A Lunar Printer Experiment on Laser Fusion of the Lunar Regolith in the Luna-Grunt Space Project
- Authors: Tomilina T.M.1, Kim A.A.1, Lisov D.I.2, Lysenko A.M.1
-
Affiliations:
- Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, 101990, Moscow, Russia
- Space Research Institute, Russian Academy of Sciences, 117997, Moscow, Russia
- Issue: Vol 61, No 4 (2023)
- Pages: 311-321
- Section: Articles
- URL: https://rjsocmed.com/0023-4206/article/view/672633
- DOI: https://doi.org/10.31857/S0023420622600313
- EDN: https://elibrary.ru/ULNKTA
- ID: 672633
Cite item
Abstract
This paper presents the results of laboratory studies on the use of a new technology of selective laser melting to obtain experimental products from the lunar regolith without special additives. The main properties of the natural regolith, which significantly affect the fusion process, are determined. The first samples of a given geometry were obtained from labradorite and gabbro-diabase powders, which are natural analogues of lunar regolith, using this technology. The research results are planned to be used in the preparation of initial data for the development of the Lunar Printer space device as part of the complex of scientific equipment of the promising lunar project Luna-Grunt.
About the authors
T. M. Tomilina
Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, 101990, Moscow, Russia
Email: kim@imash.ac.ru
Россия, Москва
A. A. Kim
Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, 101990, Moscow, Russia
Email: kim@imash.ac.ru
Россия, Москва
D. I. Lisov
Space Research Institute, Russian Academy of Sciences, 117997, Moscow, Russia
Email: kim@imash.ac.ru
Россия, Москва
A. M. Lysenko
Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, 101990, Moscow, Russia
Author for correspondence.
Email: kim@imash.ac.ru
Россия, Москва
References
- Митрофанов И.Г. Об освоении Луны. Русский космизм, лунная гонка и открытие “новой Луны” // Земля и Вселенная. 2019. № 1. С. 5–17. https://doi.org/10.7868/S0044394819010018
- Митрофанов И.Г., Зеленый Л.М. Об освоении Луны. Планы и ближайшие перспективы // Земля и Вселенная. 2019. № 4. С. 16–37. https://doi.org/10.7868/S0044394819040029
- Feldman W.C., Maurice S., Binder A.B. et al. Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles // Science. 1998. V. 281. Iss. 5382. P. 1496–1500. https://doi.org/10.1126/science.281.5382.149
- Pieters C.M., Goswami J.N., Clark R.N. et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1 // Science. 2009. V. 326 Iss. 5952. P. 568–572. https://doi.org/10.1126/science.1178658
- Mitrofanov I.G., Sanin A.B., Boynton W.V. et al. Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND // Science. 2010. V. 330. Iss. 6003. P. 483–486. https://doi.org/10.1126/science.1185696
- Colaprete A., Schultz P., Heldmann J. et al. Detection of water in the LCROSS ejecta plume // Science. 2010. V. 330. Iss. 6003. P. 463–468. https://doi.org/10.1126/science.1186986
- Petro N.E., Pieters C.M. Surviving the heavy bombardment: Ancient material at the surface of South Pole–Aitken Basin // J. Geophys. Res. Atmos. 2004. V. 109. Art. ID. E06004. https://doi.org/10.1029/2003JE002182
- Cesaretti G., Dini E., Kestelier X.D. et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology // Acta Astronaut. 2014. V. 93. P. 430–450. https://doi.org/10.1016/j.actaastro.2013.07.034
- Taylor S.L., Jakus A.E., Koube K.D. et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks// Acta Astronaut. 2018. V. 143. P. 1–8. https://doi.org/10.1016/j.actaastro.2017.11.005
- Goulas A., Binner J.G.P., Engstrom D.S. et al. Mechanical behaviour of additively manufactured lunar regolith simulant components // Proc IMechE Part L: J Materials: Design and Applications. 2018. V. 233. Iss. 8. P. 1629–1644.https://doi.org/10.1177/1464420718777932
- Caprio L., Demir A.G., Previtali B. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion // Addit. Manuf. 2020. V. 32. Art. ID. 101029. https://doi.org/10.1016/j.addma.2019.101029
- Kornuta D., Abbud-Madrid A., Atkinson J. et al. Commercial lunar propellant architecture: A collaborative study of lunar propellant production// Reach. 2019. V. 13. Art. ID. 100026. https://doi.org/10.1016/j.reach.2019.100026
- Флоренский К.П. Лунный грунт: свойства и аналоги. М.: АН СССР. Ин-т геохимии и аналит. химии им. В.И. Вернадского, 1975.
- Carrier W.D., Olhoeft G.R., Mendell W. Physical properties of the lunar surface // Lunar sourcebook: A user’s guide to the Moon. Cambridge: Cambridge Univ. Press, 1991. P. 475–594.
- Taylor L.A., Pieters C.M., Britt D. Evaluations of Lunar Regolith Simulants// Planet. Space Sci. 2016. V. 126. P. 1–7. https://doi.org/10.1016/j.pss.2016.04.005
- Slyuta E.N., Grishakina E.A., Makobchuk V.Y. et al. Lunar soil-analogue VI-75 for large-scale experiments // Acta Astronaut. 2021. V. 187. P. 447–457. https://doi.org/10.1016/j.actaastro.2021.06.047
- Grugel R.N. Sulfur “concrete” for lunar applications – Sublimation concerns // Adv. Space Res. 2008. V. 41. Iss. 1. P. 103–112. https://doi.org/10.1016/j.asr.2007.08.018
- Fateri M., Gebhardt A. Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-Site Manufacturing Applications // Intern. J. Appl. Ceram. Technol. 2015. V. 12. Iss. 1. P. 46–52. https://doi.org/10.1111/ijac.12326
- Goulas A., Friel R.J. 3D printing with moondust // Rapid Prototyp. J. 2016. V. 22. Iss. 6. P. 864–870.
- Gerdes N., Fokken L.G., Linke S. et al. Selective Laser Melting for processing of regolith in support of a lunar base // J. Laser Appl. 2018. V. 30. Art. ID. 032018. https://doi.org/10.2351/1.5018576
- Farries K.W., Visintin P., Smith S.T. et al. Construction of lunar masonry habitats using laser-processed bricks // 71st Intern. Astronautical Congress (IAC) – The CyberSpace Edition. 2020. IAC-20-E5.1.1 x58693. 11 p.
- Balla V.K., Roberson L.B., O’Connor G.W. et al. First demonstration on direct laser fabrication of lunar regolith parts // Rapid Prototyp. J. V. 18. Iss. 6. P. 451–457. https://doi.org/10.1108/13552541211271992
- Goulas A., Binner J.G.P., Harris R.A. et al. Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing // Appl. Mater. Today. 2017. V. 6. P. 54–61. https://doi.org/10.1016/j.apmt.2016.11.004
Supplementary files
