Идентификация плесневых грибов методом MALDI-TOF: подходы и перспективы (обзор литературы)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре систематизированы представленные в литературе сведения об адаптации метода MALDI-TOF к идентификации плесневых грибов. Масс-спектрометрическая идентификация бактерий методом MALDI-TOF является «золотым стандартом» в современной лабораторной диагностике. Точность, скорость, простота и невысокая стоимость одного анализа обеспечивают всё более широкое распространение этого метода. Однако применение технологии MALDI-TOF к другим микроорганизмам, в том числе плесневым грибам, затруднено, поскольку прочная стенка клеток грибного мицелия препятствует клеточному лизису и ионизации белков, а разнообразие клеток в культуре (гифы, споры, органы размножения) приводит к разнообразию ионов белков и усложняет получение единого воспроизводимого спектра для изолята. Для преодоления этих трудностей применяются различные методы культивирования, подготовки образцов, получения и обработки спектров. На рынке присутствуют готовые решения в этой области в виде коммерческих систем, однако и они требуют доработки.Участие авторов: Курбатова И.В. – концепция обзора, редактирование; Ракитина Д.В. – подбор литературы, написание текста. Все соавторы – утверждение окончательного варианта статьи и ответственность за целостность всех её частей.Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.Финансирование. Исследование проведено в рамках НИР по теме «Разработка унифицированных методов, включающих отбор 8807 проб, для осуществления определения микробиологического и паразитологического загрязнения сточных вод» (шифр «Сточные воды»).Поступила: 27.08.2024 / Принята к печати: 03.12.2024 / Опубликована: 30.04.2025

Об авторах

Ирина Валентиновна Курбатова

ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства

Email: IKurbatova@cspfmba.ru

Дарья Викторовна Ракитина

ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства

Email: Rakitina@cspmz.ru

Список литературы

  1. Nenoff P., Erhard M., Simon J.C., Muylowa G.K., Herrmann J., Rataj W., et al. MALDI-TOF mass spectrometry – a rapid method for the identification of dermatophyte species. Med. Mycol. 2013; 51(1): 17–24. https://doi.org/10.3109/13693786.2012.685186
  2. Becker P., Normand A.C., Vanantwerpen G., Vanrobaeys M., Haesendonck R., Vercammen F., et al. Identification of fungal isolates by MALDI-TOF mass spectrometry in veterinary practice: validation of a web application. J. Vet. Diagn. Invest. 2019; 31(3): 471–4. https://doi.org/10.1177/1040638719835577
  3. Giordano A.L.P.L., Pontes L., Beraquet C.A.G., Lyra L., Schreiber A.Z. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry azole susceptibility assessment in Candida and Aspergillus species. Mem. Inst. Oswaldo Cruz. 2023; 118: e220213. https://doi.org/10.1590/0074-02760220213
  4. Reeve M.A., Buddie A.G., Pollard K.M., Varia S., Seier M.K., Offord L.C., et al. A highly-simplified and inexpensive MALDI-TOF mass spectrometry sample-preparation method with broad applicability to microorganisms, plants, and insects. J. Biol. Methods. 2018; 5(4): e103. https://doi.org/10.14440/jbm.2018.261
  5. Sanguinetti M., Posteraro B. Identification of molds by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017; 55(2): 369–79. https://doi.org/10.1128/JCM.01640-16
  6. Coulibaly O., Marinach-Patrice C., Cassagne C., Piarroux R., Mazier D., Ranque S. Pseudallescheria/Scedosporium complex species identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Med. Mycol. 2011; 49(6): 621–6. https://doi.org/10.3109/13693786.2011.555424
  7. Reeve M.A., Bachmann D. MALDI-TOF MS protein fingerprinting of mixed samples. Biol. Methods. Protoc. 2019; 4(1): bpz013. https://doi.org/10.1093/biomethods/bpz013
  8. Buskirk A.D., Hettick J.M., Chipinda I., Law B.F., Siegel P.D., Slaven J.E., et al. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal. Biochem. 2011; 411(1): 122–8. https://doi.org/10.1016/j.ab.2010.11.025
  9. Kondori N., Erhard M., Welinder-Olsson C., Groenewald M., Verkley G., Moore E.R. Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis. FEMS Microbiol. Lett. 2015; 362(1): 1–6. https://doi.org/10.1093/femsle/fnu016
  10. Lau A.F., Drake S.K., Calhoun L.B., Henderson C.M., Zelazny A.M. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013; 51(3): 828–34. https://doi.org/10.1128/JCM.02852-12
  11. Honsig C., Selitsch B., Hollenstein M., Vossen M.G., Spettel K., Willinger B. Identification of filamentous fungi by MALDI-TOF mass spectrometry: evaluation of three different sample preparation methods and validation of an in-house species cutoff. J. Fungi (Basel). 2022; 8(4): 383. https://doi.org/10.3390/jof8040383
  12. Ao K., Li X., Zhang W., Chen Z., Liu Y., Shu L., et al. Evaluation of the Autof ms1000 mass spectrometry for rapid clinical identification of filamentous fungi. BMC Microbiol. 2023; 23(1): 228. https://doi.org/10.1186/s12866-023-02968-w
  13. Barker K.R., Kus J.V., Normand A.C., Gharabaghi F., McTaggart L., Rotstein C., et al. A practical workflow for the identification of Aspergillus, Fusarium, Mucorales by MALDI-TOF MS: database, medium, and incubation optimization. J. Clin. Microbiol. 2022; 60(12): e0103222. https://doi.org/10.1128/jcm.01032-22
  14. Nellessen C.M., Nehl D.B. An easy adjustment of instrument settings (‘Peak MALDI’) improves identification of organisms by MALDI-TOF mass spectrometry. Sci. Rep. 2023; 13(1): 15018. https://doi.org/10.1038/s41598-023-42328-2
  15. Fissel J.A., Holdren-Serrell C.K., Memon W., Zhang S.X. Performance of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry testing algorithm for the rapid identification of clinical filamentous molds. Front. Cell. Infect. Microbiol. 2022; 12: 915049. https://doi.org/10.3389/fcimb.2022.915049
  16. Gómez-Velásquez J.C., Loaiza-Díaz N., Norela Hernández G., Lima N., Mesa-Arango A.C. Development and validation of an in-house library for filamentous fungi identification by MALDI-TOF MS in a clinical laboratory in Medellin (Colombia). Microorganisms. 2020; 8(9): 1362. https://doi.org/10.3390/microorganisms8091362
  17. Stein M., Tran V., Nichol K.A., Lagacé-Wiens P., Pieroni P., Adam H.J., et al. Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba, Canada. Mycoses. 2018; 61(10): 743–53. https://doi.org/10.1111/myc.12800
  18. Zvezdanova M.E., Escribano P., Ruiz A., Martínez-Jiménez M.C., Peláez T., Collazos A., et al. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med. Mycol. 2019; 57(1): 63–70. https://doi.org/10.1093/mmy/myx154
  19. Normand A.C., Becker P., Gabriel F., Cassagne C., Accoceberry I., Gari-Toussaint M., et al. Validation of a new web application for identification of fungi by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2017; 55(9): 2661–70. https://doi.org/10.1128/JCM.00263-17
  20. Heireman L., Patteet S., Steyaert S. Performance of the new ID-fungi plate using two types of reference libraries (Bruker and MSI) to identify fungi with the Bruker MALDI Biotyper. Med. Mycol. 2020; 58(7): 946–57. https://doi.org/10.1093/mmy/myz138
  21. Jeraldine V.M., Wim L., Ellen V.E. A comparative study for optimization of MALDI-TOF MS identification of filamentous fungi. Eur. J. Clin. Microbiol. Infect. Dis. 2023; 42(10): 1153–61. https://doi.org/10.1007/s10096-023-04652-3
  22. Robert M.G., Romero C., Dard C., Garnaud C., Cognet O., Girard T., et al. Evaluation of ID fungi plates medium for identification of molds by MALDI Biotyper. J. Clin. Microbiol. 2020; 58(5): e01687-19. https://doi.org/10.1128/JCM.01687-19
  23. Becker P.T., de Bel A., Martiny D., Ranque S., Piarroux R., Cassagne C., et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med. Mycol. 2014; 52(8): 826–34. https://doi.org/10.1093/mmy/myu064
  24. Riat A., Hinrikson H., Barras V., Fernandez J., Schrenzel J. Confident identification of filamentous fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without subculture-based sample preparation. Int. J. Infect. Dis. 2015; 35: 43–5. https://doi.org/10.1016/j.ijid.2015.04.013
  25. Wilkendorf L.S., Bowles E., Buil J.B., van der Lee H.A.L., Posteraro B., Sanguinetti M., et al. Update on matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of filamentous fungi. J. Clin. Microbiol. 2020; 58(12): e01263-20. https://doi.org/10.1128/JCM.01263-20
  26. Schulthess B., Ledermann R., Mouttet F., Zbinden A., Bloemberg G.V., Böttger E.C., et al. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J. Clin. Microbiol. 2014; 52(8): 2797–803. https://doi.org/10.1128/JCM.00049-14
  27. Vidal-Acuña M.R., Ruiz-Pérez de Pipaón M., Torres-Sánchez M.J., Aznar J. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Med. Mycol. 2018; 56(7): 838–46. https://doi.org/10.1093/mmy/myx115
  28. Paul S., Singh P., Rudramurthy S.M., Chakrabarti A., Ghosh A.K. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds. Future Microbiol. 2017; 12: 1457–66. https://doi.org/10.2217/fmb-2017-0105
  29. Li Y., Wang H., Hou X., Huang J.J., Wang P.C., Xu Y.C. Identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry and antifungal susceptibility testing of non-aspergillus molds. Front. Microbiol. 2020; 11: 922. https://doi.org/10.3389/fmicb.2020.00922
  30. Park J.H., Shin J.H., Choi M.J., Choi J.U., Park Y.J., Jang S.J., et al. Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification. Diagn. Microbiol. Infect. Dis. 2017; 87(1): 28–31. https://doi.org/10.1016/j.diagmicrobio.2016.10.012
  31. Peng Y., Zhang Q., Xu C., Shi W. MALDI-TOF MS for the rapid identification and drug susceptibility testing of filamentous fungi. Exp. Ther. Med. 2019; 18(6): 4865–73. https://doi.org/10.3892/etm.2019.8118
  32. Lecerf P., De Paepe R., Jazaeri Y., Normand A.C., Martiny D., Packeu A. Evaluation of a Liquid Media MALDI-TOF MS Protocol for the Identification of Dermatophytes Isolated from Tinea capitis Infections. J. Fungi (Basel). 2022; 8(12): 1248. https://doi.org/10.3390/jof8121248
  33. Рябинин И.А., Васильева Н.В., Борзова Ю.В. Характеристика сериновой протеазы Sуnсерhаlаstrum rасеmоsum Cohn, 1886. Проблемы медицинской микологии. 2020; 22(2): 50–5. https://doi.org/10.24412/1999-6780-2020-2-50-55 https://elibrary.ru/ojvpis
  34. Cassagne C., Normand A.C., L’Ollivier C., Ranque S., Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016; 59(11): 678–90. https://doi.org/10.1111/myc.12506
  35. Calderaro A., Motta F., Montecchini S., Gorrini C., Piccolo G., Piergianni M., et al. Identification of Dermatophyte species after implementation of the in-house MALDI-TOF MS database. Int. J. Mol. Sci. 2014; 15(9): 16012–24. https://doi.org/10.3390/ijms150916012
  36. Wilson D.A., Young S., Timm K., Novak-Weekley S., Marlowe E.M., Madisen N., et al. Multicenter evaluation of the Bruker MALDI Biotyper CA system for the identification of clinically important bacteria and yeasts. Am. J. Clin. Pathol. 2017; 147(6): 623–31. https://doi.org/10.1093/ajcp/aqw225
  37. Lopes R.B., Faria M., Souza D.A., Bloch C. Jr., Silva L.P., Humber R.A. MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex. Mycologia. 2014; 106(4): 865–78. https://doi.org/10.3852/13-401
  38. Ning Y.T., Yang W.H., Zhang W., Xiao M., Wang Y., Zhang J.J., et al. Developing two rapid protein extraction methods using focused-ultrasonication and zirconia-silica beads for filamentous fungi identification by MALDI-TOF MS. Front. Cell. Infect. Microbiol. 2021; 11: 687240. https://doi.org/10.3389/fcimb.2021.687240
  39. Rychert J., Slechta E.S., Barker A.P., Miranda E., Babady N.E., Tang Y.W., et al. Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J. Clin. Microbiol. 2018; 56(2): e01353–17. https://doi.org/10.1128/JCM.01353-17
  40. Huang Y., Zhang M., Zhu M., Wang M., Sun Y., Gu H., et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for the identification of clinical filamentous fungi. World J. Microbiol. Biotechnol. 2017; 33(7): 142. https://doi.org/10.1007/s11274-017-2297-3
  41. McMullen A.R., Wallace M.A., Pincus D.H., Wilkey K., Burnham C.A. Evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of clinically relevant filamentous fungi. J. Clin. Microbiol. 2016; 54(8): 2068–73. https://doi.org/10.1128/JCM.00825-16
  42. Pinheiro D., Monteiro C., Faria M.A., Pinto E. Vitek® MS v3.0 system in the identification of filamentous fungi. Mycopathologia. 2019; 184(5): 645–51. https://doi.org/10.1007/s11046-019-00377-0
  43. Bille E., Dauphin B., Leto J., Bougnoux M.E., Beretti J.L., Lotz A., et al. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin. Microbiol. Infect. 2012; 18(11): 1117–25. https://doi.org/10.1111/j.1469-0691.2011.03688.x
  44. Singh A., Singh P.K., Kumar A., Chander J., Khanna G., Roy P., et al. Molecular and matrix-assisted laser desorption ionization-time of flight mass spectrometry-based characterization of clinically significant melanized fungi in India. J. Clin. Microbiol. 2017; 55(4): 1090–103. https://doi.org/10.1128/JCM.02413-16
  45. Paul S., Singh P., Sharma S., Prasad G.S., Rudramurthy S.M., Chakrabarti A., et al. MALDI-TOF MS-based identification of melanized fungi is faster and reliable after the expansion of in-house database. Proteomics. Clin. Appl. 2019; 13(3): e1800070. https://doi.org/10.1002/prca.201800070
  46. Lévesque S., Dufresne P.J., Soualhine H., Domingo M.C., Bekal S., Lefebvre B., et al. A side by side comparison of Bruker Biotyper and Vitek MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One. 2015; 10(12): e0144878. https://doi.org/10.1371/journal.pone.0144878
  47. Hankins J.D., Amerson-Brown M.H., Brown C.A., Riegler A.N., Muldrew K.L., Dunn J.J. Comparison of Bruker Biotyper® and Vitek® MS matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry platforms for the identification of filamentous fungi. Future Microbiol. 2023; 18: 553–61. https://doi.org/10.2217/fmb-2023-0084
  48. Lau A.F., Walchak R.C., Miller H.B., Slechta E.S., Kamboj K., Riebe K., et al. Multicenter study demonstrates standardization requirements for mold identification by MALDI-TOF MS. Front. Microbiol. 2019; 10: 2098. https://doi.org/10.3389/fmicb.2019.02098
  49. Quéro L., Girard V., Pawtowski A., Tréguer S., Weill A., Arend S., et al. Development and application of MALDI-TOF MS for identification of food spoilage fungi. Food Microbiol. 2019; 81: 76–88. https://doi.org/10.1016/j.fm.2018.05.001
  50. Américo M.F., Machado Siqueira P.L., Del Negro B.G.M., Favero Gimenes M.V., Trindade S.M.R., Motta L.A., et al. Evaluating VITEK MS for the identification of clinically relevant Aspergillus species. Med. Mycol. 2020; 58(3): 322–7. https://doi.org/10.1093/mmy/myz066
  51. De Respinis S., Monnin V., Girard V., Welker M., Arsac M., Cellière B., et al. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J. Clin. Microbiol. 2014; 52(12): 4286–92. https://doi.org/10.1128/JCM.02199-14
  52. Karabıçak N., Karatuna O., İlkit M., Akyar I. Evaluation of the Bruker matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) system for the identification of clinically important dermatophyte species. Mycopathologia. 2015; 180(3–4): 165–71. https://doi.org/10.1007/s11046-015-9898-x
  53. da Cunha K.C., Riat A., Normand A.C., Bosshard P.P., de Almeida M.T.G., Piarroux R., et al. Fast identification of dermatophytes by MALDI-TOF/MS using direct transfer of fungal cells on ground steel target plates. Mycoses. 2018; 61(9): 691–7. https://doi.org/10.1111/myc.12793
  54. Triest D., Stubbe D., De Cremer K., Piérard D., Normand A.C., Piarroux R., et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus. J. Clin. Microbiol. 2015; 53(2): 465–76. https://doi.org/10.1128/JCM.02213-14
  55. Dolatabadi S., Kolecka A., Versteeg M., de Hoog S.G., Boekhout T. Differentiation of clinically relevant Mucorales Rhizopus microsporus and R. arrhizus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). J. Med. Microbiol. 2015; 64(7): 694–701. https://doi.org/10.1099/jmm.0.000091
  56. Packeu A., De Bel A., l’Ollivier C., Ranque S., Detandt M., Hendrickx M. Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization-time of flight mass spectrometry: validation in the clinical laboratory. J. Clin. Microbiol. 2014; 52(9): 3440–3. https://doi.org/10.1128/JCM.01428-14
  57. Shao J., Wan Z., Li R., Yu J. Species identification and delineation of pathogenic mucorales by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2018; 56(4): e01886-17. https://doi.org/10.1128/JCM.01886-17
  58. Sleiman S., Halliday C.L., Chapman B., Brown M., Nitschke J., Lau A.F., et al. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting. J. Clin. Microbiol. 2016; 54(8): 2182–6. https://doi.org/10.1128/JCM.00906-16

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.