laslop N., Mankin A.S. (2021) Charting the sequence-activity landscape of peptide inhibitors of translation termination. Proc. Natl. Acad. Sci. USA. 118, e2026465118. https://doi.org/10.1073/pnas.2026465118
  54. Skowron K.J., Baliga C., Johnson T., Kremiller K.M., Castroverde A., Dean T.T., Allen A.C., Lopez-Hernandez A.M., Aleksandrova E.V., Klepacki D., Mankin A.S., Polikanov Y.S., Moore T.W. (2023) Structure-activity relationships of the antimicrobial peptide natural product Apidaecin. J. Med. Chem. 66, 11831–11842. https://doi.org/10.1021/acs.jmedchem.3c00406
  55. Mangano K., Klepacki D., Ohanmu I., Baliga C., Huang W., Brakel A., Krizsan A., Polikanov Y.S., Hoffmann R., Vázquez-Laslop N., Mankin A.S. (2023) Inhibition of translation termination by the antimicrobial peptide Drosocin. Nat. Chem. Biol. 19, 1082–1090. https://doi.org/10.1038/s41589-023-01300-x
  56. Huang W., Baliga C., Aleksandrova E.V., Atkinson G., Polikanov Y.S., Vázquez-Laslop N., Mankin A.S. (2024) Activity, structure, and diversity of type II proline-rich antimicrobial peptides from insects. EMBO Rep. 25, 5194–5211. https://doi.org/10.1038/s44319-024-00277-5
  57. Mattiuzzo M., Bandiera A., Gennaro R., Benincasa M., Pacor S., Antcheva N., Scocchi M. (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66, 151–163. https://doi.org/10.1111/j.1365-2958.2007.05903.x
  58. Krizsan A., Knappe D., Hoffmann R. (2015) Influence of the yjiL-mdtM gene cluster on the antibacterial activity of proline-rich antimicrobial peptides overcoming Escherichia coli resistance induced by the missing SbmA transporter system. Antimicrob. Agents Chemother. 59, 5992–5998. https://doi.org/10.1128/AAC.01307-15
  59. Guida F., Benincasa M., Zahariev S., Scocchi M., Berti F., Gennaro R., Tossi A. (2015) Effect of size and N-terminal residue characteristics on bacterial cell penetration and antibacterial activity of the proline-rich peptide Bac7. J. Med. Chem. 58, 1195–1204. https://doi.org/10.1021/jm501367p
  60. Ghilarov D., Inaba-Inoue S., Stepien P., Qu F., Michalczyk E., Pakosz Z., Nomura N., Ogasawara S., Walker G.C., Rebuffat S., Iwata S., Heddle J.G., Beis K. (2021) Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides. Sci. Adv. 7, eabj5363. https://doi.org/10.1126/sciadv.abj5363
  61. Borovsky D., Rougé P., Shatters R.G. (2022) Bactericidal properties of proline-rich aedes aegypti trypsin modulating oostatic factor (AeaTMOF). Life (Basel). 13, 19. https://doi.org/10.3390/life13010019
  62. Böttger R., Hoffmann R., Knappe D. (2017) Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One. 12, e0178943. https://doi.org/10.1371/journal.pone.0178943
  63. Greber B.J., Ban N. (2016) Structure and function of the mitochondrial ribosome. Annu. Rev. Biochem. 85, 103–132. https://doi.org/10.1146/annurev-biochem-060815-014343
  64. Vakhrusheva T.V., Moroz G.D., Basyreva L.Y., Shmeleva E.V., Gusev S.A., Mikhalchik E.V., Grafskaia E.N., Latsis I.A., Panasenko O.M., Lazarev V.N. (2022) Effects of medicinal leech-related cationic antimicrobial peptides on human blood cells and plasma. Molecules. 27, 5848. https://doi.org/10.3390/molecules27185848
  65. Hollmann A., Martínez M., Noguera M.E., Augusto M.T., Disalvo A., Santos N.C., Semorile L., Maffía P.C. (2016) Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces. 141, 528–536. https://doi.org/10.1016/j.colsurfb.2016.02.003
  66. Turell L., Radi R., Alvarez B. (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic. Biol. Med. 65, 244–253. https://doi.org/10.1016/j.freeradbiomed.2013.05.050
  67. Sivertsen A., Isaksson J., Leiros H.-K.S., Svenson J., Svendsen J.-S., Brandsdal B.O. (2014) Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol. 14, 4. https://doi.org/10.1186/1472-6807-14-4
  68. Tassanakajon A., Amparyup P., Somboonwiwat K., Supungul P. (2010) Cationic antimicrobial peptides in penaeid shrimp. Mar. Biotechnol. (NY). 12, 487–505. https://doi.org/10.1007/s10126-010-9288-9
  69. Ciociola T., Giovati L., De Simone T., Bergamaschi G., Gori A., Consalvi V., Conti S., Vitali A. (2023) Novel arginine- and proline-rich candidacidal peptides obtained through a bioinformatic approach. Antibiotics (Basel). 12, 472. https://doi.org/10.3390/antibiotics12030472
  70. Gasu E.N., Mensah J.K., Borquaye L.S. (2023) Computer-aided design of proline-rich antimicrobial peptides based on the chemophysical properties of a peptide isolated from Olivancillaria hiatula. J. Biomol. Struct. Dyn. 41, 8254–8275. https://doi.org/10.1080/07391102.2022.2131626
  71. Rios T.B., Rezende S.B., Maximiano M.R., Cardoso M.H., Malmsten M., de la Fuente-Nunez C., Franco O.L. (2024) Computational approaches for antimicrobial peptide delivery. Bioconjug. Chem. 35, 1873–1882. https://doi.org/10.1021/acs.bioconjchem.4c00406
  72. Otvos L., Wade J.D., Lin F., Condie B.A., Hanrieder J., Hoffmann R. (2005) Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. J. Med. Chem. 48, 5349–5359. https://doi.org/10.1021/jm050347i
  73. DeJong M.P., Ritter S.C., Fransen K.A., Tresnak D.T., Golinski A.W., Hackel B.J. (2021) A platform for deep sequence-activity mapping and engineering antimicrobial peptides. ACS Synth. Biol. 10, 2689–2704. https://doi.org/10.1021/acssynbio.1c00314
  74. Shen X., Ye G., Cheng X., Yu C., Altosaar I., Hu C. (2010) Characterization of an abaecin-like antimicrobial peptide identified from a Pteromalus puparum cDNA clone. J. Invertebr. Pathol. 105, 24–29. https://doi.org/10.1016/j.jip.2010.05.006
  75. Cui Q., Yu H.-D., Xu Q.-J., Liu Y., Wang Y.-T., Li P.-H., Kong L.-C., Zhang H.-P., Jiang X.-Y., Giuliodori A.M., Fabbretti A., He C.-G., Ma H.-X. (2023) Antibiotic synergist OM19r reverses aminoglycoside resistance in multidrug-resistant Escherichia coli. Front. Microbiol. 14, 1144946. https://doi.org/10.3389/fmicb.2023.1144946
  76. Zharkova M.S., Orlov D.S., Golubeva O.Y., Chakchir O.B., Eliseev I.E., Grinchuk T.M., Shamova O.V. (2019) Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-A novel way to combat antibiotic resistance? Front. Cell. Infect. Microbiol. 9, 128. https://doi.org/10.3389/fcimb.2019.00128
  77. Liu Z., Nong K., Qin X., Fang X., Zhang B., Chen W., Wang Z., Wu Y., Shi H., Wang X., Liu Y., Guan Q., Zhang H. (2024) The antimicrobial peptide Abaecin alleviates colitis in mice by regulating inflammatory signaling pathways and intestinal microbial composition. Peptides. 173, 171154. https://doi.org/10.1016/j.peptides.2024.171154
  78. Brakel A., Grochow T., Fritsche S., Knappe D., Krizsan A., Fietz S.A., Alber G., Hoffmann R., Müller U. (2023) Evaluation of proline-rich antimicrobial peptides as potential lead structures for novel antimycotics against Cryptococcus neoformans. Front. Microbiol. 14, 1328890. https://doi.org/10.3389/fmicb.2023.1328890
  79. Anbanandam A., Albarado D.C., Tirziu D.C., Simons M., Veeraraghavan S. (2008) Molecular basis for proline- and arginine-rich peptide inhibition of proteasome. J. Mol. Biol. 384, 219–227. https://doi.org/10.1016/j.jmb.2008.09.021
  80. Holfeld L., Herth N., Singer D., Hoffmann R., Knappe D. (2015) Immunogenicity and pharmacokinetics of short, proline-rich antimicrobial peptides. Future Med. Chem. 7, 1581–1596. https://doi.org/10.4155/fmc.15.91
  81. Liu M., Xiao Y., Yang Y., Zhou S., Shen X., Zhang Y., Wang W. (2023) Carrier proteins boost expression of PR-39-derived peptide in Pichia pastoris. J. Appl. Microbiol. 134, lxad297. https://doi.org/10.1093/jambio/lxad297
  82. Mardirossian M., Gruppuso M., Guagnini B., Mihalić F., Turco G., Porrelli D. (2023) Advantages of agarose on alginate for the preparation of polysaccharide/hydroxyapatite porous bone scaffolds compatible with a proline-rich antimicrobial peptide. Biomed. Mater. 18. https://doi.org/10.1088/1748–605X/ad02d3
  83. Fosgerau K., Hoffmann T. (2015) Peptide therapeutics: current status and future directions. Drug Discov. Today. 20, 122–128. https://doi.org/10.1016/j.drudis.2014.10.003
  84. Grishin D.V., Zhdanov D.D., Pokrovskaya M.V., Sokolov N.N. (2020) D-amino acids in nature, agriculture and biomedicine. All Life. 13, 11–22. https://doi.org/10.1080/21553769.2019.1622596
  85. Doti N., Mardirossian M., Sandomenico A., Ruvo M., Caporale A. (2021) Recent applications of retro-inverso peptides. Int. J. Mol. Sci. 22, 8677. https://doi.org/10.3390/ijms22168677
  86. Knappe D., Kabankov N., Hoffmann R. (2011) Bactericidal oncocin derivatives with superior serum stabilities. Int. J. Antimicrob. Agents. 37, 166–170. https://doi.org/10.1016/j.ijantimicag.2010.10.028
  87. Otvos L., Bokonyi K., Varga I., Otvos B.I., Hoffmann R., Ertl H.C., Wade J.D., McManus A.M., Craik D.J., Bulet P. (2000) Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci. 9, 742–749. https://doi.org/10.1110/ps.9.4.742
  88. Koller T.O., Morici M., Berger M., Safdari H.A., Lele D.S., Beckert B., Kaur K.J., Wilson D.N. (2023) Structural basis for translation inhibition by the glycosylated drosocin peptide. Nat. Chem. Biol. 19, 1072–1081. https://doi.org/10.1038/s41589-023-01293-7
  89. Knappe D., Goldbach T., Hatfield M.P.D., Palermo N.Y., Weinert S., Sträter N., Hoffmann R., Lovas S. (2016) Proline-rich antimicrobial peptides optimized for binding to Escherichia coli chaperone DnaK. Protein Pept. Lett. 23, 1061–1071. https://doi.org/10.2174/0929866523666160719124712
  90. Benincasa M., Scocchi M., Podda E., Skerlavaj B., Dolzani L., Gennaro R. (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides. 25, 2055–2061. https://doi.org/10.1016/j.peptides.2004.08.004
  91. Mardirossian M., Sola R., Degasperi M., Scocchi M. (2019) Search for shorter portions of the proline-rich antimicrobial peptide fragment Bac5(1–25) that retain antimicrobial activity by blocking protein synthesis. ChemMedChem. 14, 343–348. https://doi.org/10.1002/cmdc.201800734
  92. Berthold N., Hoffmann R. (2014) Cellular uptake of apidaecin 1b and related analogs in Gram-negative bacteria reveals novel antibacterial mechanism for proline-rich antimicrobial peptides. Protein Pept. Lett. 21, 391–398. https://doi.org/10.2174/09298665113206660104
  93. Neurath H. (1984) Evolution of proteolytic enzymes. Science. 224, 350–357. https://doi.org/10.1126/science.6369538
  94. Hoffmann R., Bulet P., Urge L., Otvös L. (1999) Range of activity and metabolic stability of synthetic antibacterial glycopeptides from insects. Biochim. Biophys. Acta. 1426, 459–467. https://doi.org/10.1016/s0304-4165(98)00169-x
  95. Mattiuzzo M., De Gobba C., Runti G., Mardirossian M., Bandiera A., Gennaro R., Scocchi M. (2014) Proteolytic activity of Escherichia coli oligopeptidase B against proline-rich antimicrobial peptides. J. Microbiol. Biotechnol. 24, 160–167. https://doi.org/10.4014/jmb.1310.10015
  96. de Visser P.C., van Hooft P.A.V., de Vries A.-M., de Jong A., van der Marel G.A., Overkleeft H.S., Noort D. (2005) Biological evaluation of Tyr6 and Ser7 modified drosocin analogues. Bioorg. Med. Chem. Lett. 15, 2902–2905. https://doi.org/10.1016/j.bmcl.2005.03.074
  97. Uhlig T., Kyprianou T., Martinelli F.G., Oppici C.A., Heiligers D., Hills D., Calvo X.R., Verhaert P. (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom. 4, 58–69. https://doi.org/10.1016/j.euprot.2014.05.003
  98. Knappe D., Fritsche S., Alber G., Köhler G., Hoffmann R., Müller U. (2012) Oncocin derivative Onc72 is highly active against Escherichia coli in a systemic septicaemia infection mouse model. J. Antimicrob. Chemother. 67, 2445–2451. https://doi.org/10.1093/jac/dks241
  99. Knappe D., Zahn M., Sauer U., Schiffer G., Sträter N., Hoffmann R. (2011) Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structure of the oncocin – DnaK complex. ChemBioChem. 12, 874–876. https://doi.org/10.1002/cbic.201000792
  100. Czihal P., Knappe D., Fritsche S., Zahn M., Berthold N., Piantavigna S., Müller U., Van Dorpe S., Herth N., Binas A., Köhler G., De Spiegeleer B., Martin L.L., Nolte O., Sträter N., Alber G., Hoffmann R. (2012) Api88 is a novel antibacterial designer peptide to treat systemic infections with multidrug-resistant gram-negative pathogens. ACS Chem. Biol. 7, 1281–1291. https://doi.org/10.1021/cb300063v
  101. Berthold N., Czihal P., Fritsche S., Sauer U., Schiffer G., Knappe D., Alber G., Hoffmann R. (2013) Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by gram-negative pathogens. Antimicrob. Agents Chemother. 57, 402–409. https://doi.org/10.1128/AAC.01923-12
  102. Knappe D., Henklein P., Hoffmann R., Hilpert K. (2010) Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob. Agents Chemother. 54, 4003–4005. https://doi.org/10.1128/AAC.00300-10
  103. Knappe D., Schmidt R., Adermann K., Hoffmann R. (2019) Continuous subcutaneous delivery of proline-rich antimicrobial peptide Api137 provides superior efficacy to intravenous administration in a mouse infection model. Front. Microbiol. 10, 2283. https://doi.org/10.3389/fmicb.2019.02283
  104. Schmidt R., Knappe D., Wende E., Ostorházi E., Hoffmann R. (2017) In vivo efficacy and pharmacokinetics of optimized apidaecin analogs. Front. Chem. 5, 15. https://doi.org/10.3389/fchem.2017.00015
  105. Knappe D., Cassone M., Nollmann F.I., Otvos L., Hoffmann R. (2014) Hydroxyproline substitutions stabilize non-glycosylated drosocin against serum proteases without challenging its antibacterial activity. Protein Pept. Lett. 21, 321–329. https://doi.org/10.2174/ 09298665113206660105
  106. Gobbo M., Benincasa M., Bertoloni G., Biondi B., Dosselli R., Papini E., Reddi E., Rocchi R., Tavano R., Gennaro R. (2009) Substitution of the arginine/leucine residues in Apidaecin Ib with peptoid residues: effect on antimicrobial activity, cellular uptake, and proteolytic degradation. J. Med. Chem. 52, 5197–5206. https://doi.org/10.1021/jm900396a
  107. Bulet P., Urge L., Ohresser S., Hetru C., Otvos L. (1996) Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur. J. Biochem. 238, 64–69. https://doi.org/10.1111/j.1432-1033.1996.0064q.x
  108. Casteels P., Tempst P. (1994) Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem. Biophys. Res. Commun. 199, 339–345. https://doi.org/10.1006/bbrc.1994.1234
  109. Lele D.S., Talat S., Kumari S., Srivastava N., Kaur K.J. (2015) Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a proline rich antimicrobial peptide. Eur. J. Med. Chem. 92, 637–647. https://doi.org/10.1016/j.ejmech.2015.01.032
  110. Li W., Sun Z., O’Brien-Simpson N.M., Otvos L., Reynolds E.C., Hossain M.A., Separovic F., Wade J.D. (2017) The effect of selective D- or Nα-methyl arginine substitution on the activity of the proline-rich antimicrobial peptide, Chex1-Arg20. Front. Chem. 5, 1. https://doi.org/10.3389/fchem.2017.00001
  111. Ostorhazi E., Hoffmann R., Herth N., Wade J.D., Kraus C.N., Otvos L. (2018) Advantage of a narrow spectrum host defense (antimicrobial) peptide over a broad spectrum analog in preclinical drug development. Front. Chem. 6, 359. https://doi.org/10.3389/fchem.2018.00359
  112. Li W., OʹBrien-Simpson N.M., Yao S., Tailhades J., Reynolds E.C., Dawson R.M., Otvos L., Hossain M.A., Separovic F., Wade J.D. (2017) C-terminal modification and multimerization increase the efficacy of a proline-rich antimicrobial peptide. Chemistry. 23, 390–396. https://doi.org/10.1002/chem.201604172
  113. Lauer S.M., Reepmeyer M., Berendes O., Klepacki D., Gasse J., Gabrielli S., Grubmüller H., Bock L.V., Krizsan A., Nikolay R., Spahn C.M.T., Hoffmann R. (2024) Multimodal binding and inhibition of bacterial ribosomes by the antimicrobial peptides Api137 and Api88. Nat. Commun. 15, 3945. https://doi.org/10.1038/s41467-024-48027-4
  114. Bluhm M.E.C., Knappe D., Hoffmann R. (2015) Structure-activity relationship study using peptide arrays to optimize Api137 for an increased antimicrobial activity against Pseudomonas aeruginosa. Eur. J. Med. Chem. 103, 574–582. https://doi.org/10.1016/j.ejmech.2015.09.022
  115. Lai P.-K., Tresnak D.T., Hackel B.J. (2019) Identification and elucidation of proline-rich antimicrobial peptides with enhanced potency and delivery. Biotechnol. Bioeng. 116, 2439–2450. https://doi.org/10.1002/bit.27092
  116. Knappe D., Ruden S., Langanke S., Tikkoo T., Ritzer J., Mikut R., Martin L.L., Hoffmann R., Hilpert K. (2016) Optimization of oncocin for antibacterial activity using a SPOT synthesis approach: extending the pathogen spectrum to Staphylococcus aureus. Amino Acids. 48, 269–280. https://doi.org/10.1007/s00726-015-2082-2
  117. Mardirossian M., Sola R., Beckert B., Collis D.W.P., Di Stasi A., Armas F., Hilpert K., Wilson D.N., Scocchi M. (2019) Proline-rich peptides with improved antimicrobial activity against E. coli, K. pneumoniae, and A. baumannii. ChemMedChem. 14, 2025–2033. https://doi.org/10.1002/cmdc.201900465
  118. Mardirossian M., Sola R., Beckert B., Valencic E., Collis D.W.P., Borišek J., Armas F., Di Stasi A., Buchmann J., Syroegin E.A., Polikanov Y.S., Magistrato A., Hilpert K., Wilson D.N., Scocchi M. (2020) Peptide inhibitors of bacterial protein synthesis with broad spectrum and SbmA-independent bactericidal activity against clinical pathogens. J. Med. Chem. 63, 9590–9602. https://doi.org/10.1021/acs.jmedchem.0c00665
  119. Frank R., Güler S., Krause S., Lindenmaier W. (1991) Facile and rapid “spot synthesis” of large numbers of peptides on membrane sheets. Peptides 1990, Proc. 21st Eur. Peptide Symp. Eds Giralt E., Andreu D. Leiden: ESCOM, p. 151
  120. Hilpert K., Winkler D.F.H., Hancock R.E.W. (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat. Protoc. 2, 1333–1349. https://doi.org/10.1038/nprot.2007.160
  121. López-Pérez P.M., Grimsey E., Bourne L., Mikut R., Hilpert K. (2017) Screening and optimizing antimicrobial peptides by using SPOT-synthesis. Front. Chem. 5, 25. https://doi.org/10.3389/fchem.2017.00025
  122. Bluhm M.E.C., Schneider V.A.F., Schäfer I., Piantavigna S., Goldbach T., Knappe D., Seibel P., Martin L.L., Veldhuizen E.J.A., Hoffmann R. (2016) N-terminal Ile-Orn- and Trp-Orn-motif repeats enhance membrane interaction and increase the antimicrobial activity of Apidaecins against Pseudomonas aeruginosa. Front. Cell Dev. Biol. 4, 39. https://doi.org/10.3389/fcell.2016.00039
  123. Lai P.-K., Geldart K., Ritter S., Kaznessis Y.N., Hackel B J. (2018) Systematic mutagenesis of oncocin reveals enhanced activity and insights into the mechanisms of antimicrobial activity. Mol. Syst. Des. Eng. 3, 930–941. https://doi.org/10.1039/C8ME00051D
  124. Huang W., Baliga C., Vázquez-Laslop N., Mankin A.S. (2024) Sequence diversity of apidaecin-like peptides arresting the terminating ribosome. Nucl. Acids Res. 52, 8967–8978. https://doi.org/10.1093/nar/gkae567
  125. Collins J., McConnell A., Schmitz Z.D., Hackel B.J. (2024) Sequence-function mapping of proline-rich antimicrobial peptides. bioRxiv. 2024.01.28.577586. https://doi.org/10.1101/2024.01.28.577586
  126. Collins J., Hackel B.J. (2024) Sequence-activity mapping via depletion reveals striking mutational tolerance and elucidates functional motifs in Tur1a antimicrobial peptide. Protein Eng. Des. Sel. 37, gzae006. https://doi.org/10.1093/protein/gzae006
  127. Koch P., Schmitt S., Heynisch A., Gumpinger A., Wüthrich I., Gysin M., Shcherbakov D., Hobbie S.N., Panke S., Held M. (2022) Optimization of the antimicrobial peptide Bac7 by deep mutational scanning. BMC Biol. 20, 114. https://doi.org/10.1186/s12915-022-01304-4
  128. Volke D., Krizsan A., Berthold N., Knappe D., Hoffmann R. (2015) Identification of Api88 binding partners in Escherichia coli using a photoaffinity-cross-link strategy and label-free quantification. J. Proteome Res. 14, 3274–3283. https://doi.org/10.1021/acs.jproteome.5b00283
  129. Kolano L., Knappe D., Berg A., Berg T., Hoffmann R. (2022) Effect of amino acid substitutions on 70S ribosomal binding, cellular uptake, and antimicrobial activity of oncocin Onc112. Chembiochem. 23, e202100609. https://doi.org/10.1002/cbic.202100609
  130. Shaikh A.Y., Björkling F., Zabicka D., Tomczak M., Urbas M., Domraceva I., Kreicberga A., Franzyk H. (2023) Structure-activity study of oncocin: on-resin guanidinylation and incorporation of homoarginine, 4-hydroxyproline or 4,4-difluoroproline residues. Bioorg. Chem. 141, 106876. https://doi.org/10.1016/j.bioorg.2023.106876
  131. Otvos L., O I., Rogers M.E., Consolvo P.J., Condie B.A., Lovas S., Bulet P., Blaszczyk-Thurin M. (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry. 39, 14150–14159. https://doi.org/10.1021/bi0012843
  132. Bulet P., Hegy G., Lambert J., van Dorsselaer A., Hoffmann J.A., Hetru C. (1995) Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity. Biochemistry. 34, 7394–7400. https://doi.org/10.1021/bi00022a012
  133. Hara S., Yamakawa M. (1995) A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J. 310 (Pt 2), 651–656. https://doi.org/10.1042/bj3100651
  134. Talat S., Thiruvikraman M., Kumari S., Kaur K. J. (2011) Glycosylated analogs of Formaecin I and Drosocin exhibit differential pattern of antibacterial activity. Glycoconj. J. 28, 537–555. https://doi.org/10.1007/s10719–011–9353–2
  135. Gobbo M., Biondi L., Filira F., Gennaro R., Benincasa M., Scolaro B., Rocchi R. (2002) Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic Drosocin and Apidaecin 1b analogues. J. Med. Chem. 45, 4494–4504. https://doi.org/10.1021/jm020861d
  136. Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344. https://doi.org/10.1016/s0145-305x(99)00015-4
  137. Lele D.S., Dwivedi R., Kumari S., Kaur K.J. (2015) Effect of distal sugar and interglycosidic linkage of disaccharides on the activity of proline rich antimicrobial glycopeptides. J. Pept. Sci. 21, 833–844. https://doi.org/10.1002/psc.2826
  138. Ahn M., Murugan R.N., Nan Y.H., Cheong C., Sohn H., Kim E.-H., Hwang E., Ryu E.K., Kang S.W., Shin S.Y., Bang J.K. (2011) Substitution of the GalNAc-α-O-Thr11 residue in Drosocin with O-linked glyco-peptoid residue: effect on antibacterial activity and conformational change. Bioorg. Med. Chem. Lett. 21, 6148–6153. https://doi.org/10.1016/j.bmcl.2011.08.012
  139. Marcaurelle L.A., Rodriguez E.C., Bertozzi C.R. (1998) Synthesis of an oxime-linked neoglycopeptide with glycosylation-dependent activity similar to its native counterpart. Tetrahedron Lett. 39, 8417–8420. https://doi.org/10.1016/S0040-4039(98)01831-0
  140. Rodriguez E.C., Winans K.A., King D.S., Bertozzi C.R. (1997) A strategy for the chemoselective synthesis of O-linked glycopeptides with native sugar-peptide linkages. J. Am. Chem. Soc. 119, 9905–9906. https://doi.org/10.1021/ja971633p
  141. McManus A.M., Otvos L., Hoffmann R., Craik D.J. (1999) Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non-glycosylated derivative: effects of glycosylation on solution conformation. Biochemistry. 38, 705–714. https://doi.org/10.1021/bi981956d
  142. Li W., OʹBrien-Simpson N.M., Tailhades J., Pantarat N., Dawson R.M., Otvos L., Reynolds E.C., Separovic F., Hossain M.A., Wade J.D. (2015) Multimerization of a proline-rich antimicrobial peptide, Chex-Arg20, alters its mechanism of interaction with the Escherichia coli membrane. Chem. Biol. 22, 1250–1258. https://doi.org/10.1016/j.chembiol.2015.08.011
  143. Ludwig T., Krizsan A., Mohammed G.K., Hoff-mann R. (2022) Antimicrobial activity and 70S ribosome binding of Apidaecin-derived Api805 with increased bacterial uptake rate. Antibiotics (Basel). 11, 430. https://doi.org/10.3390/antibiotics11040430
  144. Noto P.B., Abbadessa G., Cassone M., Mateo G.D., Agelan A., Wade J.D., Szabo D., Kocsis B., Nagy K., Rozgonyi F., Otvos L. (2008) Alternative stabilities of a proline-rich antibacterial peptide in vitro and in vivo. Protein Sci. 17, 1249–1255. https://doi.org/10.1110/ps.034330.108
  145. Li W., Tailhades J., Hossain M.A., O’Brien-Simpson N.M., Reynolds E.C., Otvos L., Separovic F., Wade J.D. (2015) C-terminal modifications broaden activity of the proline-rich antimicrobial peptide, Chex1-Arg20. Aust. J. Chem. 68, 1373–1378. https://doi.org/10.1071/CH15169
  146. Goldbach T., Knappe D., Reinsdorf C., Berg T., Hoffmann R. (2016) Ribosomal binding and antibacterial activity of ethylene glycol-bridged Apidaecin Api137 and oncocin Onc112 conjugates. J. Pept. Sci. 22, 592–599. https://doi.org/10.1002/psc.2905
  147. Cudic M., Condie B.A., Weiner D.J., Lysenko E.S., Xiang Z.Q., Insug O., Bulet P., Otvos L. (2002) Development of novel antibacterial peptides that kill resistant isolates. Peptides. 23, 2071–2083. https://doi.org/10.1016/s0196-9781(02)00244-9
  148. Cudic M., Lockatell C.V., Johnson D.E., Otvos L. (2003) In vitro and in vivo activity of an antibacterial peptide analog against uropathogens. Peptides. 24, 807–820. https://doi.org/10.1016/s0196-9781(03)00172-4
  149. Otvos L., Cudic M., Chua B.Y., Deliyannis G., Jackson D.C. (2004) An insect antibacterial peptide-based drug delivery system. Mol. Pharm. 1, 220–232. https://doi.org/10.1021/mp049974e
  150. Gambato S., Bellotto O., Mardirossian M., Di Stasi A., Gennaro R., Pacor S., Caporale A., Berti F., Scocchi M., Tossi A. (2023) Designing new hybrid antibiotics: proline-rich antimicrobial peptides conjugated to the aminoglycoside tobramycin. Bioconjug. Chem. 34, 1212–1220. https://doi.org/10.1021/acs.bioconjchem.2c00467
  151. Хайруллина З.З., Терещенков А.Г., Завьялова С.А., Комарова (Андреянова) Е.С., Лукьянов Д.А., Ташлицкий В.Н., Остерман И.А., Сумбатян Н.В. (2020) Взаимодействие катионных пептидных аналогов хлорамфеникола с рибосомой. Биохимия. 85, 1701–1717. https://doi.org/10.31857/S0320972520110123
  152. Хайруллина З.З., Макаров Г.И., Терещенков А.Г., Буев В.С., Лукьянов Д.А., Польшаков В.И., Ташлицкий В.Н., Остерман И.А., Сумбатян Н.В. (2022) Конъюгаты десмикозина с фрагментами антимикробного пептида онкоцина: синтез, антибактериальная активность, взаимодействие с рибосомой. Биохимия. 87, 897–917. https://doi.org/10.31857/S0320972522070065
  153. Samizadeh M., Zhang X., Gunaseelan S., Nelson A.G., Palombo M.S., Myers D.R., Singh Y., Ganapathi U., Szekely Z., Sinko P.J. (2016) Colorectal delivery and retention of PEG-Amprenavir-Bac7 nanoconjugates–proof of concept for HIV mucosal pre-exposure prophylaxis. Drug Deliv. Transl. Res. 6, 1–16. https://doi.org/10.1007/s13346-015-0269-4
  154. Böttger R., Knappe D., Hoffmann R. (2016) Readily adaptable release kinetics of prodrugs using protease-dependent reversible PEGylation. J. Control. Release. 230, 88–94. https://doi.org/10.1016/j.jconrel.2016.04.010
  155. Hansen A.M., Bonke G., Larsen C.J., Yavari N., Nielsen P.E., Franzyk H. (2016) Antibacterial peptide nucleic acid-antimicrobial peptide (PNA-AMP) conjugates: antisense targeting of fatty acid biosynthesis. Bioconjug. Chem. 27, 863–867. https://doi.org/10.1021/acs.bioconjchem.6b00013
  156. Bassous N.J., Webster T.J. (2019) The binary effect on methicillin-resistant Staphylococcus aureus of polymeric nanovesicles appended by proline-rich amino acid sequences and inorganic nanoparticles. Small. 15, e1804247. https://doi.org/10.1002/smll.201804247
  157. Dewangan R.P., Verma D.P., Verma N.K., Gupta A., Pant G., Mitra K., Habib S., Ghosh J.K. (2022) Spermine-conjugated short proline-rich lipopeptides as broad-spectrum intracellular targeting antibacterial agents. J. Med. Chem. 65, 5433–5448. https://doi.org/10.1021/acs.jmedchem.1c01809
  158. Benincasa M., Zahariev S., Pelillo C., Milan A., Gennaro R., Scocchi M. (2015) PEGylation of the peptide Bac7(1–35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. Eur. J. Med. Chem. 95, 210–219. https://doi.org/10.1016/j.ejmech.2015.03.028
  159. Tereshchenkov A.G., Khairullina Z.Z., Volynkina I.A., Lukianov D.A., Nazarov P.A., Pavlova J.A., Tashlitsky V.N., Razumova E.A., Ipatova D.A., Timchenko Y.V., Senko D.A., Efremenkova O.V., Paleskava A., Konevega A.L., Osterman I.A., Rodin I.A., Sergiev P.V., Dontsova O.A., Bogdanov A.A., Sumbatyan N.V. (2024) Triphenylphosphonium analogs of short peptide related to bactenecin 7 and oncocin 112 as antimicrobial agents. Pharmaceutics. 16, 148. https://doi.org/10.3390/pharmaceutics16010148
  160. Dosselli R., Gobbo M., Bolognini E., Campestrini S., Reddi E. (2010) Porphyrin–Apidaecin conjugate as a new broad spectrum antibacterial agent. ACS Med. Chem. Lett. 1, 35–38. https://doi.org/10.1021/ml900021y
  161. Ostorhazi E., Voros E., Nemes-Nikodem E., Pinter D., Sillo P., Mayer B., Wade J.D., Otvos L. (2013) Rapid systemic and local treatments with the antibacterial peptide dimer A3-APO and its monomeric metabolite eliminate bacteria and reduce inflammation in intradermal lesions infected with Propionibacterium acnes and meticillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents. 42, 537–543. https://doi.org/10.1016/j.ijantimicag.2013.08.001
  162. Ostorhazi E., Horvath A., Szabo D., Otvos L. (2017) Transdermally administered proline-arginine-rich host defense peptides show systemic efficacy in a lethal mouse bacteremia model. Amino Acids. 49, 1647–1651. https://doi.org/10.1007/s00726-017-2457-7
  163. Unsworth N.B., Dawson R.M., Wade J.D., Liu C.-Q. (2014) Susceptibility of intracellular Coxiella burnetii to antimicrobial peptides in mouse fibroblast cells. Protein Pept. Lett. 21, 115–123. https://doi.org/10.2174/0929866521666131223120036
  164. Otvos L., Flick-Smith H., Fox M., Ostorhazi E., Dawson R.M., Wade J.D. (2014) The designer proline-rich antibacterial peptide A3-APO prevents Bacillus anthracis mortality by deactivating bacterial toxins. Protein Pept. Lett. 21, 374–381. https://doi.org/ 10.2174/09298665113206660108
  165. Otvos L., Ostorhazi E., Szabo D., Zumbrun S.D., Miller L.L., Halasohoris S.A., Desai P.D., Int Veldt S.M., Kraus C.N. (2018) Synergy between proline-rich antimicrobial peptides and small molecule antibiotics against selected gram-negative pathogens in vitro and in vivo. Front. Chem. 6, 309. https://doi.org/10.3389/fchem.2018.00309
  166. Yeom J.-H., Lee B., Kim D., Lee J.-K., Kim S., Bae J., Park Y., Lee K. (2016) Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials. 104, 43–51. https://doi.org/10.1016/j.biomaterials.2016.07.009
  167. Ostorhazi E., Holub M.C., Rozgonyi F., Harmos F., Cassone M., Wade J.D., Otvos L. (2011) Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int. J. Antimicrob. Agents. 37, 480–484. https://doi.org/10.1016/j.ijantimicag.2011.01.003
  168. Brakel A., Krizsan A., Itzenga R., Kraus C.N., Otvos L., Hoffmann R. (2022) Influence of substitutions in the binding motif of proline-rich antimicrobial peptide ARV-1502 on 70S ribosome binding and antimicrobial activity. Int. J. Mol. Sci. 23, 3150. https://doi.org/10.3390/ijms23063150
  169. Brakel A., Kolano L., Kraus C.N., Otvos L., Hoffmann R. (2022) Functional effects of ARV-1502 analogs against bacterial Hsp70 and implications for antimicrobial activity. Front. Chem. 10, 798006. https://doi.org/10.3389/fchem.2022.798006
  170. Brakel A., Volke D., Kraus C.N., Otvos L., Hoffmann R. (2019) Quantitation of a novel engineered anti-infective host defense peptide, ARV-1502: pharmacokinetic study of different doses in rats and dogs. Front. Chem. 7, 753. https://doi.org/10.3389/fchem.2019.00753
  171. Xiong Y.Q., Li L., Zhou Y., Kraus C. N. (2019) Efficacy of ARV-1502, a proline-rich antimicrobial peptide, in a murine model of bacteremia caused by multi-drug resistant (MDR) Acinetobacter baumannii. Molecules. 24, 2820. https://doi.org/10.3390/molecules24152820
  172. Benedetti F., Mongodin E.F., Badger J.H., Munawwar A., Cellini A., Yuan W., Silvestri G., Kraus C.N., Marini S., Rathinam C.V., Salemi M., Tettelin H., Gallo R.C., Zella D. (2024) Bacterial DnaK reduces the activity of anti-cancer drugs cisplatin and 5FU. J. Transl. Med. 22, 269. https://doi.org/10.1186/s12967-024-05078-x
  173. Zahn M., Berthold N., Kieslich B., Knappe D., Hoffmann R., Sträter N. (2013) Structural studies on the forward and reverse binding modes of peptides to the chaperone Dna K. J. Mol. Biol. 425, 2463–2479. https://doi.org/10.1016/j.jmb.2013.03.041
  174. Cassone M., Vogiatzi P., La Montagna R., De Olivier Inacio V., Cudic P., Wade J.D., Otvos L. (2008) Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics. Peptides. 29, 1878–1886. https://doi.org/10.1016/j.peptides.2008.07.016
  175. Harris J.M., Chess R.B. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221. https://doi.org/10.1038/nrd1033
  176. Guiotto A., Pozzobon M., Canevari M., Manganelli R., Scarin M., Veronese F.M. (2003) PEGylation of the antimicrobial peptide nisin A: problems and perspectives. Farmaco. 58, 45–50. https://doi.org/10.1016/S0014-827X(02)01301-0
  177. Imura Y., Nishida M., Matsuzaki K. (2007) Action mechanism of PEGylated magainin 2 analogue peptide. Biochim. Biophys. Acta – Biomembr. 1768, 2578–2585. https://doi.org/10.1016/j.bbamem.2007.06.013
  178. Nollmann F.I., Goldbach T., Berthold N., Hoff- mann R. (2013) Controlled systemic release of therapeutic peptides from PEGylated prodrugs by serum proteases. Angew. Chem. Int. Ed. Engl. 52, 7597–7599. https://doi.org/10.1002/anie.201301533
  179. Gong Y., Leroux J.-C., Gauthier M.A. (2015) Releasable conjugation of polymers to proteins. Bioconjug. Chem. 26, 1172–1181. https://doi.org/10.1021/bc500611k
  180. Mohammed G.K., Böttger R., Krizsan A., Volke D., Mötzing M., Li S.-D., Knappe D., Hoffmann R. (2023) In vitro properties and pharmacokinetics of temporarily PEGylated Onc72 prodrugs. Adv. Hlth. Mater. 12, e2202368. https://doi.org/10.1002/adhm.202202368
  181. Heidary M., Khosravi A.D., Khoshnood S., Nasiri M.J., Soleimani S., Goudarzi M. (2018) Daptomycin. J. Antimicrob. Chemother. 73, 1–11. https://doi.org/10.1093/jac/dkx349
  182. Dunkle J.A., Xiong L., Mankin A.S., Cate J.H.D. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA. 107, 17152–17157. https://doi.org/10.1073/pnas.1007988107
  183. Hansen J.L., Ippolito J.A., Ban N., Nissen P., Moore P.B., Steitz T.A. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell. 10, 117–128. https://doi.org/10.1016/s1097-2765(02)00570-1
  184. Хайлова Л.С., Назаров П.А., Сумбатян Н.В., Коршунова Г.А., Рокицкая Т.И., Дедухова В.И., Антоненко Ю.Н., Скулачев В.П. (2015) Разобщающее и токсическое действие алкил-трифенилфосфониевых катионов на митохондрии и бактерии Bacillus subtilis в зависимости от длины алкильного фрагмента. Биохимия. 80, 1851–1860.
  185. Pavlova J.A., Khairullina Z.Z., Tereshchenkov A.G., Nazarov P.A., Lukianov D.A., Volynkina I.A., Skvortsov D.A., Makarov G.I., Abad E., Murayama S.Y., Kajiwara S., Paleskava A., Konevega A.L., Antonenko Y.N., Lyakhovich A., Osterman I.A., Bogdanov A.A., Sumbatyan N.V. (2021) Triphenilphosphonium analogs of chloramphenicol as dual-acting antimicrobial and antiproliferating agents. Antibiotics (Basel). 10, 489. https://doi.org/10.3390/antibiotics10050489
  186. Wright O., Yoshimi T., Tunnacliffe A. (2012) Recombinant production of cathelicidin-derived antimicrobial peptides in Escherichia coli using an inducible autocleaving enzyme tag. New. Biotechnol. 29, 352–358. https://doi.org/10.1016/j.nbt.2011.11.001
  187. Ishida H., Nguyen L.T., Gopal R., Aizawa T., Vogel H.J. (2016) Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. J. Am. Chem. Soc. 138, 11318–11326. https://doi.org/10.1021/jacs.6b06781
  188. Deo S., Turton K.L., Kainth T., Kumar A., Wieden H.-J. (2022) Strategies for improving antimicrobial peptide production. Biotechnol. Adv. 59, 107968. https://doi.org/10.1016/j.biotechadv.2022.107968
  189. Cao J., de la Fuente-Nunez C., Ou R.W., Torres M.D.T., Pande S.G., Sinskey A.J., Lu T.K. (2018) Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth. Biol. 7, 896–902. https://doi.org/10.1021/acssynbio.7b00396
  190. Kolano L., Knappe D., Volke D., Sträter N., Hoffmann R. (2020) Ribosomal target-binding sites of antimicrobial peptides Api137 and Onc112 are conserved among pathogens indicating new lead structures to develop novel broad-spectrum antibiotics. Chembiochem. 21, 2628–2634. https://doi.org/10.1002/cbic.202000109

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences