Diversity and structure of fungal and heterotrophic bacterial communities in surface bottom sediments of the Kara Sea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of fungal and prokaryotic communities in the unique ecosystems of the Arctic seas is very important for understanding global biogeochemical cycles and developing approaches to bioremediation of these ecosystems. Using high-throughput sequencing of the variable regions ITS1/ITS2 (in the fungal genome) and V3–V4 of the 16S rRNA gene (in the bacterial genome), the species composition and taxonomic structure of fungal and heterotrophic bacterial communities in the surface bottom sediments of the Kara Sea from depths of 16 to 417 m were studied. The fungal biome was dominated by operational taxonomic units (OTUs) of the Ascomycota (more than 50% of ITS reads in each of the 12 samples), followed by the Basidiomycota division (10–20%). This mark for Сhytridiomycota did not exceed 2% of ITS reads. No significant differences in the mycobiome structure of the Kara Sea bottom sediments were found depending on the sampling depth. OTUs of the Sordariomycetes and Eurotiomycetes (Aspergillaceae) prevailed. Basidiomycetes are represented mainly by yeast organisms of the Filobasidiaceae, Malasseziaceae, Sporidiobolaceae, and Tremellaceae. According to fluorescence microscopy, the total number of fungal propagules was in the range of 207–546 thousand spores and mycelial fragments per 1 g of bottom sediment, and their minimum values were recorded at greater depths. All the studied stations were found to contain numerous aerobic heterotrophic bacteria belonging to various families, orders, and classes of the phyla Pseudomonadota, Actinomycetota, Bacteroidota, Verrucomicrobiota, Gemmatimonadota, Myxococcota, and Acidobacteriota. An interesting fact is the discovery of nucleotide sequences characteristic of strict anaerobes in these upper oxidized bottom sediments of the Kara Sea: sulfate-reducing bacteria from the phylum Thermodesulfobacteriota and chemoheterotrophic bacteria from the Anaerolineae (phylum Chloroflexota). The data obtained significantly expand our knowledge of the diversity of fungi and bacteria, key heterotrophic organisms – destructors of organic matter in the bottom sediments of the Arctic seas.

Full Text

Restricted Access

About the authors

D. Yu. Vlasov

St. Petersburg State University; Komarov Botanical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: d.vlasov@spbu.ru
Russian Federation, St. Petersburg; St. Petersburg

A. L. Bryukhanov

Lomonosov Moscow State University; Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: brjuchanov@mail.ru
Russian Federation, Moscow; Moscow

I. Yu. Kirtsideli

Komarov Botanical Institute of the Russian Academy of Sciences

Email: microfungi@mail.ru
Russian Federation, St. Petersburg

A. V. Kurakov

Lomonosov Moscow State University

Email: kurakov57@mail.ru
Russian Federation, Moscow

References

  1. Aldeguer-Riquelme B., Antón J., Santos F. Distribution, abundance, and ecogenomics of the Palauibacterales, a new cosmopolitan thiamine-producing order within the Gemmatimonadota phylum. mSystems. 2023. V. 8 (4). e0021523. https://doi.org/10.1128/msystems.00215-23
  2. Amend A. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLOS Pathog. 2014. V. 10 (8). e1004277. https://doi.org/10.1371/journal.ppat.1004277
  3. Baranova A.A., Chistov A.A., Shuvalov M.V. et al. Identification of isocyclosporins by collision-induced dissociation of doubly protonated species. Talanta, Elsevier BV (Netherlands), 2021. V. 225. P. 121930. https://doi.org/10.1016/j.talanta.2020.121930
  4. Barnes N.M., Damare S.R., Shenoy B.D. Bacterial and fungal diversity in sediment and water column from the abyssal regions of the Indian Ocean. Front. Mar. Sci. 2021. V. 8. 687860. https://doi.org/10.3389/fmars.2021.687860
  5. Barzkar N., Sukhikh S., Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front. Microbiol. 2024. V. 14. P. 1285902. https://doi.org/10.3389/fmicb.2023.1285902
  6. Bass D., Howe A., Brown N. et al. Yeast forms dominate fungal diversity in the deep oceans. Proc. Biol. Sci. 2007. V. 274. 1629. P. 3069–3077. https://doi.org/10.1098/rspb.2007.1067
  7. Begmatov S., Savvichev A.S., Kadnikov V.V. et al. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea. Microorganisms. 2021. V. 9 (11). P. 2362–2382. https://doi.org/10.3390/microorganisms9112362
  8. Bellemain E., Carlsen T., Brochmann C. et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010. V. 10. P. 189. https://doi.org/10.1186/1471-2180-10-189
  9. Brioukhanov A.L., Kadnikov V.V., Rusanov I.I. et al. Phylogenetic diversity in sulphate-reducing bacterial communities from oxidised and reduced bottom sediments of the Barents Sea. Anton. Leeuw. Int. J. G. 2022. V. 115 (6). P. 801–820. https://doi.org/10.1007/s10482-022-01733-9
  10. Brioukhanov A.L., Pieulle L., Dolla A. Antioxidative defense systems of anaerobic sulfate-reducing microorganisms. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz, Formatex Research Center. 2010. P. 148–159.
  11. Bryukhanov A.L., Sevastyanov V.S., Kravchishina M.D. et al. Composition of methane cycle microbial communities in the upper layers of bottom sediments of the Kara Sea. Geochem. Int. 2024. V. 62 (6). P. 609–617. https://doi.org/10.1134/S0016702924700277
  12. Bubnova E.N., Grum-Grzhimailo O.A., Kozlovsky V.V. Composition and structure of mycelial fungi communities in the bottom sediments of the White Sea. Vestnik Moskovskogo Universiteta. Ser. 16. Biologiya. 2020. V. 75 (3). P. 182– 187. (In Russ.)
  13. Bubnova E.N., Konovalova O.P. Fungi in the bottom sediments of the Chukchi Sea. Biologiya morya. 2019. V. 45 (2). P. 86–96. (In Russ.) https://doi.org/10.1134/S0134347519020025
  14. Bubnova E.N., Nikitin D.A. Fungi in bottom sediments of offshore areas of the Barents and Kara Seas. Biologiya morya. 2017. V 43 (5). P. 366–372. (In Russ.)
  15. Cardman Z., Arnosti C., Durbin A. et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard. Appl. Environ. Microbiol. 2014. V. 80 (12). P. 3749–3756. https://doi.org/10.1128/AEM.00899-14
  16. Carrier V., Svenning M.M., Gründger F. et al. The impact of methane on microbial communities at marine Arctic gas hydrate bearing sediment. Front. Microbiol. 2020. V. 11. P. 1932. https://doi.org/10.3389/fmicb.2020.01932
  17. Cho K.H., Hong S.G., Cho H.H. et al. Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int. J. Syst. Evol. Microbiol. 2008. V. 58 (6). P. 1300–1303. https://doi.org/10.1099/ijs.0.65549-0
  18. Couttolenc A., Padrón J.M., Shnyreva A.V. et al. In vitro antiproliferative and antioxidant activity of three fungal strains from the White sea. Polar Science. 2021. V. 28 (6). P. 1016. https://doi.org/10.1016/j.polar.2021.100724
  19. Czajka J.J., Abernathy M.H., Benites V.T. et al. Model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H. Proc. Natl. Acad. Sci. USA. 2018. V. 115 (49). P. 12507–12512. https://doi.org/10.1073/pnas.1807804115
  20. da Silva, M.K., de Souza, L.M.D., Vieira et al. Fungal and fungal-like diversity in marine sediments from the maritime Antarctic assessed using DNA metabarcoding. Sci. Rep. 2022. V. 12 (1). 21044. https://doi.org/10.1038/s41598-022-25310-2
  21. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bulletin. 1987. V. 19 (1). P. 11–15.
  22. Du Z.J., Wang Z.J., Zhao J.X. et al. Woeseia oceani gen. nov., sp. nov., a chemoheterotrophic member of the order Chromatiales, and proposal of Woeseiaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016. V. 66 (1). P. 107–112. https://doi.org/10.1099/ijsem.0.000683
  23. Du Z.Z., Zhou L.Y., Wang T.J. et al. Lutibacter citreus sp. nov., isolated from Arctic surface sediment. Int. J. Syst. Evol. Microbiol. 2020. V. 70 (5). P. 3154–3161. https://doi.org/10.1099/ijsem.0.004146
  24. Fokichev N.S., Kokaeva L. Yu., Popova E.A. et al. Thrombolytic potential of micromycetes from the genus Tolypocladium, obtained from White Sea soils: Screening of producers and exoproteinases properties. Microbiol. Res. 2022. V. 13 (4), P. 898–908. https://doi.org/10.3390/microbiolres13040063
  25. Frey B., Rime T., Phillips M. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016. V. 92 (3). fiw018. https://doi.org/10.1093/femsec/fiw018
  26. Georgieva M.L., Bilanenko E.N., Georgiev A.A. et al. Filamentous fungi in the sediments of the East Siberian and Laptev seas. Microbiology. 2024. Vol. 93 (3). P. 364–368. https://doi.org/10.1134/S0026261723604542
  27. Hoch H.C., Galvani C.D., Szarowski D.H. et al. Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia. 2005. V. 97 (3). P. 580–588.
  28. Kakraliya S.S., Gupta S., Khushboo S.S. et al. Status of competitor moulds and diseases of white button mushroom (Agaricus bisporus) at different mushroom farm of Jammu. The Pharma Innovation J. 2022. V. 11 (2). P. 403–407.
  29. Khusnullina A.I., Bilanenko E.N., Kurakov A.V. Microscopic Fungi of White Sea Sediments. Contemporary Problems of Ecology. 2018. V. 11 (5). P. 503–513. https://doi.org/10.1134/S1995425518050062
  30. Kirtsideli I. Yu., Vlasov D. Yu., Barantsevich E.P. et al. Distribution of terrigenous micromycetes in the waters of the Arctic seas. Mikologiya i fitopatologiya. 2012. V. 46 (5). P. 306–310. (In Russ.)
  31. Kirtsideli I. Yu., Lukina E.G., Ilyushin V.A. et al. Diversity of microscopic fungi on wood in the coastal zone of the Greenland Sea (Spitsbergen archipelago). Mikologiya i fitopatologiya. 2021. V. 55 (3). P. 178–188. (In Russ.)
  32. Kochkina G.A., Pinchuk I.P., Ivanushkina N.E. et al. Fungi of the Arctic Seas. Microbiology. 2024. V. 93 (3). P. 278–289. https://doi.org/10.31857/S0026365624030039
  33. Kopytina N., Bocharova E., Gulina L. Cultural study of micromycetes from deep-sea bottom sediments of the Adriatic Sea. Marine Biological Journal. 2024. V. 9 (4). P. 53–63. https://doi.org/10.21072/mbj.2024.09.4.04
  34. Kwak M.J., Lee J., Kwon S.K. et al. Genome information of Maribacter dokdonensis DSW-8 and comparative analysis with other Maribacter genomes. J. Microbiol. Biotechnol. 2017. V. 27 (3). P. 591–597. https://doi.org/10.4014/jmb.1608.08044
  35. Lai X., Cao L., Tan H. et al. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J. 2007.
  36. Li S.H., Kang I., Cho J.C. Metabolic versatility of the family Halieaceae revealed by the genomics of novel cultured isolates. Microbiol. Spectr. 2023. V. 11 (2). e0387922. https://doi.org/10.1128/spectrum.03879-22
  37. Löffler F.E., Yan J., Ritalahti K.M. et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2013. V. 63 (2). P. 625–635. https://doi.org/10.1099/ijs.0.034926-0
  38. López-Pérez M., Haro-Moreno J.M., Iranzo J. et al. Genomes of the “Candidatus Actinomarinales” order: highly streamlined marine epipelagic Actinobacteria. mSystems. 2020. V. 5 (6). e01041–20. https://doi.org/10.1128/mSystems.01041-20
  39. Mason O.U., Han J., Woyke T. et al. Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Front. Microbiol. 2014. V. 5. P. 332. https://doi.org/10.3389/fmicb.2014.00332
  40. Mazur-Marzec H., Andersson A.F., Błaszczyk A. et al. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol. Rev. 2024. V. 48 (5). fuae024. https://doi.org/10.1093/femsre/fuae024
  41. Mikhailov V.V., Pivkin M.V. Study of marine bacteria and fungi. Some results and prospects of research. Vestnik DVO RAN. 2014. N1. P. 149–156. (In Russ.)
  42. Mohr K.I., Garcia R.O., Gerth K. et al. Sandaracinus amylolyticus gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2012. V. 62 (5). P. 1191–1198. https://doi.org/10.1099/ijs.0.033696-0
  43. Muller E.E., Pinel N., Gillece J.D. et al. Genome sequence of “Candidatus Microthrix parvicella” Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant. J. Bacteriol. 2012. V. 194 (23). P. 6670–6671. https://doi.org/10.1128/JB.01765-12
  44. Pankova I.G., Kirtsideli I. Yu., Ilyushin V.A. et al. Diversity of microscopic fungi on wood in the coastal zone of Heiss Island (Franz Josef Land archipelago). Mikologiya i fitopatologiya. 2023. V. 57 (3). P. 184–197. (In Russ.) https://doi.org/10.31857/S0026364823030091
  45. Pivkin M.V. Secondary marine fungi of the Sea of Japan and the Sea of Okhotsk. Dr. Biol. Thesis. Moskva, 2010. (In Russ.)
  46. Pohlner M., Degenhardt J., von Hoyningen-Huene A.J.E. et al. The biogeographical distribution of benthic Roseobacter group members along a Pacific transect is structured by nutrient availability within the sediments and primary production in different oceanic provinces. Front. Microbiol. 2017. V. 8. P. 2550. https://doi.org/10.3389/fmicb.2017.02550
  47. Polyanskaya L.M., Zvyagintsev D.G. Composition and structure of microbial biomass as indicators of the ecological state of soils. Pochvovedeniye. 2005. N6. P. 706–714. (In Russ.)
  48. Pushpakumara B.L.D.U., Tandon K., Willis A. et al. Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks. Sci. Rep. 2023. V. 13 (1). P. 2743. https://doi.org/10.1038/s41598-023-27816-9
  49. Richards T.A., Jones M.D.M., Leonard G. et al. Marine fungi: their ecology and molecular diversity. Annu. Rev. Marine Science. 2012. V. 4. P. 495–522. https://doi.org/10.1146/annurev-marine-120710–100802
  50. Rubin-Blum M., Sisma-Ventura G., Yudkovski Y. et al. Diversity, activity, and abundance of benthic microbes in the Southeastern Mediterranean Sea. FEMS Microbiol. Ecol. 2022. V. 98 (2). fiac009. https://doi.org/10.1093/femsec/fiac009
  51. Savvichev A.S., Rusanov I.I., Kadnikov V.V. et al. Microbial community composition and rates of the methane cycle microbial processes in the upper sediments of the Yamal sector of the Southwestern Kara Sea. Microbiology. 2018. V. 87 (2). P. 238–248. https://doi.org/10.1134/S0026261718020121
  52. Shivaji S., Reddy P.V.V., Rao S.S.S.N. et al. Cyclobacterium qasimii sp. nov., a psychrotolerant bacterium isolated from Arctic marine sediment. Int. J. Syst. Evol. Microbiol. 2012. V. 62 (9). P. 2133–2139. https://doi.org/10.1099/ijs.0.038661-0
  53. Singh P., Raghukumar C., Meena R.M. et al. Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol. 2012. V. 5. P. 543–553.
  54. Singh P., Raghukumar C., Verma P. et al. Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb. Ecol. 2011. V. 61 (3). P. 507–517. V. 1 (8). P. 756–762. https://doi.org/10.1038/ismej.2007.51
  55. Thiele S., Vader A., Thomson S. et al. Seasonality of the bacterial and archaeal community composition of the Northern Barents Sea. Front. Microbiol. 2023. V. 14. P. 1213718. https://doi.org/10.3389/fmicb.2023.1213718
  56. Vargas-Gastélum L., Riquelme M. The mycobiota of the Deep Sea: what omics can offer. Life (Basel). 2020. V. 10 (11). P. 292. https://doi.org/10.3390/life10110292
  57. Vasquez-Cardenas D., van de Vossenberg J., Polerecky L. et al. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J. 2015. V. 9 (9). P. 1966–1978. https://doi.org/10.1038/ismej.2015.10
  58. Velez P., Salcedo D.L., Espinosa-Asuar L. et al. Fungal diversity in sediments from deep-sea extreme ecosystems: insights into low- and high-temperature hydrothermal vents, and an oxygen minimum zone in the Southern Gulf of California, Mexico. Front. Marine Sci. 2022. V. 9. P. 802634. https://doi.org/10.3389/fmars.2022.802634
  59. Vlasov D. Yu., Bryukhanov A.L., Nyanikova G.G. et al. Corrosion activity of microorganisms isolated from fouling of structural materials in the coastal zone of the Barents Sea. Prikladnaya biokhimiya i mikrobiologiya. 2023. V. 59 (4). P. 355–368. (In Russ.) https://doi.org/10.31857/S0555109923040189
  60. Wang Y., Du L., Liu H. et al. Halosulfuron methyl did not have a significant effect on diversity and community of sugarcane rhizosphere microflora. J. Hazard. Mater. 2020. V. 399. P. 123040. https://doi.org/10.1016/j.jhazmat.2020.123040
  61. Wissuwa J., Bauer S.L., Steen I.H. et al. Complete genome sequence of Lutibacter profundi LP1T isolated from an Arctic deep-sea hydrothermal vent system. Stand. Genomic. Sci. 2017. V. 12. P. 5. https://doi.org/10.1186/s40793-016-0219-x
  62. Wunder L.C., Aromokeye D.A., Yin X. et al. Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments. ISME J. 2021. V. 15 (12). P. 3587–3604. https://doi.org/10.1038/s41396-021-01014-9
  63. Xiao R., Zhu W., Zheng Y. et al. Active assimilators of soluble microbial products produced by wastewater anammox bacteria and their roles revealed by DNA-SIP coupled to metagenomics. Environ. Int. 2022. V. 164. P. 107265. https://doi.org/10.1016/j.envint.2022.107265
  64. Zeng Y., Nupur, Wu N., et al. Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum Gemmatimonadetes. Front. Microbiol. 2021. V. 11. P. 606612. https://doi.org/10.3389/fmicb.2020.606612
  65. Zeng Y.X., Yu Y., Li H.R. et al. Prokaryotic community composition in Arctic Kongsfjorden and sub-Arctic northern Bering Sea sediments as revealed by 454 pyrosequencing. Front. Microbiol. 2017. V. 8. P. 2498. https://doi.org/10.3389/fmicb.2017.02498
  66. Zhang X., Li Y., Yu Z. et al. Phylogenetic diversity and bioactivity of culturable deep-sea-derived fungi from Okinawa Trough. J. Ocean. Limnol. 2021. V. 39. P. 892–902. https://doi.org/10.1007/s00343-020-0003-z
  67. Zvereva L.V., Borzykh O.G. Fungi in deep-sea ecosystems of the world ocean. Biologiya morya. 2022. V. 48 (3). P. 147– 159. (In Russ.) https://doi.org/10.1134/S0134347519020025
  68. Zvyanintsev D.G., Babyeva I.P., Zenova G.M. Soil biology. Moscow, 2005. (In Russ.)
  69. Брюханов А.Л., Севастьянов В.С., Кравчишина М.Д. и др. (Bryukhanov et al.) Состав микробных сообществ цикла метана в верхних слоях донных осадков Карского моря // Геохимия. 2024. Т. 69 (6). С. 525–535.
  70. Бубнова Е.Н., Грум-Гржимайло О.А., Козловский В.В. (Bubnova et al.) Состав и структура сообществ мицелиальных грибов в донных грунтах Белого моря // Вестн. Моск. Ун-та. Сер. 16. Биология. 2020. Т. 75 (3). С. 182–187.
  71. Бубнова Е.Н., Коновалова О.П. (Bubnova, Konovalova) Грибы в донных грунтах Чукотского моря // Биология моря. 2019. Т. 45 (2). С. 86–96.
  72. Бубнова Е.Н., Никитин Д.А. (Bubnova, Nikitin) Грибы в донных грунтах удаленных от берега районов Баренцева и Карского морей // Биология моря. 2017. Т. 43 (5). С. 366–372.
  73. Власов Д.Ю., Брюханов А.Л., Няникова Г.Г. и др. (Vlasov et al.) Коррозионная активность микроорганизмов, выделенных из обрастаний конструкционных материалов в прибрежной зоне Баренцева моря // Прикладная биохимия и микробиология. 2023. Т. 59 (4). C. 355–368.
  74. Георгиева М.Л., Биланенко Е.Н., Георгиев А.А. и др. (Georgieva et al.) Мицелиальные грибы в грунтах морей Восточно-Сибирского и Лаптевых // Микробиология. 2024. Т. 93 (3). С. 351–355.
  75. Зверева Л.В., Борзых О.Г. (Zvereva, Borzykh) Грибы в глубоководных экосистемах мирового океана // Биология моря. 2022. Т. 48 (3). С. 147–159.
  76. Звянинцев Д.Г., Бабьева И.П., Зенова Г.М. (Zvyagintsev et al.) Биология почв. М.: Изд-во МГУ, 2005. 445 с.
  77. Кирцидели И.Ю., Власов Д.Ю., Баранцевич Е.П. и др. (Kirtsideli et al.) Распространение терригенных микромицетов в водах Арктических морей // Микология и фитопатология. 2012. Т. 46. № 5. С. 306–310.
  78. Кирцидели И.Ю., Лукина Е.Г., Ильюшин В.А. и др. (Kirtsideli et al.) Разнообразие микроскопических грибов на древесине в береговой зоне Гренландского моря (архипелаг Шпицберген) // Микология и фитопатология. 2021. Т. 55. № 3. С. 178–188.
  79. Кравчишина М.Д., Клювиткин А.А., Новигатский А.Н. и др. (Kravchishina et al.) 89-й рейс (1-й этап) научно-исследовательского судна “Академик Мстислав Келдыш”: климатический эксперимент во взаимодействии с самолетом-лабораторией Ту-134 “Оптик” в Карском море // Океанология. 2023. Т. 63 (3). С. 492–495.
  80. Кураков А.В., Биланенко Е.Н. (Kurakov, Bilanenko) Динамика микробиоты при компостировании коровьего навоза и соломы // Почвоведение. 2023. № 4. С. 464–481.
  81. Михайлов В.В., Пивкин М.В. (Mikhaylov, Pivkin) Изучение морских бактерий и грибов. Некоторые результаты и перспективы исследования // Вестник ДВО РАН. 2014. № 1. С. 149–156.
  82. Панькова И.Г., Кирцидели И.Ю., Ильюшин В.А. и др. (Pankova et al.) Разнообразие микроскопических грибов на древесине прибрежной зоны острова Хейса (архипелаг Земля Франца-Иосифа) // Микология и фитопатология. 2023. Т. 57. № 3. С. 184–197.
  83. Пивкин М.В. (Pivkin) Вторичные морские грибы Японского и Охотского морей. Дисс. … канд. биол. наук. М.: МГУ, 2010.
  84. Полянская Л.М., Звягинцев Д.Г. (Polyanskaya, Zvyagintsev) Содержание и структура микробной биомассы как показатели экологического состояния почв // Почвоведение. 2005. № 6. С. 706–714.
  85. Саввичев А.С., Русанов И.И., Кадников В.В. и др. (Savvichev et al.) Состав микробного сообщества и активность микробных процессов цикла метана в поверхностных осадках Ямальского сектора юго-западной части Карского моря // Микробиология. 2018. Т. 87 (2). С. 178–190.
  86. Хуснуллина А.И., Биланенко Е.Н., Кураков А.В. (Khunsullina et al.) Микроскопические грибы донных грунтов Белого моря // Сибирский экологический журнал. 2018. Т. 11 (5). С. 584–598.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of the mycobiome of bottom sediments of the Kara Sea at different taxonomic levels: a – divisions, b – classes, c – families, d – genera. The percentage of all ITS1/ITS2 reads is indicated on the ordinate axis.

Download (476KB)
3. Fig. 2. Morphological structures of micromycetes in the bottom soils of the Kara Sea: 1, 8 – clusters of spores; 2–7, 9–10 – spores; 11–14 – mycelium. Scale – 10 µm.

Download (104KB)
4. Fig. 3. Relative representation of microorganisms (at the class and phylum level) from surface bottom sediments at six key sampling stations in the Kara Sea in the obtained genomic libraries of the V3–V4 region of the 16S rRNA gene.

Download (191KB)
5. Fig. 4. Distribution of heterotrophic bacteria (at the family level) in surface bottom sediments of the Kara Sea based on the results of high-throughput sequencing of the V3–V4 region of the 16S rRNA gene.

Download (427KB)

Copyright (c) 2025 Russian Academy of Sciences