Expression of the CDKN1A, MDM2, and ATM genes as a biomarker of the toxic effect of heavy metals (literature review)
- Authors: Shaikhova D.R.1, Amromina A.M.1, Bereza I.A.1
-
Affiliations:
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
- Issue: Vol 102, No 11 (2023)
- Pages: 1224-1227
- Section: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- Published: 13.12.2023
- URL: https://rjsocmed.com/0016-9900/article/view/638304
- DOI: https://doi.org/10.47470/0016-9900-2023-102-11-1224-1227
- EDN: https://elibrary.ru/pgrkfd
- ID: 638304
Cite item
Full Text
Abstract
The development of new approaches enabling differentiation of a wide range of toxic effects can significantly improve risk assessment. To understand the response mechanisms at the molecular level, it is important to study the expression of genes responsible for DNA repair, since this process is one of the early responses to toxic effects.
The purpose of the study was to summarize available data on the expression of repair CDKN1A, MDM2, and ATM genes associated with toxic effects of exposure to heavy metals.
A systematic search was carried out to identify studies on a given topic in the PubMed, Web of Science, eLIBRARY and Google Scholar electronic databases using the following keywords: heavy metals, CDKN1A, MDM2, ATM, toxicity, DNA repair, and gene expression. The initial search for scientific publications was carried out independently by three authors; then all sources found were checked and compared to filter out duplicate papers. This review covers 50 literature sources.
The analysis of toxicogenome studies allowed us to identify several genes for assessing heavy metal toxicity among a large number of candidate biomarkers. The most commonly considered genes are the p21/CDKN1A gene, the MDM2 proto-oncogene, and the ATM gene.
Limitations. The review is limited to considering changes in the expression of only a small number of genes responsible for DNA repair.
Conclusion. The expression of the above biomarker genes provides a detailed picture of the response of a biological system to hazardous exposures and can be used as part of the assessment of toxic effects.
Contributions. All co-authors made a significant contribution to the development of concept, research and preparation of the article, read and approved its final version before publication.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: October 9, 2023 / Accepted: November 15, 2023 / Published: December 8, 2023
Keywords
About the authors
Daria R. Shaikhova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Author for correspondence.
Email: darya.boo@mail.ru
ORCID iD: 0000-0002-7029-3406
Research Scientist, Department of Molecular Biology and Electron Microscopy, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation
e-mail: darya.boo@mail.ru
Russian FederationAnna M. Amromina
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: amrominaam@ymrc.ru
ORCID iD: 0000-0001-8794-7288
Мл. науч. сотр. отдела молекулярной биологии и электронной микроскопии ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промышленных предприятий» Роспотребнадзора, 620014, Екатеринбург
e-mail: amrominaam@ymrc.ru
Russian FederationIvan A. Bereza
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: berezaia@ymrc.ru
ORCID iD: 0000-0002-4109-9268
Науч. сотр. отдела молекулярной биологии и электронной микроскопии ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промышленных предприятий» Роспотребнадзора, 620014, Екатеринбург
e-mail: berezaia@ymrc.ru
Russian FederationReferences
- Sakai R., Kondo C., Oka H., Miyajima H., Kubo K., Uehara T. Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014; 315: 8–16. https://doi.org/10.1016/j.tox.2013.10.009
- Radhakrishnan S., Gierut J., Gartel A. Multiple alternate p21 transcripts are regulated by p53 in human cells. Oncogene. 2006; 25(12): 1812–5. https://doi.org/10.1038/sj.onc.1209195
- Kriwacki R.W., Hengst L., Tennant L., Reed S.I., Wright P.E. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA. 1996; 93(21): 11504–9. https://doi.org/10.1073/pnas.93.21.11504
- Cazzalini O., Scovassi A.I., Savio M., Stivala L.A., Prosperi E. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat. Res. 2010; 704(1–3): 12–20. https://doi.org/10.1016/j.mrrev.2010.01.009
- Abbas T., Dutta A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer. 2009; 9(6): 400–14. https://doi.org/10.1038/nrc2657
- Duensing A., Ghanem L., Steinman R.A., Liu Y., Duensing S. p21(Waf1/Cip1) deficiency stimulates centriole overduplication. Cell Cycle. 2006; 5(24): 2899–902. https://doi.org/10.4161/cc.5.24.3567
- Mantel C., Braun S.E., Reid S., Henegariu O., Liu L., Hangoc G., et al. p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood. 1999; 93(4): 1390–8.
- Kreis N.N., Sanhaji M., Rieger M.A., Louwen F., Yuan J. p21Waf1/ Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene. 2013; 33(50): 5716–28. https://doi.org/10.1038/onc.2013.518
- Badie C., Dziwura S., Raffy C., Tsigani T., Alsbeih G., Moody J., et al. Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br. J. Cancer. 2008; 98(11): 1845–51. https://doi.org/10.1038/sj.bjc.6604381
- Chatterjee D., Bhattacharjee P., Sau T.J., Das J.K., Sarma N., Bandyopadhyay A.K., et al. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India. Mol. Carcinog. 2014; 54(9): 800–9. https://doi.org/10.1002/mc.22150
- Yih L.H., Lee T.C. Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res. 2000; 60(22): 6346–52.
- Taylor B.F., McNeely S.C., Miller H.L., Lehmann G.M., McCabe M.J., States J.C. p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J. Pharmacol. Exp. Ther. 2006; 318(1): 142–51. https://doi.org/10.1124/jpet.106.103077
- Vogt B.L., Rossman T.G. Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts – a possible mechanism for arsenite’s comutagenicity. Mutat. Res. 2001; 478(1-2): 159–68. https://doi.org/10.1016/s0027-5107(01)00137-3
- Komissarova E.V., Rossman T.G. Arsenite induced poly(ADPribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure. Toxicol. Appl. Pharmacol. 2010; 243(3): 399–404. https://doi.org/10.1016/j.taap.2009.12.014
- Katsiki M., Trougakos I.P., Chondrogianni N., Alexopoulos E.C., Makropoulos V., Gonos E.S. Alterations of senescence biomarkers in human cells by exposure to CrVI in vivo and in vitro. Exp. Gerontol. 2004; 39(7): 1079–87. https://doi.org/10.1016/j.exger.2004.03.039
- Hill R., Leidal A.M., Madureira P.A., Gillis L.D., Waisman D.M., Chiu A., et al. Chromium-mediated apoptosis: involvement of DNA-dependent protein kinase (DNA-PK) and differential induction of p53 target genes. DNA Repair (Amst.). 2008; 7(9): 1484–99. https://doi.org/10.1016/j.dnarep.2008.05.007
- Choi Y.J., Yin H.Q., Suh H.R., Lee Y.J., Park S.R., Lee B.H. Involvement of E2F1 transcriptional activity in cadmium-induced cell-cycle arrest at G1 in human lung fibroblasts. Environ. Mol. Mutagen. 2011; 52(2): 145–52. https://doi.org/10.1002/em.20593
- Aimola P., Carmignani M., Volpe A.R., Di Benedetto A., Claudio L., Waalkes M.P., et al. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLoS One. 2012; 7(3): e33647. https://doi.org/10.1371/journal.pone.0033647
- Blagus T., Zager V., Cemazar M., Sersa G., Kamensek U., Zegura B., et al. A cell-based biosensor system HepG2CDKN1A-DsRed for rapid and simple detection of genotoxic agents. Biosens. Bioelectron. 2014; 61: 102–11. https://doi.org/10.1016/j.bios.2014.05.002
- Roy R., Singh S.K., Chauhan L.K., Das M., Tripathi A., Dwivedi P.D. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3 K/Akt/mTOR inhibition. Toxicol. Lett. 2014; 227(1): 29–40. https://doi.org/10.1016/j.toxlet.2014.02.024
- Satapathy S.R., Mohapatra P., Preet R., Das D., Sarkar B., Choudhuri T., et al. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine (Lond.). 2013; 8(8): 1307–22. https://doi.org/10.2217/nnm.12.176
- Tuomela S., Autio R., Buerki-Thurnherr T., Arslan O., Kunzmann A., Andersson-Willman B., et al. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One. 2013; 8(7): e68415. https://doi.org/10.1371/journal.pone.0068415
- Srivastava R.K., Rahman Q., Kashyap M.P., Singh A.K., Jain G., Jahan S., et al. Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum. Exp. Toxicol. 2013; 32(2): 153–66. https://doi.org/10.1177/0960327112462725
- Petković J., Zegura B., Stevanović M., Drnovšek N., Uskoković D., Novak S., et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011; 5(3): 341–53. https://doi.org/10.3109/17435390.2010.507316
- Kang S.J., Kim B.M., Lee Y.J., Chung H.W. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen. 2008; 49(5): 399–405. https://doi.org/10.1002/em.20399
- Wu J., Sun J. Investigation on mechanism of growth arrest induced by iron oxide nanoparticles in PC12 cells. J. Nanosci. Nanotechnol. 2011; 11(12): 11079–83. https://doi.org/10.1166/jnn.2011.3948
- Liao M.Y., Liu H.G. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ. Toxicol. Pharmacol. 2012; 34(1): 67–80. https://doi.org/10.1016/j.etap.2011.05.014
- Mendoza M., Mandani G., Momand J. The MDM2 gene family. Biomol. Concepts. 2013; 5(1): 9–19. https://doi.org/10.1515/bmc-2013-0027
- Ellinger-Ziegelbauer H., Stuart B., Wahle B., Bomann W., Ahr H.J. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat. Res. 2005; 575(1–2): 61–84. https://doi.org/10.1016/j.mrfmmm.2005.02.004
- Deng H., Ikeda A., Cui H., Bartlett J.D., Suzuki M. MDM2-mediated p21 proteasomal degradation promotes fluoride toxicity in ameloblasts. Cells. 2019; 8(5): 436. https://doi.org/10.3390/cells8050436
- Liu H., Deng H., Jian Z., Cui H., Guo H., Fang J., et al. Copper exposure induces hepatic G0/G1 cell-cycle arrest through suppressing the Ras/PI3K/Akt signaling pathway in mice. Ecotoxicol. Environ. Saf. 2021; 222: 112518. https://doi.org/10.1016/j.ecoenv.2021.112518
- Lee J.Y., Tokumoto M., Fujiwara Y., Hasegawa T., Seko Y., Shimada A., et al. Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmium-induced renal toxicity. Sci. Rep. 2016; 6: 21968. https://doi.org/10.1038/srep21968
- Alkharashi N.A.O., Periasamy V.S., Athinarayanan J., Alshatwi A.A. Sulforaphane alleviates cadmium-induced toxicity in human mesenchymal stem cells through POR and TNFSF10 genes expression. Biomed. Pharmacother. 2019; 115: 108896. https://doi.org/10.1016/j.biopha.2019.108896
- Strauch B.M., Niemand R.K., Winkelbeiner N.L., Hartwig A. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells. Part. Fibre Toxicol. 2017; 14(1): 28. https://doi.org/10.1186/s12989-017-0209-1
- Petković J., Zegura B., Stevanović M., Drnovšek N., Uskoković D., Novak S., et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011; 5(3): 341–53. https://doi.org/10.3109/17435390.2010.507316
- Chen F.C., Huang C.M., Yu X.W., Chen Y.Y. Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Hum. Exp. Toxicol. 2022; 41: 9603271221080236. https://doi.org/10.1177/09603271221080237
- Kim M.H., Jeong H.J. Zinc oxide nanoparticles demoted MDM2 expression to suppress TSLP-induced mast cell proliferation. J. Nanosci. Nanotechnol. 2016; 16(3): 2492–8. https://doi.org/10.1166/jnn.2016.10785
- Uziel T., Savitsky K., Platzer M., Ziv Y., Helbitz T., Nehls M., et al. Genomic organization of the ATM gene. Genomics. 1996; 33(2): 317–20. https://doi.org/10.1006/geno.1996.0201
- Khanna K.K., Jackson S.P. DNA double-strand breaks: signalling, repair and the cancer connection. Nat. Genet. 2001; 27(3): 247–54. https://doi.org/10.1038/85798
- Kim S.T., Lim D.S., Canman C.E., Kastan M.B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 1999; 274(53): 37538–43. https://doi.org/10.1074/jbc.274.53.37538
- O’Neill T., Dwyer A.J., Ziv Y., Chan D.W., Lees-Miller S.P., Abraham R.H., et al. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J. Biol. Chem. 2000; 275(30): 22719–27. https://doi.org/10.1074/jbc.m001002200
- Kastan M.B., Lim D.S. The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 2000; 1(3): 179–86. https://doi.org/10.1038/35043058
- Jin M.H., Oh D.Y. ATM in DNA repair in cancer. Pharmacol. Ther. 2019; 203: 107391. https://doi.org/10.1016/j.pharmthera.2019.07.002
- Barlow C., Hirotsune S., Paylor R., Liyanage M., Eckhaus M., Collins F., et al. Atm-deficient mice: a paradigm of ataxia-telangiectasia. Cell. 1996; 86(1): 159–71. https://doi.org/10.1016/s0092-8674(00)80086-0
- Xu Y., Ashley T., Brainerd E.E., Bronson R.T., Meyn S.M., Baltimore D. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects and thymic lymphoma. Genes Dev. 1996; 10(19): 2411–22. https://doi.org/10.1101/gad.10.19.2411
- Taylor A.M., Metcalfe J.A., Thick J., Mak Y.F. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996; 87(2): 423–38.
- Alves M.G.O., Carta C.F.L., de Barros P.P., Issa J.S., Nunes F.D., Almeida J.D. Repair genes expression profile of MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers. Arch. Oral Biol. 2017; 73: 60–5. https://doi.org/10.1016/j.archoralbio.2016.09.006
- Morimoto H., Tsukada J., Kominato Y., Tanaka Y. Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am. J. Hematol. 2005; 78(2): 100–7. https://doi.org/10.1002/ajh.20259
- Asare N., Duale N., Slagsvold H.H., Lindeman B., Olsen A.K., Gromadzka-Ostrowska J., et al. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology. 2015; 10(3): 312–21. https://doi.org/10.3109/17435390.2015.1071443
- Muenyi C.S., Ljungman M., States J.C. Arsenic disruption of DNA damage responses-potential role in carcinogenesis and chemotherapy. Biomolecules. 2015; 5(4): 2184–93. https://doi.org/10.3390/biom5042184
Supplementary files
