Effects of the influence of copper and zinc on living organisms (literature review)
- Authors: Kopach A.Y.1, Fedoriv O.Y.1, Melnyk N.A.1
-
Affiliations:
- Horbachevsky Ternopil National Medical University
- Issue: Vol 100, No 2 (2021)
- Pages: 172-177
- Section: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- Published: 22.03.2021
- URL: https://rjsocmed.com/0016-9900/article/view/639504
- DOI: https://doi.org/10.47470/0016-9900-2021-100-2-172-177
- ID: 639504
Cite item
Full Text
Abstract
Introduction. Scientists from Horbachevsky Ternopil National Medical University, Ternopil, and various countries, including state laboratories, have thoroughly studied the biological significance of copper and zinc ions in the body for many years. Nevertheless, the value of the shortage or excess of these metals and their compounds in the body remains mostly underestimated for health.
Purpose of work: to study the pathogenesis of traumatic disease occurring due to an imbalance of copper and zinc in the body.
Methods. Bibliosemantic and analytical methods were used. A literature search was conducted for the following queries as zinc, copper, heavy metals, negative impact. The investigation was performed with PubMed, Scopus, Web of Science, and Google Scholar for various articles. All publications have been analyzed and included in this review. The importance of these metals’ lack or excess and their compounds in the body remains mostly underestimated. Features of the pathogenesis of many diseases occurring due to imbalance of copper and zinc in the body have also been unexplored. The traumatic disorder was no exception, as this was not considered in experimental and clinical medicine.
Conclusion. From the analysis of the available scientific literature, no messages were found about the features of the course of traumatic disease in conditions of excessive intake of copper and zinc ions in the body. We can only assume that a violation of the functional ability of the liver, lungs, brain and other organs that occurs against the background of heavy metal ion damage creates an unfavorable background for the occurrence of a serious injury.
Keywords
About the authors
Alexandra Ye. Kopach
Horbachevsky Ternopil National Medical University
Author for correspondence.
Email: kopachole@tdmu.edu.ua
ORCID iD: 0000-0003-3403-6477
MD, PhD., assoc. Prof. of the Department of General Hygiene and Ecology I. Horbachevsky Ternopil National Medical University, Ternopil, 46000, Ukraine.
e-mail: kopachole@tdmu.edu.ua
UkraineOlha Ye. Fedoriv
Horbachevsky Ternopil National Medical University
Email: noemail@neicon.ru
ORCID iD: 0000-0001-9860-4889
Ukraine
Nataliia A. Melnyk
Horbachevsky Ternopil National Medical University
Email: noemail@neicon.ru
ORCID iD: 0000-0002-7357-7551
Ukraine
References
- Valko M., Morris H., Cronin M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005; 12(10): 1161-208. https://doi.org/10.2174/0929867053764635
- Fedoriv O.E., Kopach О.Е., Melnyk N.A., Lototska O.V., Lototskyy V.V. Influence of nanoparticles of lead on the organizm of suspicious animals when using water with content of sodium and sunpate stearates. World Med. Biol. 2019; 68(2): 203-8. https://doi.org/10.26724/2079-8334-2019-2-68-203-208
- Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4
- Palytsya L.M., Korda M.M., Mudra A.Ye., Fedoniuk L.Ya. C60 fullerenes exacerbate the toxic effect of toluene on the state of the xenobiotic biotransformation enzyme system. Ukr. Biochem. J. 2019; 67(1): 178-81. (in Ukrainian)
- Peralta-Videa J.R., Hernandez-Viezcas J.A., Montes M.O., Keller A.A., Gardea-Torresdey J.L. Microscopic and spectroscopic methods applied to the measurements of nanoparticles in the environment. Appl. Spectrosc. Rev. 2012; 47(3): 180-206. https://doi.org/10.1080/05704928.2011.637186
- Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 2009; 29(9): 2587-95. https://doi.org/10.1016/waisman.2009.04.001
- Yu L.P., Fang T., Xiong D.W., Zhu W.T., Sima X.F. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water. J. Environ. Monit. 2011; 13(7): 1975-82. https://doi.org/10.1039/c1em10197h
- Ma H., Kabengi N.J., Bertsch P.M., Unrine J.M., Glenn T.C., Williams P.L. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ. Pollut. 2011; 159(6): 1473-80. https://doi.org/10.1016/j.envpol.2011.03.013
- Borkow G., Zatcoff R.C., Gabbay J. Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med. Hypotheses. 2009; 73(6): 883-6. https://doi.org/10.1016/j.mehy.2009.02.050
- Borkow G., Gabbay J., Dardik R., Eidelman A., Lavie Y., Grunfeld Y., et al. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair. Regen. 2010; 18(2): 266-75. https://doi.org/10.1111/j.1524-475X.2010.00573.x
- Bondarenko O., Ivask A., Käkinen A., Kahru A. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 2012; 169: 81-9. https://doi.org/10.1016/j.envpol.2012.05.009
- Ansari M.A., Khan H.M., Khan A.A., Sultan A., Azam A. Characterization of clinical strains of MSSA, MRSA and MRSE isolated from skin and soft tissue infections and the antibacterial activity of ZnO nanoparticles. World J. Microbiol. Biotechnol. 2012; 28(4): 1605-13. https://doi.org/10.1007/s11274-011-0966-1
- Baker J., Sitthisak S., Sengupta M., Johnson M., Jayaswal R.K., Morrissey J.A. Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation. Appl. Environ. Microbiol. 2010; 76(1): 150-60. https://doi.org/10.1128/AEM.02268-09
- Emami-Karvani Z., Chehrazi P. Antibacterial activity of ZnO nanoparticle on grampositive and gram-negative bacteria. Afr. J. Microbiol. Res. 2011; 5(12): 1368-73. https://doi.org/10.5897/AJMR10.159
- Alsop D., Wood C.M. Metal uptake and acute toxicity in zebrafish: common mechanisms across multiple metals. Aquat. Toxicol. 2011; 105(3-4): 385-93. https://doi.org/10.1016/j.aquatox.2011.07.010
- Bao V.W., Leung K.M., Qiu J.W., Lam M.H. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 2011; 62(5): 1147-51. https://doi.org/10.1016/j.marpolbul.2011.02.041
- Ebrahimpour M., Alipour H., Rakhshah S. Influence of water hardness on acute toxicity of copper and zinc on fish. Toxicol. Ind. Health. 2010; 26(6): 361-5. https://doi.org/10.1177/0748233710369123
- Cao B., Zheng Y., Xi T., Zhang C., Song W., Burugapalli K., et al. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed. Microdevices. 2012; 14(4): 709-20. https://doi.org/10.1007/s10544-012-9651-x
- Zhang J., Song W., Guo J., Zhang J., Sun Z., Ding F., et al. Toxic effect of different ZnO particles on mouse alveolar macrophages. J. Hazard Mater. 2012; 219-220: 148-55. https://doi.org/10.1016/j.jhazmat.2012.03.069
- Contreras R.G., Sakagami H., Nakajima H., Shimada J. Type of cell death induced by various metal cations in cultured human gingival fibroblasts. In Vivo. 2010; 24(4): 513-7.
- Ahamed M., Siddiqui M.A., Akhtar M.J., Ahmad I., Pant A.B., Alhadlaq H.A. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem. Biophys. Res. Commun. 2010; 396(2): 578-83. https://doi.org/10.1016/j.bbrc.2010.04.156
- Dua P., Chaudhari K.N., Lee C.H. Evaluation of toxicity and gene expression changes triggered by oxide nanoparticles. Bull. Korean Chem. Soc. 2011; 32(6): 2051-7. https://doi.org/10.5012/bkcs.2011.32.6.2051
- Aruoja V., Dubourguier H.C., Kasemets K., Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009; 407(4): 1461-8. https://doi.org/10.1016/j.scitotenv.2008.10.053
- Patra P., Mitra S., Debnath N., Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir. 2012; 28(49): 16966-78. https://doi.org/10.1021/la304120k
- Hassan M.S., Amna T., Yang O.B., El-Newehy M.H., Al-Deyab S.S., Khil M.S. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf. B. Bioinerfaces. 2012; 97: 201-6. https://doi.org/10.1016/j.colsurfb.2012.04.032
- Majzlik P., Strasky A., Adam V., Nemec M., Trnkova L., Zehnalek J., et al. Influence of zinc(II) and copper(II) ions on Streptomyces bacteria revealed by electrochemistry. Int. J. Electrochem. Sci. 2011; 6(1): 2171-91.
- Harrington J.M., Boyd W.A., Smith M.V., Rice J.R., Freedman J.H., Crumbliss A.L. Amelioration of metal-induced toxicity in Caenorhabditis elegans: utility of chelating agents in the bioremediation of metals. Toxicol. Sci. 2012; 129(1): 49-56. https://doi.org/10.1093/toxsci/kfs191
- Mortimer M., Kasemets K., Heinlaan M., Kurvet I, Kahru A. High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicol. In Vitro. 2008; 22(5): 1412-7. https://doi.org/10.1016/j.tiv.2008.02.011
- Liu Y., He L., Mustapha A., Li H., Hu Z.Q., Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009; 107(4): 1193-201. https://doi.org/10.1111/j.1365-2672.2009.04303.x
- Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microb. 2011; 77(7): 2325-31. https://doi.org/10.1128/AEM.02149-10
- Mirhosseini M., Firouzabadi F.B. Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int. J. Dairy Technol. 2013; 66(2): 291-5. https://doi.org/10.1111/1471-0307.12015
- He L., Liu Y., Mustapha A., Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011; 166(3): 207-15. https://doi.org/10.1016/j.micres.2010.03.003
- Lipovsky A., Nitzan Y., Gedanken A., Lubart R. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology. 2011; 22(10): 105101. https://doi.org/10.1088/0957-4484/22/10/105101
- Hoheisel S.M., Diamond S., Mount D. Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ. Toxicol. Chem. 2012; 31(11): 2557-63. https://doi.org/10.1002/etc.1978
- Mortimer M., Kasemets K., Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology. 2010; 269(2-3): 182-9. https://doi.org/10.1016/j.tox.2009.07.007
- Kasemets K., Ivask A., Dubourguier H.C., Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro. 2009; 23(6): 1116-22. https://doi.org/10.1016/j.tiv.2009.05.015
- Smith S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 2009; 35(1): 142-56. https://doi.org/10.1016/j.envint
- Poynton H.C., Lazorchak J.M., Impellitteri C.A., Smith M.E., Rogers K., Patra M., et al. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ. Sci. Technol. 2011; 45(2): 762-8. https://doi.org/10.1021/es102501z
- Stolyar O.B., Zin’kovs’ka N.Z., Mudra A.Y. The role of low weight proteins and thiols of hepatopancreas in the protection of carp organs from copper uptake. In: Metals and Cell Symposium. Canterbury; 2001.
- Käkinen A., Bondarenko O., Ivask A., Kahru A. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor Sensors. 2011; 11(11): 10502-21. https://doi.org/10.3390/s111110502
- Wang P., Lutton A., Olesik J., Vali H., Li X. A novel iron- and copper-binding protein in the Lyme disease spirochaete. Mol. Microbiol. 2012; 86(6): 1441-51. https://doi.org/10.1111/mmi.12068
- Valls M., Bofill R., Gonzales-Duarte R. A new insight into metallothionein (MT) classification and evolution. J. Biol. Chem. 2001; 35(276): 32835-43. https://doi.org/10.1074/jbc.m102151200
- Riggio M., Filosa S., Parisi E., Scudiero R. Changes in zinc, copper and metallothionein contents during oocyte growth and early development of the teleost Danio rerio (zebrafish). Comp. Biochem. Physiol. 2003; 135(2): 191-6. https://doi.org/10.1016/s1532-0456(03)00107-8
- Kim Y.H., Fazlollahi F., Kennedy I.M., Yacobi N.R., Hamm-Alvarez S.F., Borok Z., et al. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J. Respir. Crit. Care. Med. 2010; 182(11): 1398-409. https://doi.org/10.1164/rccm.201002-0185OC
- Lin W., Xu Y., Huang C.C., Yinfa Ma, Shannon K.B., Chen D.R., et al. Toxicity of nano and micro-sized ZnO particles in human lung epithelial cells. J. Nanopart. Res. 2009; 11(1): 25-39. https://doi.org/10.1007/s11051-008-9419-7
- Wu J., Wang L., He J., Zhu C. In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells. Contraception. 2012; 85(5): 509-18. https://doi.org/10.1016/j.contraception.2011.09.016
- Li J., Liu X., Zhang Y., Tian F.F., Zhao G.Y., Yu Q.L.Y., et al. Toxicol. Res. 2012; 1(2): 137-44. https://doi.org/10.1039/c2tx20016c
- Kasemets K., Suppi S., Künnis-Beres K., Kahru A. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants. Chem. Res. Toxicol. 2013; 26(3): 356-67. https://doi.org/10.1021/tx300467d
- Manusadžianas L., Caillet C., Fachetti L., Gylytė B., Grigutytė R., Jurkonienė S., et al. Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ. Toxicol. Chem. 2012; 31(1): 108-14. https://doi.org/10.1002/etc.715
- Mortimer M., Kasemets K., Vodovnik M., Marinsek-Logar R., Kahru A. Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophila. Environ. Sci. Technol. 2011; 45(15): 6617-24. https://doi.org/10.1021/es201524q
- Ma H., Bertsch P.M., Glenn T.C., Kabengi N.J., Williams P.L. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2009; 28(6): 1324-30. https://doi.org/10.1897/08-262.1
- Naddafi K., Zare M.R., Nazmara S. Investigating potential toxicity of phenanthrene adsorbed to nano-ZnO using Daphnia magna. Toxicol. Environ. Chem. 2011; 93(4): 729-37. https://doi.org/10.1080/02772248.2011.552505
- Kawahara M., Sadakane Y., Koyama H., Konoha K., Ohkawara S. D-histidine and L-histidine attenuate zinc-induced neuronal death in GT1-7 cells. Metallomics. 2013; 5(5): 453-60. https://doi.org/10.1039/c3mt20264j
- Song W., Zhang J., Guo J., Zhang J., Ding F., Li L., et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 2010; 199(3): 389-97. https://doi.org/10.1016/j.toxlet.2010.10.003
- Wang W.X., Guan R. Subcellular distribution of zinc in Daphnia magna and implication for toxicity. Environ. Toxicol. Chem. 2010; 29(8): 1841-8. https://doi.org/10.1002/etc.229
- Pavlica S., Gaunitz F., Gebhardt R. Comparative in vitro toxicity of seven zinc-salts towards neuronal PC12 cells. Toxicol. Іn Vitro. 2009; 23(4): 653-9. https://doi.org/10.1016/j.tiv.2009.03.003
- Hsieh C.Y., Tsai M.H., Ryan David K., Pancorbo O.C. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox chronic toxicity test. Sci. Total Environ. 2004; 320(1): 37-50. https://doi.org/10.1016/s0048-9697(03)00451-0
Supplementary files
