Phoma-like fungi associated with Convolvulaceae plants

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Phoma-like fungi is an extensive, non-taxonomic group of anamorphic ascomycetes, currently incorporating all micromycetes that were previously consumed as species of the genus Phoma. Didymellaceae is one of the largest families in the Pleosporales with a unique and underestimated biodiversity, encompassing main genera of Phoma-like fungi, namely Ascochyta, Didymella, Stagonosporopsis, etc. Several Convolvulaceae wild plants are widespread and one of the most harmful weeds, successful in many types of climates, are an exceptional source of biodiversity of Didymellaceae fungi. Phytosanitary examination of industrial fields, natural and ruderal areas has been carried out by authors from 1990 to the present. Leaves of Convolvulaceae plants (Calystegia inflata, Calystegia sepium, Calystegia sp., Convolvulus arvensis, Ipomoea purpurea) with symptoms of fungal etiology, namely leaf spots were collected in in different locations in Russia and neighboring countries (Kazakhstan, Kyrgyzstan). As a result of monitoring, a rich collection of fungal Phoma-like strains (at least 200) has been created and maintained. The aim of this study was to identify 28 Didymellaceae spp. strains isolated from Convolvulaceae plants according to the consolidated species concept (CSC) by their phylogenetic, micromorphological, and cultural features. Multilocus phylogenetic analysis inferred from nucleotide sequences of the internal transcribed spacer (ITS) and large subunit (28S) of ribosomal DNA, partial DNA-directed RNA polymerase II subunit (rpb2), and β-tubulin (tub2) genes revealed well-supported monophyletic clades corresponding to 18 Didymellaceae species. Among them: Ascochyta erotica, Didymella americana, D. bellidis, D. glomerata, D. macrostoma, D. pomorum, D. pseudomacrophylla, D. segeticola, D. sinensis, D. tanaceti, Epicoccum convolvulicola, E. pseudoplurivorum, Nothophoma brennandiae, N. gossypiicola, Phomatodes nebulosa, Stagonosporopsis caricae, S. heliopsidis, and S. inoxydabilis. Plants of the Convolvulaceae family were recorded as substrates for all identified fungal species for the first time. Seven species were revealed in Russia for the first time D. bellidis, D. segeticola, D. sinensis. D. tanaceti, Nothophoma brennandiae, Phomatodes nebulosa, and Stagonosporopsis caricae. Stagonosporopsis heliopsidis for the first time was found in the Kazakhstan. Additionally to detailed phylogenetic data, the manuscript is accompained with a detailed description of the cultural and micromorphological features of all species.

全文:

受限制的访问

作者简介

M. Gomzhina

All-Russian Institute of Plant Protection

编辑信件的主要联系方式.
Email: gomzhina91@mail.ru
俄罗斯联邦, St. Petersburg

E. Gasich

All-Russian Institute of Plant Protection

Email: elena_gasich@mail.ru
俄罗斯联邦, St. Petersburg

参考

  1. Ahmadpour S.A., Mehrabi-Koushki M., Farokhinejad R., Asgari B. New species of the family Didymellaceae in Iran. Mycol Prog. 2022. V. 21. P. 28. https://doi.org/10.1007/s11557-022-01800-5
  2. Aveskamp M.M., de Guyter J., Crous P.W. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers. 2008. V. 31. P. 1–18.
  3. Aveskamp M.M., Verkley G.J.M., de Gruyter J. et al. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia. 2009. V. 101 (3). P. 363–382. https://doi.org/10.3852/08-199
  4. Aveskamp M.M., de Gruyter J., Woudenberg J.H.C. et al. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010. V. 65. P. 1–60. https://doi.org/10.3114/sim.2010.65.01
  5. Boerema G.H., Gruyter J., Noordeloos M.E. et al. Phoma identification manual. CABI Publishing, L., 2004.
  6. Boyle J.S., Lew A.M. An inexpensive alternative to glassmilk for DNA purification. Trends Genet. 1995. V. 11 (1). P. 8. https://doi.org/10.1016/S0168-9525(00)88977-5
  7. Chen Q., Zhang K., Zhang G.Z. et al. A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa. 2015a. V. 197 (4). P. 267–281. https://doi.org/10.11646/phytotaxa.197.4.4
  8. Chen Q., Jiang J.R., Zhang G.Z. et al. Resolving the Phoma enigma. Stud. Mycol. 2015b. V. 82. P. 137–217. https://doi.org/ 10.1016/j.simyco.2015.10.003
  9. Chen Q., Hou L.W., Duan W.J. et al. Didymellaceae revisited. Stud. Mycol. 2017. V. 87. P. 105–259. https://doi.org/10.1016/j.simyco.2017.06.002
  10. Chen T., Wang S., Jiang X., et al. New species of Didymellaceae within aquatic plants from Southwestern China. J. Fungi. 2023. V. 9. P. 761. https://doi.org/10.3390/jof9070761
  11. Crous P.W., Hawksworth D.L., Wingfield M.J. Identifying and naming plant-pathogenic fungi: past, present, and future. Ann. Rev. Phytopathol. 2015. V. 53. P. 247–267. https://doi.org/10.1146/annurev-phyto-080614-120245
  12. de Gruyter J., Aveskamp M.M., Woudenberg J.H.C., et al. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycol. Res. 2009. V. 113. P. 508–519. https://doi.org/10.1016/j.mycres.2009.01.002
  13. de Gruyter J., Woudenberg J.H.C., Aveskamp M.M., et al. Redisposition of Phoma-like anamorphs in Pleosporales. Stud. Mycol. 2012. V. 75. P. 1–36. https://doi.org/10.3114/sim0004
  14. Deb D., Khan A., Dey N. Phoma diseases: epidemiology and control. Plant Pathol. 2020. V. 69 (7). P. 1203–1217. https://doi.org/10.1111/ppa.13221
  15. Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990. V. 12. P. 13–15. https://doi.org/10.1007/978-3-642-83962-7_18
  16. Farr D.F., Rossman A.Y. Fungal databases, systematic mycology and microbiology laboratory. 2021. Agricultural research service United States department of agriculture. Accessed 13.08.2024. https://fungi.ars.usda.gov/
  17. Gannibal Ph.B., Gasich E.L., Berestetskiy A.O. et al. Materials to the study of micromycetes of weeds and wild herbaceous plants in the south of Russian Far East (Primorie and Khabarovsk territories). Mikologiya i fitopatologiya. 2010. V. 44. P. 105–117. (In Russ.) https://doi.org/10.31111/nsnr/2010.44.105
  18. Gasich E.L., Titova Yu.A. Micromycetes on weeds in Rostov Region. Bulletin of the All-Russian institute of plant protection. 1998. V. 78–79. P. 64–70. (In Russ.)
  19. Gasich E.L. Mycobiota of field bindweed in the European part of Russia and micromycetes promising for its control. Mikologiya i fitopatologiya. 2001. V. 35(2). P. 1–10. (In Russ.)
  20. Gasich E.L., Gannibal Ph.B., Berestetskiy A.O. et al. Materials to the study of micromycetes of weeds in the Krasnodar territory and Republic of Adygeya. Novosty sistematiki vysshykh rasteniy. 2011. V. 45. P. 91–100. (In Russ.) https://doi.org/10.31111/nsnr/2011.45.91
  21. Gasich E.L., Gannibal Ph.B., Berestetskiy A.O. et al. Fungal biodiversity on weeds and wild herbaceous plants in the Pskov region. Plant protection news. 2015. V. 84(2). P. 28–35. (In Russ.)
  22. Gasich E.L., Gannibal Ph.B., Berestetskiy A.O. et al. Micromycetes of weeds and wild herbaceous plants in the Republic of North Ossetia – Alania. Mikologiya i fitopatologiya. 2016. V. 50(4). P. 257–265. (In Russ.)
  23. Gasich E.L., Gagkaeva T. Yu., Khlopunova L.B. et al. Micromycetes of weeds and wild herbaceous plants in Smolensk region. Mikologiya i fitopatologiya. 2017. V. 51(5). P. 276– 282. (In Russ.)
  24. Gomzhina M.M., Gannibal Ph.B. Modern systematics of the genus Phoma sensu lato. Mikologiya i fitopatologiya. 2017. V. 51 (5). P. 268–275. (in Russ.) https://doi.org/10.31857/S0026364821050056
  25. Gomzhina M.M., Gasich E.L., Khlopunova L.B. et al. New species and new findings of Phoma-like fungi (Didymellaceae) associated with some Asteraceae in Russia. Nova Hedwigia. 2020а. V. 111(1–2). P. 131–149. https://doi.org/10.1127/nova_hedwigia/2020/0586
  26. Gomzhina M.M., Gasich E.L., Khlopunova L.B. et al. Paraphoma species associated with Convolvulaceae. Mycol. Progress. 2020b. V. 19. P. 185–194. https://doi.org/10.1007/s11557-020-01558-8
  27. Gomzhina M.M., Gasich E.L., Gagkaeva T. Yu. et al. Biodiversity of fungi inhabiting European blueberry in North-Western Russia and in Finland. Dokl. Biol. Sci. 2022. V. 507. P. 439–453. https://doi.org/10.1134/S0012496622060047
  28. Gomzhina M.M., Gasich E.L. Plenodomus species infecting oilseed rape in Russia. Plant protection news. 2022. V. 105 (3). P. 135–147. https://doi.org/10.31993/2308-6459-2022-105-3-15425
  29. Gomzhina M.M., Gasich E.L. Ascochyta erotica sp. nov. pathogenic on Convolvulus arvensis. Diversty. 2024а. V. 16(4). P. 246. https://doi.org/10.3390/d16040246
  30. Gomzhina M.M., Gasich E.L. Unique findings of Phoma-like fungi associated with soybean. Mikologiya i fitopatologiya. 2024b. V. 58 (2). P. 145–162. (In Russ.) https://doi.org/10.31857/S0026364824020062
  31. Gomzhina M.M., Gasich E.L. Didymellaceae species associated with Convolvulaceae plants with description of three new species. Mycologia. 2025 (unpubl.).
  32. Hou L.W., Groenewald J.Z., Pfenning L.H. et al. The Phoma-like dilemma. Stud. Mycol. 2020a. V. 96. P. 309–396. https://doi.org/10.1016/j.simyco.2020.05.001
  33. Hou L., Hernández-Restrepo M., Groenewald J.Z. et al. Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). MycoKeys. 2020b. V. 65. P. 49–99. https://doi.org/10.3897/ mycokeys.65.47704
  34. Keirnan E.C., Tan Y.P., Laurence M.H., et al. Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys. 2021. V. 78. P. 1–20. https://doi.org/10.3897/mycokeys.78.60063
  35. Kularathnage N.D., Senanayake I.C., Wanasinghe D.N., et al. Plant-associated novel didymellaceous taxa in the South China Botanical Garden (Guangzhou, China). J. Fungi. 2023. V. 9. P. 182. https://doi.org/10.3390/jof9020182
  36. Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999. V. 16. P. 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  37. Liu J., Long Z., Xue L., et al. First report of Didymella sinensis causing leaf blight on italian ryegrass in China. Plant Dis. 2023. V. 107 (5). P. 1261–1640. https://doi.org/10.1094/PDIS-08-22-1831-PDN
  38. Lord E., Leclercq M., Boc A. et al. Armadillo 1.1: An original workflow platform for designing and conducting phylogenetic analysis and simulations. PLOS One. 2012. V. 7 (1). P. e29903. https://doi.org/10.1371/journal.pone.0029903
  39. Lukina E., Gomzhina M., Dalinova A., et al. Reappraisal of Didymella macrostoma causing white tip disease of Canada thistle as a new species, Didymella baileyae, sp. nov., and bioactivity of its major metabolites. Mycologia. 2024. V. 116(6). P. 877–902. https://doi.org/10.1080/00275514.2024.2367470
  40. Luo X., Hu Y., Xia J. et al. Morphological and phylogenetic analyses reveal three new species of Didymella (Didymellaceae, Pleosporales) from Jiangxi, China. J. Fungi. 2024. V. 10. P. 75. https://doi.org/10.3390/jof10010075
  41. Minh B.Q., Schmidt H.A., Chernomor O. et al. IQ-TREE2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020. V. 35 (7). P. 1530–1534. https://doi.org/10.1093/molbev/msaa015
  42. Nekrasov E.V., Shumilova L.P., Gomzhina M.M. et al. Diversity of endophytic fungi in annual shoots of Prunus mandshurica (Rosaceae) in the South of Amur Region, Russia. Diversity. 2022. V. 14. P. 1124. https://doi.org/10.3390/d14121124
  43. O’Donnell K., Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylog. Evol. 1997. V. 7. P. 103–116. https://doi.org/10.1006/mpev.1996.0376
  44. Pearce T.L., Scott J.B., Crous P.W., et al. Tan spot of pyrethrum is caused by a Didymella species complex. Plant Pathol. 2016. V. 65. P. 1170–1184. https://doi.org/10.1111/ppa.12493
  45. Phookamsak R., Liu J-K., McKenzie E.H.C. et al. Revision of Phaeosphaeriaceae. Fungal Divers. 2014. V. 68. P. 159–238. https://doi.org/10.1007/s13225-014-0308-3
  46. Quaedvlieg W., Verkley G.J.M., Shin H–D., et al. Sizing up Septoria. Stud. Mycol. 2013. V. 75. P. 307–390. https://doi.org/10.3114/sim0017
  47. Rai M., Zimowska B., Kövics G.J. The genus Phoma: what we know and what we need to know? In: M. Rai, B. Zimowska, G.J. Kövics (eds). Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham, Switzerland, 2022. P. 3–11. https://doi.org/10.1007/978-3-030-81218-8_1
  48. Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994. V. 98 (6). P. 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7
  49. Saleh A.A., Leslie J.F. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex. Mycologia. 2004. V. 96 (6). P. 1294–1305. https://doi.org/10.2307/3762146
  50. Samson R.A., Hoekstra E.S., Frisvad J.C. et al. Introduction to food- and airborne fungi. Sixth edn. Centraal bureau voor schimmel cultures, Utrecht, 2002.
  51. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. PNAS USA. 1977. V. 74 (12). P. 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  52. Schoch C.L., Seifert K.A., Huhndorf S. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS USA. 2012. V. 109. P. 6241–6246. https://doi.org/10.1073/pnas.1117018109
  53. Sung G.H., Sung J.M., Hywel-Jones N.L. et al. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol. Phylog. Evol. 2007. V. 31. P. 1204–1223. https://doi.org/10.1016/j.ympev.2007.03.011
  54. Taylor J.W., Jacobson D.J., Kroken S., et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 2000. V. 31(1). P. 21–32. https://doi.org/10.1006/fgbi.2000.1228
  55. Tennakoon D.S., Thambugala K.M., de Silva N.I., et al. Leaf litter saprobic Didymellaceae (Dothideomycetes): Leptosphaerulina longiflori sp., nov. and Didymella sinensis, a new record from Roystonea regia. AJOM. 2019. V. 2 (1). P. 87–100. https://doi.org/10.5943/ajom/2/1/3
  56. Thompson J.D., Gibson T.J., Plewniak F. et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997. V. 24. P. 4876–4882. https://doi.org/10.1093/nar/25.24.4876
  57. Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990. V. 172. P. 4238–4246. https://doi.org/10.1128/jb.172.8.4238–4246.1990
  58. White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. In: M.A. Innis etc. (eds). A guide to methods and applications. San Diego, Acad. Press, 1990. pp. 315–322.
  59. Zhao P., Crous P.W., Hou L.W. et al. Fungi of quarantine concern for China I: Dothideomycetes. Persoonia. 2021. V. 47. P. 45–105. https://doi.org/10.3767/persoonia.2021.47.02
  60. Zimowska B. Taxonomical evaluation of Phoma: history of classification, current status and future directions. In: M Rai, B Zimowska, GJ Kövics (eds). Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Springer, Cham, Switzerland, 2022. P. 13–34. https://doi.org/10.1007/978-3-030-81218-8_2
  61. Ганнибал Ф.Б., Гасич Е.Л., Берестецкий А.О. и др. (Gannibal et al.) Материалы к изучению микромицетов сорных и дикорастущих травянистых растений юга Дальнего Востока России (Приморский и Хабаровский края) // Микология и фитопатология. 2010. Т. 44. С. 105–117. https://doi.org/10.31111/nsnr/2010.44.105
  62. Гасич Е.Л., Титова Ю.А. (Gasich, Titova) Микромицеты на сорных растениях Ростовской обл. // Бюллетень Всероссийского научно-исследовательского института защиты растений. 1998. Т. 78–79. С. 64–70.
  63. Гасич Е.Л. (Gasich) Микобиота вьюнка полевого на территории европейской части России и микромицеты, перспективные для его контроля. Микология и фитопатология. 2001. Т. 35(2). С. 1–10.
  64. Гасич Е.Л., Ганнибал Ф.Б., Берестецкий А.О. и др. (Gasich et al.) Материалы к изучению микромицетов сорных растений Краснодарского края и республики Адыгея. Новости систематики низших растений // 2011. Т. 45. С. 91–100. https://doi.org/10.31111/nsnr/2011.45.91
  65. Гасич Е.Л., Ганнибал Ф.Б., Берестецкий А.О. и др. (Gasich et al.) Видовой состав микромицетов на сорных и дикорастущих травянистых растениях Псковской обл. // Вестник защиты растений. 2015. Т. 84(2). С. 28–35.
  66. Гасич Е.Л., Ганнибал Ф.Б., Берестецкий А.О. и др. (Gasich et al.) Микромицеты сорных и дикорастущих травянистых растений республики Северная Осетия – Алания // Микология и фитопатология. 2016. Т. 50. № 4. С. 257–265.
  67. Гасич Е.Л., Гагкаева Т.Ю., Хлопунова Л.Б. и др. (Gasich et al.) Микромицеты сорных и дикорастущих травянистых растений Смоленской обл. // Микология и фитопатология. 2017. Т. 51. № 5. С. 276–282.
  68. Гомжина М.М., Ганнибал Ф.Б. (Gomzhina, Gannibal) Современная систематика грибов рода Phoma sensu lato // Микология и фитопатология. 2017. Т. 51. № 5. С. 268–275. https://doi.org/10.31857/S0026364821050056
  69. Гомжина М.М., Гасич Е.Л. (Gomzhina, Gasich) Редкие виды фомоидных грибов, ассоциированные с соей. Микология и фитопатология. 2024. Т. 58(2). С. 145–162. https://doi.org/10.31857/S0026364824020062

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Combined maximum likelihood (ML) phylogenetic tree of Ascochyta, Didymella, Epicoccum, Nothophoma, Phomatodes, and Stagonosporopsis species based on the ITS, 28S, rpb2, and tub2 sequences. Bootstrap support and Bayesian probability (BPP, ≥ 0.7) are given at the branch nodes of the phylogram, respectively. Branches with ML=100 and BP=1 support are highlighted in bold. Numbers of type or representative strains are highlighted with T or R, respectively. Numbers of the studied strains are highlighted in blue.

下载 (2MB)
3. Fig. 2. Didymella americana MF 32.47 cultures (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days.

下载 (729KB)
4. Fig. 3. Didymella bellidis MF 32.65 cultures (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–C – pycnidia; L–M – conidiogenous cells; N – conidia. Scale – 500 µm (G), 100 µm (G–C), 10 µm (L–M), 20 µm (N).

下载 (1MB)
5. Fig. 4. Didymella glomerata MF 32.38.1 cultures (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–I – pycnidia; K–L – microsclerotia; M – conidia. Scale – 1 mm (G), 50 µm (G–L), 20 µm (M).

下载 (1MB)
6. Fig. 5. Didymella macrostoma MF 32.52.2 cultures (left half is the upper part, right half is the reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–I – pycnidia; K–L – conidiogenous cells; M – conidia. Scale – 1 mm (G), 50 µm (H), 100 µm (I), 20 µm (K–M).

下载 (992KB)
7. Fig. 6. Didymella pomorum MF 32.67 cultures (left half is the upper part, right half is the reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–H – pycnidia; I, K, M – multicellular chlamydospores; L – microsclerotia; N – unicellular chlamydospores; O – conidia. Scale bar – 1 mm (G), 50 µm (H, L), 20 µm (I, K, M–O).

下载 (1MB)
8. Fig. 7. Cultures of Didymella segeticola MF 32.69 (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days.

下载 (617KB)
9. Fig. 8. Didymella sinensis MF 32.66 cultures (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days.

下载 (663KB)
10. Fig. 9. Didymella tanaceti MF 17.86.4 cultures (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–I – pycnidia; K – conidia. Scale – 1 mm (G), 200 µm (H), 100 µm (I), 20 µm (K).

下载 (1MB)
11. Fig. 10. Cultures of Nothophoma brennandiae MF 32.68 (left half is the upper part, right half is the reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–H – pycnidia; I – conidiogenous cell; K – conidia. Scale – 1 mm (G), 100 µm (H), 10 µm (I), 20 µm (K).

下载 (1MB)
12. Fig. 11. Cultures of Nothophoma gossypiicola MF 52.4 (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA; 14 days; D – OA, 14 days; E – MEA, 14 days.

下载 (649KB)
13. Fig. 12. Phomatodes nebulosa MF 32.57.1 ​​cultures (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days.

下载 (633KB)
14. Fig. 13. Cultures of Stagonosporopsis caricae MF 32.73 (left half is the upper part, right half is the reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–H – pycnidia; I – conidia. Scale – 500 µm (G), 50 µm (H), 20 µm (I).

下载 (890KB)
15. Fig. 14. Cultures of Stagonosporopsis heliopsidis MF 32.81 (left half is the upper part, right half is the reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days; G–H – pycnidia; I – conidiogenous cell; K – conidia. Scale – 1 mm (G), 50 µm (H), 20 µm (I, K).

下载 (1MB)
16. Fig. 15. Cultures of Stagonosporopsis inoxydabilis MF 9.239 (left half – upper part, right – reverse): A – KSA, 7 days; B – OA, 7 days; C – MEA, 7 days; G – KSA, 14 days; D – OA, 14 days; E – MEA, 14 days.

下载 (690KB)

版权所有 © Russian Academy of Sciences, 2025