Modern alternative research methods in genetic toxicology (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review represents the current principles of assessment of chemicals genotoxicity. The main attention is paid to alternative research methods. The international experience of the application of alternative approaches and prospects of their use for regulatory purposes are discussed.

The data for this review were collected from the Russian and foreign literature, as well as Internet resources, concerning the development of the new alternative methods for testing chemicals for genotoxicity. The OECD database, Scopus, Medline, Google Scholar, RISC, CyberLeninka were used for the information retrieval.

Although the evaluation of genotoxicity of chemical substances is the well-established and based on the battery of validated methods, the studies for improving the existing tests and developing new technologies, including the alternative approaches, continue unabated up to now.

In general, three trends of development of genetic toxicology can be outlined, including creating of new methods based on the whole-genome sequencing and the application of genome editing technologies; implementation of quantitative system of effects assessment in addition to the existing qualitative approach (mutagenic/non-mutagenic) and testing of various combinations of genotoxicity evaluation methods to identify a battery of tests with a greater predictive activity regarding carcinogenic effects.

To use the developed alternative models for regulatory purposes, it is necessary to provide convincing evidence that the data obtained are good predictors of the organism’s actual response to the effects of toxicants/genotoxicants, validation of methods, standardization, and harmonization of research protocols, and changes to the existing regulatory framework are required.

Contribution:
Egorova O.V. — concept and design of the study, collection and analysis of literary data, writing the text;
Ilyushina N.A. —
 concept and design of the study, writing the text.
All authors
are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: May 3, 2024 / Revised: May 30, 2024 / Accepted: June 19, 2024 / Published: October 16, 2024

About the authors

Olga V. Egorova

Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing

Email: egorova.ov@fncg.ru

MD, PhD, leading researcher of the Dept. of Genetic Toxicology of the Institute of Hygiene, Toxicology of Pesticides and Chemical Safety of the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation

e-mail: egorova.ov@fncg.ru

Natalia A. Ilyushina

Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing

Author for correspondence.
Email: ilushina.na@fncg.ru

MD, PhD, DSci., head of the Dept. of Genetic Toxicology of the Institute of Hygiene, Toxicology of Pesticides and Chemical Safety of the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation

e-mail: ilushina.na@fncg.ru

References

  1. WHO. Chapter 4. Hazard Identification and Characterization: Toxicological and Human Studies of Environmental Health Criteria 240 (EHC 240); 2020. Available at: https://who.int/docs/default-source/food-safety/publications/section4-5-genotoxicity.pdf
  2. Durnev A.D., Zhanataev A.K. Relevant aspects of drug genetic toxicology. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. Regulyatornye issledovaniya i ekspertiza lekarstvennykh sredstv. 2022; 12(1): 90–109. https://doi.org/10.30895/1991-29192022-12-1-90-109 https://elibrary.ru/lezoao (in Russian)
  3. Waters M.D., Stack H.F., Jackson M.A. Genetic toxicology data in the evaluation of potential human environmental carcinogens. Mutat. Res. 1999; 437(1): 21–49. https://doi.org/10.1016/s1383-5742(99)00037-x
  4. Zeiger E. Identification of rodent carcinogens and noncarcinogens using genetic toxicity tests: premises, promises, and performance. Regul. Toxicol. Pharmacol. 1998; 28(2): 85–95. https://doi.org/10.1006/rtph.1998.1234
  5. Douglas G.R., Blakey D.H., Clayson D.B. International Commission for Protection against Environmental Mutagens and Carcinogens. ICPEMC working paper No. 5. Genotoxicity tests as predictors of carcinogens: an analysis. Mutat. Res. 1988; 196(1): 83–93. https://doi.org/10.1016/0165-1110(88)90029-2
  6. Kang S.H., Kwon J.Y., Lee J.K., Seo Y.R. Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models. J. Cancer Prev. 2013; 18(4): 277–88. https://doi.org/10.15430/jcp.2013.18.4.277
  7. DeMarini D.M. The role of genotoxicity in carcinogenesis. In: Baan R.A., Stewart B.W., Straif K., eds. Tumour Site Concordance and Mechanisms of Carcinogenesis. Lyon: International Agency for Research on Cancer; 2019.
  8. Luan Y., Honma M. Genotoxicity testing and recent advances. Genome Instab. Dis. 2022; 3(1): 1–21. https://doi.org/10.1007/s42764-021-00058-7
  9. Dearfield K.L., Gollapudi B.B., Bemis J.C., Benz R.D., Douglas G.R., Elespuru R.K., et al. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations. Environ. Mol. Mutagen. 2017; 58(5): 264–83. https://doi.org/10.1002/em.22045
  10. Menz J., Götz M.E., Gündel U., Gürtler R., Herrmann K., Hessel-Pras S., et al. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch. Toxicol. 2023; 97(9): 2303–28. https://doi.org/10.1007/s00204-023-03553-w
  11. Liu Q., Lei Z., Zhu F., Ihsan A., Wang X., Yuan Z. A novel strategy to predict carcinogenicity of antiparasitics based on a combination of DNA lesions and bacterial mutagenicity tests. Front. Public Health. 2017; 5: 288. https://doi.org/10.3389/fpubh.2017.00288
  12. Khamidulina Kh.Kh., Tarasova E.V., Lastovetskiy M.L. Application of OECD QSAR toolbox software for predicting the mutagenic effects of chemicals. Toksikologicheskii vestnik. 2022; 30(6): 403–13. https://doi.org/10.47470/0869-7922-2022-30-6-403-413 https://elibrary.ru/lyvxpb (in Russian)
  13. OECD. Overview of the set of OECD genetic toxicology test guidelines and updates performed in 2014–2015 in OECD series on testing and assessment. No. 238. Paris: OECD Publishing; 2017: 1–70. Available at: https://one.oecd.org/document/ENV/JM/MONO%282016%2933/en/pdf
  14. OECD Library. Test № 471: Bacterial reverse mutation test; 2020. Available at: https://oecd-ilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test_9789264071247-en
  15. OECD Library. Test № 490: In vitro mammalian cell gene mutation tests using the thymidine kinase gene; 2015. Available at: https://oecd-ilibrary.org/environment/test-no-490-in-vitro-mammalian-cell-gene-mutation-tests-using-the-thymidine-kinase-gene_9789264242241-en
  16. OECD Library. Test № 476: In vitro mammalian cell gene mutation tests using the HPRT and XPRT genes; 2016. Available at: https://oecd-ilibrary.org/environment/test-no-476-in-vitro-mammalian-cell-gene-mutation-tests-using-the-hprt-and-xprt-genes_9789264264809-en
  17. OECD Library. Test № 473: In vitro mammalian chromosomal aberration test; 2016. Available at: https://oecd-ilibrary.org/environment/test-no-473-in-vitro-mammalian-chromosomal-aberration-test_9789264264649-en
  18. OECD Library. Test № 487: In vitro mammalian cell micronucleus test; 2023. Available at: https://oecd-ilibrary.org/environment/test-no-487-in-vitro-mammalian-cell-micronucleus-test_9789264264861-en
  19. Kirkland D., Reeve L., Gatehouse D., Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat. Res. 2011; 721(1): 27–73. https://doi.org/10.1016/j.mrgentox.2010.12.015
  20. European Commission (EC). Commission Regulation (EU) No. 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) № 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market; 2013.
  21. ECHA. Guidance on information requirements and chemical safety assessment. Chapter R. 7a: Endpoint specific guidance; 2017.
  22. ECHA. Guidance on the Biocidal Products Regulation, Volume III: Human health, Part A: Information requirements; 2022.
  23. European Food Safety Authority (EFSA). Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J. 2011; 9(9): 2379. https://doi.org/10.2903/j.efsa.2011.2379
  24. OECD Library. Test № 488: Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays; 2022. Available at: https://oecd-ilibrary.org/environment/test-no-488-transgenic-rodent-somatic-and-germ-cell-gene-mutation-assays_9789264203907-en
  25. OECD Library. Test № 475: Mammalian Bone Marrow Chromosomal Aberration Test [OECD TG 475]; 2016. Available at: https://oecd-ilibrary.org/environment/test-no-475-mammalian-bone-marrow-chromosomal-aberration-test_9789264264786-en
  26. OECD Library. Test № 489: In vivo mammalian alkaline comet assay; 2016. Available at: https://oecd-ilibrary.org/environment/test-no-489-in-vivo-mammalian-alkaline-comet-assay_9789264264885-en
  27. OECD Library. Test № 474: Mammalian Erythrocyte Micronucleus Test; 2016. Available at: https://oecd-ilibrary.org/environment/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en
  28. OECD Library. Test № 470: Mammalian Erythrocyte Pig-a Gene Mutation Assay; 2022. Available at: https://oecd-ilibrary.org/environment/test-no-470-mammalian-erythrocyte-pig-a-gene-mutation-assay_4faea90e-en
  29. Robison T.W., Heflich R.H., Manjanatha M.G., Elespuru R., Atrakchi A., Mei N., et al. Appropriate in vivo follow-up assays to an in vitro bacterial reverse mutation (Ames) test positive investigational drug candidate (active pharmaceutical ingredient), drug-related metabolite, or drug-related impurity. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021; 868–9: 503386. https://doi.org/10.1016/j.mrgentox.2021.503386
  30. OECD Library. Test № 478: Genetic Toxicology: Rodent Dominant Lethal Test; 1984. Genetic Toxicology: Rodent Dominant Lethal Test. Available at: https://oecd-ilibrary.org/environment/test-no-478-genetic-toxicology-rodent-dominant-lethal-test_9789264071360-en
  31. OECD Library. Test № 485: Genetic toxicology, Mouse Heritable Translocation Assay; 1986. Available at: https://oecd-ilibrary.org/environment/test-no-485-genetic-toxicology-mouse-heritable-translocation-assay_9789264071506-en
  32. Regulation (EC) No 1223/2009 European parliament and of the council of 30 November 2009 on cosmetic products; 2009.
  33. WHO. Determination of equivalence for public health pesticides and pesticide products. Report of a WHO consultation. Geneva; 2016. Available at: https://apps.who.int/iris/bitstream/10665/254751/1/WHO-HTM-NTD-WHOPES-2017.1-eng.pdf
  34. Manual on Development and Use of FAO and WHO Specifications for Pesticides. FAO Plant Production and Protection Paper 228. First edition – third revision. Geneva: WHO Press; 2016. Available at: http://apps.who.int/iris/bitstream/handle/10665/246192/WHO-HTM-NTD-WHOPES-2016.4-eng.pdf
  35. ICH M7(R2). Guideline on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk – Step 5. 19/07/2023/ Reference Number: EMA/CHMP/ICH/83812/2013; 2023.
  36. FDA. Safety Testing of Drug Metabolites; 2020. Available at: https://fda.gov/regulatory-information/search-fda-guidance-documents/safety-testing-drug-metabolites
  37. FDA. M3(R2). Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals; 2010. Available at: https://fda.gov/regulatory-information/search-fda-guidance-documents/m3r2-nonclinicalsafety-studies-conduct-human-clinical-trials-and-marketing-authorization
  38. van der Zalm A.J., Barroso J., Browne P., Casey W., Gordon J., Henry T.R., et al. A framework for establishing scientific confidence in new approach methodologies. Arch. Toxicol. 2022; 96(11): 2865–79. https://doi.org/10.1007/s00204-022-03365-4
  39. US Environmental Protection Agency Memorandum. Directive to prioritize efforts to reduce animal testing. Washington; 2019. Available at: https://epa.gov/sites/default/files/2019-09/documents/image2019-09-09-231249.pdf
  40. Stucki A.O., Barton-Maclaren T.S., Bhuller Y., Henriquez J.E., Henry T.R., Hirn C., et al. Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Front. Toxicol. 2022; 4: 964553. https://doi.org/10.3389/ftox.2022.964553
  41. Fortin A.V., Long A.S., Williams A., Meier M.J., Cox J., Pinsonnault C., et al. Application of a new approach methodology (NAM)-based strategy for genotoxicity assessment of data-poor compounds. Front. Toxicol. 2023; 5: 1098432. https://doi.org/10.3389/ftox.2023.1098432
  42. ECHA. Read-across assessment framework (RAAF); 2017.
  43. ECHA. Registration dossier – N,N,4-trimethylpiperazine-1-ethylamine; 2019. Available at: https://echa.europa.eu/nl/registration-dossier/-/registered-dossier/27533/7/7/1
  44. Razdolskii A.N., Grigor’ev V.Yu., Yarkov A.V., Grigoreva L.D., Strakhova N.N., Kazachenko V.P., et al. Classification QSAR models of substrate activity of chemical relative to p-glycoprotein based on the spectrum of interatomic intramolecular interacrtion. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2021; (6): 97–103. https://doi.org/10.17513/mjpfi.13238 https://elibrary.ru/yynxec (in Russian)
  45. Sukhachev V.S., Ivanov S.M., Filimonov D.A., Poroikov V.V. Alternative methods of studies. Computer-aided estimation of rodents acute toxicity. Laboratornye zhivotnye dlya nauchnykh issledovanii. 2019; (4): 4. https://doi.org/10.29926/2618723X-2019-04-04 https://elibrary.ru/nysiby (in Russian)
  46. Guseva E.A., Nikolaeva N.I., Filin A.S., Savostikova O.N. Comparative evaluation of mathematical models for predicting acute toxicity of chemicals. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(7): 816–23. https://doi.org/10.47470/0016-9900-2022-101-7-816-823 https://elibrary.ru/trwbtp (in Russian)
  47. Kavlock R.J., Bahadori T., Barton-Maclaren T.S., Gwinn M.R., Rasenberg M., Thomas R.S. Accelerating the pace of chemical risk assessment. Chem. Res. Toxicol. 2018; 31(5): 287–90. https://doi.org/10.1021/acs.chemrestox.7b00339
  48. Magurany K.A., Chang X., Clewell R., Coecke S., Haugabrooks E., Marty S. A pragmatic framework for the application of new approach methodologies in one health toxicological risk assessment. Toxicol. Sci. 2023; 192(2): 155–77. https://doi.org/10.1093/toxsci/kfad012
  49. Diniz R.R., Domingos T.F.S., Pinto G.R., Cabral L.M., de Pádula M., de Souza A.M.T. Use of in silico and in vitro methods as a potential new approach methodologies (NAMs) for (photo)mutagenicity and phototoxicity risk assessment of agrochemicals. Sci. Total. Environ. 2023; 904: 167320. https://doi.org/10.1016/j.scitotenv.2023.167320
  50. Liu W., Xi J., Cao Y., You X., Chen R., Zhang X., et al. An adaption of human-induced hepatocytes to in vitro genetic toxicity tests. Mutagenesis. 2019; 34(2): 165–71. https://doi.org/10.1093/mutage/gey041
  51. Chapin R.E., Stedman D.B. Endless possibilities: stem cells and the vision for toxicology testing in the 21st century. Toxicol. Sci. 2009; 112(1): 17–22. https://doi.org/10.1093/toxsci/kfp202
  52. Kang K.S., Trosko J.E. Stem cells in toxicology: fundamental biology and practical considerations. Toxicol. Sci. 2011; 120(Suppl. 1): S269–89. https://doi.org/10.1093/toxsci/kfq370
  53. Hendriks G., Derr R.S., Misovic B., Morolli B., Calléja F.M., Vrieling H. The extended ToxTracker assay discriminates between induction of DNA damage, oxidative stress, and protein misfolding. Toxicol. Sci. 2016; 150(1): 190–203. https://doi.org/10.1093/toxsci/kfv323
  54. Wills J.W., Halkes-Wellstead E., Summers H.D., Rees P., Johnson G.E. Empirical comparison of genotoxic potency estimations: the in vitro DNA-damage ToxTracker endpoints versus the in vivo micronucleus assay. Mutagenesis. 2021; 36(4): 311–20. https://doi.org/10.1093/mutage/geab020
  55. Available at: https://toxys.com/toxtracker-suite
  56. Wilde S., Dambowsky M., Hempt C., Sutter A., Queisser N. Classification of in vitro genotoxicants using a novel multiplexed biomarker assay compared to the flow cytometric micronucleus test. Environ. Mol. Mutagen. 2017; 58(9): 662–77. https://doi.org/10.1002/em.22130
  57. Bryce S.M., Bernacki D.T., Bemis J.C., Spellman R.A., Engel M.E., Schuler M., et al. Interlaboratory evaluation of a multiplexed high information content in vitro genotoxicity assay. Environ. Mol. Mutagen. 2017; 58(3): 146–61. https://doi.org/10.1002/em.22083
  58. Dertinger S.D., Kraynak A.R., Wheeldon R.P., Bernacki D.T., Bryce S.M., Hall N., et al. Predictions of genotoxic potential, mode of action, molecular targets, and potency via a tiered Multiflow® assay data analysis strategy. Environ. Mol. Mutagen. 2019; 60(6): 513–33. https://doi.org/10.1002/em.22274
  59. Winkelbeiner N., Wandt V.K., Ebert F., Lossow K., Bankoglu E.E., Martin M., et al. A multi-endpoint approach to base excision repair incision activity augmented by PARylation and DNA damage levels in mice: impact of sex and age. Int. J. Mol. Sci. 2020; 21(18): 6600. https://doi.org/10.3390/ijms21186600
  60. Alépée N., Bahinski A., Daneshian M., De Wever B., Fritsche E., Goldberg A., et al. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX. 2014; 31(4): 441–77. https://doi.org/10.14573/altex.1406111
  61. Shah U.K., Mallia J.O., Singh N., Chapman K.E., Doak S.H., Jenkins G.J.S. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018; 825: 51–8. https://doi.org/10.1016/j.mrgentox.2017.12.005
  62. Augustyniak J., Bertero A., Coccini T., Baderna D., Buzanska L., Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. J. Appl. Toxicol. 2019; 39(12): 1610–22. https://doi.org/10.1002/jat.3815
  63. Weinhart M., Hocke A., Hippenstiel S., Kurreck J., Hedtrich S. 3D organ models – revolution in pharmacological research? Pharmacol. Res. 2019; 139: 446–51. https://doi.org/10.1016/j.phrs.2018.11.002
  64. Chen L., Li N., Liu Y., Faquet B., Alépée N., Ding C., et al. A new 3D model for genotoxicity assessment: EpiSkin™ micronucleus assay. Mutagenesis. 2021; 36(1): 51–61. https://doi.org/10.1093/mutage/geaa003
  65. Reus A., Staal Y., van Triel J., van Acker F., Kuper Human F. 3D airway models to explore in vivo inhalation. Eur. Respir. J. 2011; 38 (Suppl. 55): 3089.
  66. Pfuhler S., van Benthem J., Curren R., Doak S.H., Dusinska M., Hayashi M., et al. Use of in vitro 3D tissue models in genotoxicity testing: Strategic fit, validation status and way forward. Report of the working group from the 7th International Workshop on Genotoxicity Testing (IWGT). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020; 850–851: 503135. https://doi.org/10.1016/j.mrgentox.2020.503135
  67. Pfuhler S., Fellows M., van Benthem J., Corvi R., Curren R., Dearfield K., et al. In vitro genotoxicity test approaches with better predictivity: summary of an IWGT workshop. Mutat. Res. 2011; 723(2): 101–7. https://doi.org/10.1016/j.mrgentox.2011.03.013
  68. National Institute of Health Sciences. TK6 Mutants Consortium. National Institute of Health Sciences; 2019. Available at: http://nihs.go.jp/dgm/tk6.html
  69. Boysen G., Nookaew I. Current and future methodology for quantitation and site-specific mapping the location of DNA adducts. Toxics. 2022; 10(2): 45. https://doi.org/10.3390/toxics10020045
  70. Swenberg J.A., Lu K., Moeller B.C., Gao L., Upton P.B., Nakamura J., et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 2011; 120(Suppl. 1): S130–45. https://doi.org/10.1093/toxsci/kfq371
  71. Balbo S., Turesky R.J., Villalta P.W. DNA adductomics. Chem. Res. Toxicol. 2014; 27(3): 356–66. https://doi.org/10.1021/tx4004352
  72. Hemeryck L.Y., Rombouts C., De Paepe E., Vanhaecke L. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity. Food Chem. Toxicol. 2018; 115: 73–87. https://doi.org/10.1016/j.fct.2018.02.032
  73. Pietsch K.E., van Midwoud P.M., Villalta P.W., Sturla S.J. Quantification of acylfulvene- and illudin S-DNA adducts in cells with variable bioactivation capacities. Chem. Res. Toxicol. 2013; 26(1): 146–55. https://doi.org/10.1021/tx300430r
  74. Thomas R.S., Wesselkamper S.C., Wang N.C., Zhao Q.J., Petersen D.D., Lambert J.C., et al. Temporal concordance between apical and transcriptional points of departure for chemical risk assessment. Toxicol. Sci. 2013; 134(1): 180–94. https://doi.org/10.1093/toxsci/kft094
  75. Farmahin R., Williams A., Kuo B., Chepelev N.L., Thomas R.S., Barton-Maclaren T.S., et al. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Arch. Toxicol. 2017; 91(5): 2045–65. https://doi.org/10.1007/s00204-016-1886-5
  76. Yauk C.L., Cheung C., Barton-Maclaren T.S., Boucher S., Bourdon-Lacombe J., Chauhan V., et al. Toxicogenomic applications in risk assessment at Health Canada. Curr. Opin. Toxicol. 2019; 18: 34–45. https://doi.org/10.1016/j.cotox.2019.02.005
  77. Li H.H., Chen R., Hyduke D.R., Williams A., Frötschl R., Ellinger-Ziegelbauer H., et al. Development and validation of a high-throughput transcriptomic biomarker to address 21st century genetic toxicology needs. Proc. Natl. Acad. Sci. USA. 2017; 114(51): E10881–9. https://doi.org/10.1073/pnas.1714109114
  78. Li H.H., Yauk C.L., Chen R., Hyduke D.R., Williams A., Frötschl R., et al. TGx-DDI, a transcriptomic biomarker for genotoxicity hazard assessment of pharmaceuticals and environmental chemicals. Front. Big Data. 2019; 2: 36. https://doi.org/10.3389/fdata.2019.00036
  79. Pérez L.O., González-José R., García P.P. Prediction of non-genotoxic carcinogenicity based on genetic profiles of short-term exposure assays. Toxicol. Res. 2016; 32(4): 289–300. https://doi.org/10.5487/TR.2016.32.4.289
  80. Felter S.P., Bhat V.S., Botham P.A., Bussard D.A., Casey W., Hayes A.W., et al. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Crit. Rev. Toxicol. 2021; 51(8): 653–94. https://doi.org/10.1080/10408444.2021.2003295
  81. Moffat I., Chepelev N., Labib S., Bourdon-Lacombe J., Kuo B., Buick J.K., et al. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit. Rev. Toxicol. 2015; 45(1): 1–43. https://doi.org/10.3109/10408444.2014.973934
  82. Cho E., Buick J.K., Williams A., Chen R., Li H.H., Corton J.C., et al. Assessment of the performance of the TGx-DDI biomarker to detect DNA damage-inducing agents using quantitative RT-PCR in TK6 cells. Environ. Mol. Mutagen. 2019; 60(2): 122–33. https://doi.org/10.1002/em.22257
  83. Buick J.K., Williams A., Gagné R., Swartz C.D., Recio L., Ferguson S.S., et al. Flow cytometric micronucleus assay and TGx-DDI transcriptomic biomarker analysis of ten genotoxic and non-genotoxic chemicals in human HepaRG™ cells. Genes. Environ. 2020; 42: 5. https://doi.org/10.1186/s41021-019-0139-2
  84. Buick J.K., Williams A., Meier M.J., Swartz C.D., Recio L., Gagné R., et al. A modern genotoxicity testing paradigm: integration of the high-throughput CometChip® and the TGx-DDI transcriptomic biomarker in human HepaRG™ cell cultures. Front. Public Health. 2021; 9: 694834. https://doi.org/10.3389/fpubh.2021.694834
  85. Pradeep P., Patlewicz G., Pearce R., Wambaugh J., Wetmore B., Judson R. Using chemical structure information to develop predictive models for in vitro toxicokinetic parameters to inform high-throughput risk-assessment. Comput. Toxicol. 2020; 16: 10.1016/j.comtox.2020.100136. https://doi.org/10.1016/j.comtox.2020.100136
  86. Pradeep P., Friedman K.P., Judson R. Structure-based QSAR models to predict repeat dose toxicity points of departure. Comput. Toxicol. 2020; 16(November 2020): 10.1016/j.comtox.2020.100139. https://doi.org/10.1016/j.comtox.2020.100139
  87. Tennant R.E., Guesné S.J., Canipa S., Cayley A., Drewe W.C., Honma M., et al. Extrapolation of in vitro structural alerts for mutagenicity to the in vivo endpoint. Mutagenesis. 2019; 34(1): 111–21. https://doi.org/10.1093/mutage/gey030
  88. Zang Q., Mansouri K., Williams A.J., Judson R.S., Allen D.G., Casey W.M., et al. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J. Chem. Inf. Model. 2017; 57(1): 36–49. https://doi.org/10.1021/acs.jcim.6b00625
  89. Doak S.H., Andreoli C., Burgum M.J., Chaudhry Q., Bleeker E.A.J., Bossa C., et al. Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report. Mutagenesis. 2023; 38(4): 183–91. https://doi.org/10.1093/mutage/gead017

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.