General toxic and cardiovascular toxic impact of cadmium oxide nanoparticles

Cover Page

Cite item

Full Text

Abstract

Introduction. Non-ferrous smelters are one of the critical nanoscale cadmium particles sources in the workplace and ambient air.

Materials and methods. The research was performed to evaluate the subchronic toxicity of cadmium oxide nanoparticles (CdO-NPs) in white outbred rats. Male outbred 3.5-month old rats received intraperitoneal injections of CdO-NPs 3 times a week for six weeks (18 in total) in doses of 0.25 mg/kg body mass. After the end of an exposure, there were rated more than 50 indices of universally accepted toxicity criteria (including biochemical and cytomorphometric). Student’s t-test was used for statistical analysis.

Results. The hematotoxic effects of CdO-NPs were revealed by a decrease in the hemoglobin content, an increase in the number of reticulocytes, eosinophils, and monocytes. CdO NPs influenced porphyrin metabolism (an increase of δ-aminolevulinic acid in the urine). Liver toxicity resulted in an increase in organ mass and a decrease in albumin content and A/G index. Besides, there was observed a rise in γ-glutamyl transpeptidase and high-density lipoproteins in the blood serum. Oxidative stress level increased (decrease in catalase action and ceruloplasmin content). Endothelin-1 decreased. It may result from an observed decrease in blood pressure indices (statistically significant for mean B.P.).

Conclusion. The intoxication of moderate severity was retrieved at the end of the subchronic exposure to cadmium oxide nanoparticles.
It characterized mass, hematological, biochemical, and cytomophometric changes. There was found mild but evident cardiovascular toxicity of cadmium oxide nanoparticles.

About the authors

Svetlana V. Klinova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Author for correspondence.
Email: klinova.svetlana@gmail.com
ORCID iD: 0000-0002-0927-4062

Researcher of Department of the Toxicology and Bioprophylaxis, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation.

e-mail: klinova.svetlana@gmail.com

Russian Federation

Ilzira A. Minigalieva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
Russian Federation

Boris A. Katsnelson

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0001-8750-9624
Russian Federation

Svetlana N. Solovyeva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0001-8580-403X
Russian Federation

Larisa I. Privalova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0002-1442-6737
Russian Federation

Vladimir B. Gurvich

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6475-7753
Russian Federation

Iuliia V. Ryabova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0003-2677-0479
Russian Federation

Ivan N. Chernyshov

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2018-5386
Russian Federation

Tatiana V. Bushueva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0002-5872-2001
Russian Federation

Renata R. Sakhautdinova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2726-9259
Russian Federation

Vladimir Ya. Shur

Modern nanotechnologies, Ural Federal University

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6970-7798
Russian Federation

Ekaterina V. Shishkina

Modern nanotechnologies, Ural Federal University

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2574-7472
Russian Federation

Marina P. Sutunkova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: noemail@neicon.ru
ORCID iD: 0000-0002-1743-7642
Russian Federation

References

  1. WHO. Air quality guidelines for Europe. Copenhagen; 2000: 136–8. Available at: http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf
  2. Sutunkova M.P., Makeev O.G., Privalova L.I., Minigalieva I.A., Gurvich V.B., Solov‘eva S.N., et al. Genotoxic effect of some elemental or element oxide nanoparticles and its diminution by bioprotectors combination. Meditsina truda i promyshlennaya ekologiya. 2018; 58(11): 10–5. https://doi.org/10.31089/1026-9428-2018-11-10-16 (in Russian)
  3. Peters J.L., Perlstein T.S., Perry M.J., McNeely E., Weuve J. Cadmium exposure in association with history of stroke and heart failure. Environ. Res. 2010; 110(2): 199–206. https://doi.org/10.1016/j.envres.2009.12.004
  4. Lee M.S., Park S.K., Hu H., Lee S. Cadmium exposure and cardiovascular disease in the 2005 Korea National Health and Nutrition Examination Survey. Environ. Res. 2011; 111(1): 171–6. https://doi.org/10.1016/j.envres.2010.10.006
  5. Caciari T., Sancini A., Fioravanti M., Capozzella A., Casale T., Montuori L., et al. Cadmium and hypertension in exposed workers: A meta-analysis. Int. J. Occup. Med. Environ. Health. 2013; 26(3): 440–56. https://doi.org/10.2478/s13382-013-0111-5
  6. Tellez-Plaza M., Jones M.R., Dominguez-Lucas A., Guallar E., Navas-Acien A. Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr. Atheroscler. Rep. 2013; 15(10): 356. https://doi.org/10.1007/s11883-013-0356-2
  7. Myong J.P., Kim H.R., Jang T.W., Lee H.E., Koo J.W. Association between blood cadmium levels and 10-year coronary heart disease risk in the general Korean population: the Korean national health and nutrition examination survey 2008–2010. PLoS One. 2014; 9(11): e111909. https://doi.org/10.1371/journal.pone.0111909
  8. Borné Y., Barregard L., Persson M., Hedblad B., Fagerberg B., Engström G. Cadmium exposure and incidence of heart failure and atrial fibrillation: a population-based prospective cohort study. BMJ Open. 2015; 5(6): e007366. https://doi.org/10.1136/bmjopen-2014-007366
  9. Tellez-Plaza M., Guallar E., Howard B.V., Umans J.G., Francesconi Kevin A., Goessler W., et al. Cadmium exposure and incident cardiovascular disease. Epidemiol. 2013; 24(3): 421–9. https://doi.org/10.1097/EDE.0b013e31828b0631
  10. Larsson S.C., Wolk A. Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: systematic review and meta-analysis of cohort studies. Int. J. Epidemiol. 2016; 45(3): 782–91. https://doi.org/10.1093/ije/dyv086
  11. Lebedová J., Bláhová L., Večeřa Z., Mikuška P., Dočekal B., Buchtová M., et al. Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. Environ. Sci. Pollut. Res. Int. 2016; 23(23): 24047–60. https://doi.org/10.1007/s11356-016-7600-6
  12. Rana K., Verma Y., Rani V., Rana S.V.S. Renal toxicity of nanoparticles of cadmium sulphide in rat. Chemosphere. 2018; 193: 142–50. https://doi.org/10.1016/j.chemosphere.2017.11.011
  13. Papp A., Oszlánczi G., Horváth E., Paulik E., Kozma G., Sápi A., et al. Consequences of subacute intratracheal exposure of rats to cadmium oxide nanoparticles: Electrophysiological and toxicological effects. Toxicol. Ind. Health. 2012; 28(10): 933–41. https://doi.org/10.1177/0748233711430973
  14. Blum J.L., Rosenblum L.K., Grunig G., Beasley M.B., Xiong J.Q., Zelikoff J.T. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal. Toxicol. 2014; 26(1): 48–58. https://doi.org/10.3109/08958378.2013.851746
  15. Blum J.L., Edwards J.R., Prozialeck W.C., Xiong J.Q., Zelikoff J.T. Effects of maternal exposure to cadmium oxide nanoparticles during pregnancy on maternal and offspring kidney injury markers using a murine model. J. Toxicol. Environ. Health A. 2015; 78(12): 711–24. https://doi.org/10.1080/15287394.2015.1026622
  16. Blum J.L., Xiong J.Q., Hoffman C., Zelikoff J.T. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol. Sci. 2012; 126(2): 478–86. https://doi.org/10.1093/toxsci/kfs008
  17. Ladhar C., Geffroy B., Cambier S., Treguer-Delapierre M., Durand E., Brèthes D., et al. Impact of dietary cadmium sulphide nanoparticles on Danio rerio zebrafish at very low contamination pressure. Nanotoxicol. 2014; 8(6): 676–85. https://doi.org/10.3109/17435390.2013.822116
  18. Ellman G., Lysko H. A precise method for the determination of whole blood and plasma sulfhydryl groups. Anal. Biochem. 1979; 93(1): 98–102. https://doi.org/10.1016/S0003-2697(79)80122-0
  19. Nartsissov R.P. Application of p-nitrotetrazolium violet for quantitative cytochemistry of human lymphocyte dehydrogenases. Arkhiv anatomii, gistologii i embriologii. 1969; (5): 85–91. (in Russian)
  20. Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P, Gurvich V.B., Shur V.Y., et al. Combined subchronic toxicity of aluminum (III), titanium (IV) and silicon (IV) oxide nanoparticles and its alleviation with a complex of bioprotectors. Int. J. Mol. Sci. 2018; 19(3): 837. https://doi.org/10.3390/ijms19030837
  21. Tietz N.W. Clinical Guide to Laboratory Tests. Philadelphia: W.B. Saunders Company; 1995.
  22. Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y., et al. Attenuation of combined nickel (II) oxide and manganese (II, III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int. J. Mol. Sci. 2015; 16(9): 22555–83. https://doi.org/10.3390/ijms160922555
  23. Minigalieva I.A., Katsnelson B.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicol. 2017; 380: 72–93. https://doi.org/10.1016/j.tox.2017.02.007
  24. Krivosheev B.N., Krivosheev A.B., Poteryaeva E.L., Parulikova L.V., Mikhaylenko O.I. Clinical and biochemical syndromes of cadmium-induced acute porphyrinopathy. Terapevticheskiy arkhiv. 2010; 82(10): 65–70. (in Russian)
  25. Krivosheev A.B., Poteryaeva E.L., Krivosheev B.N., Kupriyanova L.Ya., Smirnova E.L. Toxic effect of cadmium on human organism (literature review). Meditsina truda i promyshlennaya ekologiya. 2012; 52(6): 35–42. (in Russian)
  26. Vanharen M., Girard D. Activation of human eosinophils with nanoparticles: a new area of research. Inflammation. 2020; 43(1): 8–16. https://doi.org/10.1007/s10753-019-01064-4
  27. Akhpolova V.O., Brin V.B. Modern concepts of kinetics and pathogenesis of heavy metal toxic effects (literature review). Vestnik novykh meditsinskikh tekhnologiy. 2020; 27(1): 55–61. https://doi.org/10.24411/1609-2163-2020-16578 (in Russian)
  28. Jardim-Messeder D., Caverzan A., Rauber R., de Souza Ferreira E., Margis‐Pinheiro M., Galina A. Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytol. 2015; 208(3): 776–89. https://doi.org/10.1111/nph.13515
  29. Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta. 2016; 1857(8): 1086–101. https://doi.org/10.1016/j.bbabio.2016.03.012
  30. Olisekodiaka M.J., Igbeneghu C.A., Onuegbu A.J., Oduru R., Lawal A.O. Lipid, lipoproteins, total antioxidant status and organ changes in rats administered high doses of cadmium chloride. Med. Princ. Pract. 2012; 21(2): 156–9. https://doi.org/10.1159/000333385
  31. Samarghandian S., Azimi-Nezhad M., Shabestari M.M., Azad F.J., Farkhondeh T., Bafandeh F. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip. Toxicol. 2015; 8(3): 151–4. https://doi.org/10.1515/intox-2015-0023
  32. Nawrot T.S., Staessen J.A. Low-level environmental exposure to lead unmasked as silent killer. Circulation. 2006; 114(13): 1347–9. https://doi.org/10.1161/CIRCULATIONAHA.106.650440
  33. Potter L.R., Abbey-Hosch S., Dickey D.M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev. 2006; 27(1): 47–72. https://doi.org/10.1210/er.2005-0014
  34. Andryukhin A.N., Frolova E.V. Clinical value of the natriuretic peptides testing in patients with heart failure. Rossiyskiy semeynyy vrach. 2008; 12(4): 24–35. (in Russian)
  35. Ostroumova O.D., Maksimov M.L., Dralova O.V., Ermolaeva A.S. Selection of an ACE inhibitor in clinical practice. Meditsinskiy sovet. 2014; (12): 86–91. (in Russian)
  36. Dremina N.N., Shurygin M.G., Shurygina I.A. Endothelins under normal and pathological conditions. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2016; (10-2): 210–4. (in Russian)
  37. Ostrovskaya S.S. Toxic effects of cadmium. Vestnik problem biologii i meditsiny. 2014; 3(2): 33–5. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Klinova S.V., Minigalieva I.A., Katsnelson B.A., Solovyeva S.N., Privalova L.I., Gurvich V.B., Ryabova I.V., Chernyshov I.N., Bushueva T.V., Sakhautdinova R.R., Shur V.Y., Shishkina E.V., Sutunkova M.P.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.