Methods of changing the halo orbit of the spacecraft in order to approach asteroids

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents possible options for changing the orbit of the spacecraft operating near the Sun-Earth libration point for the purpose of the close passage of asteroids approaching the Earth. Two methods of constructing transfer trajectories to one or more celestial bodies are proposed: transferring the spacecraft from the initial bounded orbit in the vicinity of the L2 Sun – Earth libration point to the required one in the same vicinity and taking it to the Earth along the trajectory of an unstable manifold. Examples are provided in which the asteroids Apophis and 1997 XF11 are chosen as targets, whose trajectories will pass near the spacecraft in 2029 and 2028, respectively. It is shown that under the existing fuel cost restrictions, the spacecraft can be redirected to the targeted asteroids by the proposed methods. According to the calculations, in all cases the spacecraft does not leave the near-Earth space and therefore, during or after the passage of the asteroid, it can be used in solving other scientific problems.

Texto integral

Acesso é fechado

Sobre autores

M. Pupkov

Space Research Institute; Samara University

Autor responsável pela correspondência
Email: m.pupkov@iki.rssi.ru
Rússia, Moscow; Samara

N. Eismont

Space Research Institute

Email: m.pupkov@iki.rssi.ru
Rússia, Moscow

O. Starinova

Samara University

Email: m.pupkov@iki.rssi.ru
Rússia, Samara

K. Fedyaev

Space Research Institute

Email: m.pupkov@iki.rssi.ru
Rússia, Moscow

Bibliografia

  1. Dunham D.W., Farquhar R.W., Loucks M. et al. The 2014 Earth return of the ISEE-3/ICE spacecraft // Acta Astronautica. 2015. V. 110. P. 29–42. https://doi.org/10.1016/j.actaastro.2015.01.002
  2. Racca G., Laureijs R., Stagnaro L. et al. The Euclid mission design // Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. V. 9904. P. 1–23. https://doi.org/10.1117/12.2230762
  3. Gardner J., Mather J., Abbott R. et al. The James Webb Space Telescope Mission // Publications of the Astronomical Society of the Pacific. 2023. V. 135. Iss. 1048. P. 1–29. https://doi.org/10.1088/1538–3873/acd1b5
  4. Эйсмонт Н.А., Коваленко И.Д., Назаров В.Н. и др. Управление орбитальным движением и ориентацией космической обсерватории Спектр-Рентген-Гамма // Письма в астрономический журнал. 2020. Т. 46. № 4. С. 292–303. https://doi.org/10.31857/S0320010820040051
  5. Михайлов Е.А., Аксенов С.А., Заславский Г.С. и др. Методика расчета параметров серии “больших” коррекций траектории полета КА “Спектр-РГ” для улучшения его радиовидимости // Письма в астрономический журнал. 2022. Т. 48. № 1. С. 61–74. https://doi.org/10.31857/S0320010822010065
  6. Назиров Р.Р., Эйсмонт Н.А., Арефьев В.А. и др. Задачи разработки миссии “Спектр-Рентген-Гамма” // Косм. исслед. 2019. Т. 57. № 1. С. 74–80. https://doi.org/10.1134/S0023420619010072
  7. Аксенов С.А., Бобер С.А. Компьютерное моделирование движения космического аппарата в окрестности точки либрации L2 системы Солнце – Земля. М.: Изд. ЦНИИмаш, 2015.
  8. Шувалов В.В., Светцов В.В., Артемьева Н.А. и др. Астероид Апофис – оценка опасных последствий ударов подобных тел // Астрономический вестник. 2017. Т. 51. № 1. С. 51–66. https://doi.org/10.7868/S0320930X17010042
  9. Yeomans D.K., Barriot J.-P., Dunham D.W. et al. Estimating the Mass of Asteroid 253 Mathilde from Tracking Data During the NEAR Flyby // Science. 1998. V. 278. Iss. 5346. P. 2106–2109. https://doi.org/10.1126/science.278.5346.2106
  10. Овчинников М.Ю. Введение в динамику космического полета. М.: Изд. МФТИ, 2016.
  11. Hechler M., Cobos J. Herschel, Planck and Gaia Orbit Design // Proc. Conf. Libration Point Orbits and Applications. 2003. P. 115–135. https://doi.org/10.1142/9789812704849_0006

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Simulated trajectory of the SRG observatory

Baixar (289KB)
3. Fig. 2. Trajectories of the SRG observatory and the Apophis asteroid

Baixar (201KB)
4. Fig. 3. Scheme of the flight of the SRG spacecraft to the asteroid Apophis: a) movement before the moment of meeting the asteroid, b) movement before and after the flyby of the asteroid

Baixar (362KB)
5. Fig. 4. Trajectories of the SRG observatory and the asteroid 1997 XF11

Baixar (197KB)
6. Fig. 5. Scheme of the flight of the SRG spacecraft to the asteroid 1997 XF11: a) movement before the moment of meeting with the asteroid, b) movement before and after the flyby of the asteroid

Baixar (376KB)
7. Fig. 6. Example of trajectories of unstable manifold

Baixar (273KB)
8. Fig. 7. Scheme of the multi-impulse flight of the SRG spacecraft to the asteroid Apophis

Baixar (209KB)
9. Fig. 8. Flight diagram of the SRG observatory to Apophis after the flyby of asteroid 1997 XF11

Baixar (198KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025