Optimization of the Spacecraft Transfer Maneuver from a Point of the Elliptical Orbit to Another Point of the Same Orbit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of changing the orbital position of the spacecraft located in some elliptical orbit in the Newtonian gravitational field is analyzed. It is assumed that the spacecraft is equipped with a non-adjustable engine that can be activated multiple times. An algorithm for determining the optimal (according to the criterion of the minimum characteristic velocity) transfer scheme has been developed. Special attention is paid to the analysis of the number of active segments on the trajectory and their location on the trajectory revolutions. The algorithm is based on the maximum principle and the method of parameter continuation. The initial approximation for the transfer scheme is found using the trajectory of the optimal transfer of the spacecraft with a perfectly adjustable propulsion system (engine of limited power). This trajectory is then continued for the spacecraft with a non-adjustable engine, introducing a smoothing parameter for the thrust function. In the final stage, the characteristics of the optimal transfer pattern are determined for the spacecraft with a non-adjustable engine involving a relay thrust function. The properties of the optimal scheme of the maneuver as a function of the angular distance of transfer (the number of revolutions of the trajectory) and a function of the phasing angle (the angle characterizing the angular distance between the points of the orbit where the transfer takes place) are analyzed. It is shown that an increase in the angular distance of the transfer significantly reduces the characteristic velocity of the maneuver even at large phasing angles.

About the authors

M. S. Konstantinov

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, Moscow, Russia

Author for correspondence.
Email: mkonst@bk.ru
Россия, Москва

References

  1. Konstantinov M.S., Obukhov V.A., Petukhov V.G. et al. Spacecraft station keeping in the Molniya orbit using electric propulsion // Proc. 56th Intern. Astronautical Congress. 17–21 Oct. 2005, Fakuoka, Japan. 2005. Art. ID. IAC-05-C1.1.01. https://doi.org/10.2514/6.IAC-05-C1.1.01
  2. Petukhov V., Ivanyukhin A., Popov G. et al. Optimization of finite-thrust trajectories with fixed angular distance // Acta Astronautica. 2022. V. 197. P. 354–367. https://doi.org/10.1016/j.actaastro.2021.03.012
  3. Petukhov V. Application of the angular independent variable and its regularizing transformation in the problems of optimizing low-thrust trajectories // Cosmic Research. 2019. V. 57. Iss. 5. P. 351–363. https://doi.org/10.1134/S001095251905006X
  4. Ivanyukhin A., Petukhov V. Optimization of multi-revolution limited power trajectories using angular independent variable // J. Optimization Theory and Applications. 2021. V. 191. Iss. 2. P. 575–599. https://doi.org/10.1007/s10957-021-01853-8
  5. Константинов М.С., Петухов В.Г., Тейн М. Оптимизация траекторий гелиоцентрических перелетов. М.: Изд. МАИ, 2015. 259 с.
  6. Konstantinov M.S., Thein M. Method of interplanetary trajectory optimization for the spacecraft with low thrust and swing-bys // Acta Astronautica. 2017. V. 136. P. 297–311. https://doi.org/10.1016/j.actaastro.2017.02.018
  7. Константинов М.С., Тейн М. Оптимизация траектории выведения космического аппарата на систему гелиоцентрических орбит // Косм. исслед. 2017. Т. 55. № 3. С. 226–235.
  8. Petukhov V.G. One Numerical Method to Calculate Optimal Power Limited Trajectories // 24th Intern. Electric Propulsion Conf. 19–23 Sept. Moscow. 1995. Art. ID. IEPC-95-221. 7 p.
  9. Петухов В.Г. Метод продолжения для оптимизации межпланетных траекторий с малой тягой // Косм. исслед. 2012. Т. 50. № 3. С. 258–270.
  10. Петухов В.Г. Оптимизация межпланетных траекторий космических аппаратов с идеально-регулируемым двигателем методом продолжения // Косм. исслед. 2008. Т. 46. № 3. С. 224–237. (Cosmic Research. P. 219–232.)https://doi.org/10.1134/S0010952508030052
  11. Константинов М.С., Каменков Е.Ф., Перелыгин Б.П. и др. Механика космического полета / под ред. В.П. Мишина. М.: Машиностроение, 1989. 410 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (103KB)
3.

Download (125KB)
4.

Download (96KB)
5.

Download (161KB)
6.

Download (79KB)
7.

Download (123KB)
8.

Download (105KB)
9.

Download (98KB)
10.

Download (91KB)
11.

Download (156KB)
12.

Download (45KB)
13.

Download (23KB)
14.

Download (61KB)

Copyright (c) 2023 М.С. Константинов