Expression of the CDKN1A, MDM2, and ATM genes as a biomarker of the toxic effect of heavy metals (literature review)

Cover Page

Cite item

Full Text

Abstract

The development of new approaches enabling differentiation of a wide range of toxic effects can significantly improve risk assessment. To understand the response mechanisms at the molecular level, it is important to study the expression of genes responsible for DNA repair, since this process is one of the early responses to toxic effects.

The purpose of the study was to summarize available data on the expression of repair CDKN1A, MDM2, and ATM genes associated with toxic effects of exposure to heavy metals.

A systematic search was carried out to identify studies on a given topic in the PubMed, Web of Science, eLIBRARY and Google Scholar electronic databases using the following keywords: heavy metals, CDKN1A, MDM2, ATM, toxicity, DNA repair, and gene expression. The initial search for scientific publications was carried out independently by three authors; then all sources found were checked and compared to filter out duplicate papers. This review covers 50 literature sources.

The analysis of toxicogenome studies allowed us to identify several genes for assessing heavy metal toxicity among a large number of candidate biomarkers. The most commonly considered genes are the p21/CDKN1A gene, the MDM2 proto-oncogene, and the ATM gene.

Limitations. The review is limited to considering changes in the expression of only a small number of genes responsible for DNA repair.

Conclusion. The expression of the above biomarker genes provides a detailed picture of the response of a biological system to hazardous exposures and can be used as part of the assessment of toxic effects.

Contributions. All co-authors made a significant contribution to the development of concept, research and preparation of the article, read and approved its final version before publication.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: October 9, 2023 / Accepted: November 15, 2023 / Published: December 8, 2023

About the authors

Daria R. Shaikhova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Author for correspondence.
Email: darya.boo@mail.ru
ORCID iD: 0000-0002-7029-3406

Research Scientist, Department of Molecular Biology and Electron Microscopy, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation

e-mail: darya.boo@mail.ru

Russian Federation

Anna M. Amromina

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: amrominaam@ymrc.ru
ORCID iD: 0000-0001-8794-7288

Мл. науч. сотр. отдела молекулярной биологии и электронной микроскопии ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промышленных предприятий» Роспотребнадзора, 620014, Екатеринбург

e-mail: amrominaam@ymrc.ru

Russian Federation

Ivan A. Bereza

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: berezaia@ymrc.ru
ORCID iD: 0000-0002-4109-9268

Науч. сотр. отдела молекулярной биологии и электронной микроскопии ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промышленных предприятий» Роспотребнадзора, 620014, Екатеринбург

e-mail: berezaia@ymrc.ru

Russian Federation

References

  1. Sakai R., Kondo C., Oka H., Miyajima H., Kubo K., Uehara T. Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014; 315: 8–16. https://doi.org/10.1016/j.tox.2013.10.009
  2. Radhakrishnan S., Gierut J., Gartel A. Multiple alternate p21 transcripts are regulated by p53 in human cells. Oncogene. 2006; 25(12): 1812–5. https://doi.org/10.1038/sj.onc.1209195
  3. Kriwacki R.W., Hengst L., Tennant L., Reed S.I., Wright P.E. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA. 1996; 93(21): 11504–9. https://doi.org/10.1073/pnas.93.21.11504
  4. Cazzalini O., Scovassi A.I., Savio M., Stivala L.A., Prosperi E. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat. Res. 2010; 704(1–3): 12–20. https://doi.org/10.1016/j.mrrev.2010.01.009
  5. Abbas T., Dutta A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer. 2009; 9(6): 400–14. https://doi.org/10.1038/nrc2657
  6. Duensing A., Ghanem L., Steinman R.A., Liu Y., Duensing S. p21(Waf1/Cip1) deficiency stimulates centriole overduplication. Cell Cycle. 2006; 5(24): 2899–902. https://doi.org/10.4161/cc.5.24.3567
  7. Mantel C., Braun S.E., Reid S., Henegariu O., Liu L., Hangoc G., et al. p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood. 1999; 93(4): 1390–8.
  8. Kreis N.N., Sanhaji M., Rieger M.A., Louwen F., Yuan J. p21Waf1/ Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene. 2013; 33(50): 5716–28. https://doi.org/10.1038/onc.2013.518
  9. Badie C., Dziwura S., Raffy C., Tsigani T., Alsbeih G., Moody J., et al. Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br. J. Cancer. 2008; 98(11): 1845–51. https://doi.org/10.1038/sj.bjc.6604381
  10. Chatterjee D., Bhattacharjee P., Sau T.J., Das J.K., Sarma N., Bandyopadhyay A.K., et al. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India. Mol. Carcinog. 2014; 54(9): 800–9. https://doi.org/10.1002/mc.22150
  11. Yih L.H., Lee T.C. Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res. 2000; 60(22): 6346–52.
  12. Taylor B.F., McNeely S.C., Miller H.L., Lehmann G.M., McCabe M.J., States J.C. p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J. Pharmacol. Exp. Ther. 2006; 318(1): 142–51. https://doi.org/10.1124/jpet.106.103077
  13. Vogt B.L., Rossman T.G. Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts – a possible mechanism for arsenite’s comutagenicity. Mutat. Res. 2001; 478(1-2): 159–68. https://doi.org/10.1016/s0027-5107(01)00137-3
  14. Komissarova E.V., Rossman T.G. Arsenite induced poly(ADPribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure. Toxicol. Appl. Pharmacol. 2010; 243(3): 399–404. https://doi.org/10.1016/j.taap.2009.12.014
  15. Katsiki M., Trougakos I.P., Chondrogianni N., Alexopoulos E.C., Makropoulos V., Gonos E.S. Alterations of senescence biomarkers in human cells by exposure to CrVI in vivo and in vitro. Exp. Gerontol. 2004; 39(7): 1079–87. https://doi.org/10.1016/j.exger.2004.03.039
  16. Hill R., Leidal A.M., Madureira P.A., Gillis L.D., Waisman D.M., Chiu A., et al. Chromium-mediated apoptosis: involvement of DNA-dependent protein kinase (DNA-PK) and differential induction of p53 target genes. DNA Repair (Amst.). 2008; 7(9): 1484–99. https://doi.org/10.1016/j.dnarep.2008.05.007
  17. Choi Y.J., Yin H.Q., Suh H.R., Lee Y.J., Park S.R., Lee B.H. Involvement of E2F1 transcriptional activity in cadmium-induced cell-cycle arrest at G1 in human lung fibroblasts. Environ. Mol. Mutagen. 2011; 52(2): 145–52. https://doi.org/10.1002/em.20593
  18. Aimola P., Carmignani M., Volpe A.R., Di Benedetto A., Claudio L., Waalkes M.P., et al. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLoS One. 2012; 7(3): e33647. https://doi.org/10.1371/journal.pone.0033647
  19. Blagus T., Zager V., Cemazar M., Sersa G., Kamensek U., Zegura B., et al. A cell-based biosensor system HepG2CDKN1A-DsRed for rapid and simple detection of genotoxic agents. Biosens. Bioelectron. 2014; 61: 102–11. https://doi.org/10.1016/j.bios.2014.05.002
  20. Roy R., Singh S.K., Chauhan L.K., Das M., Tripathi A., Dwivedi P.D. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3 K/Akt/mTOR inhibition. Toxicol. Lett. 2014; 227(1): 29–40. https://doi.org/10.1016/j.toxlet.2014.02.024
  21. Satapathy S.R., Mohapatra P., Preet R., Das D., Sarkar B., Choudhuri T., et al. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine (Lond.). 2013; 8(8): 1307–22. https://doi.org/10.2217/nnm.12.176
  22. Tuomela S., Autio R., Buerki-Thurnherr T., Arslan O., Kunzmann A., Andersson-Willman B., et al. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One. 2013; 8(7): e68415. https://doi.org/10.1371/journal.pone.0068415
  23. Srivastava R.K., Rahman Q., Kashyap M.P., Singh A.K., Jain G., Jahan S., et al. Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum. Exp. Toxicol. 2013; 32(2): 153–66. https://doi.org/10.1177/0960327112462725
  24. Petković J., Zegura B., Stevanović M., Drnovšek N., Uskoković D., Novak S., et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011; 5(3): 341–53. https://doi.org/10.3109/17435390.2010.507316
  25. Kang S.J., Kim B.M., Lee Y.J., Chung H.W. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen. 2008; 49(5): 399–405. https://doi.org/10.1002/em.20399
  26. Wu J., Sun J. Investigation on mechanism of growth arrest induced by iron oxide nanoparticles in PC12 cells. J. Nanosci. Nanotechnol. 2011; 11(12): 11079–83. https://doi.org/10.1166/jnn.2011.3948
  27. Liao M.Y., Liu H.G. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ. Toxicol. Pharmacol. 2012; 34(1): 67–80. https://doi.org/10.1016/j.etap.2011.05.014
  28. Mendoza M., Mandani G., Momand J. The MDM2 gene family. Biomol. Concepts. 2013; 5(1): 9–19. https://doi.org/10.1515/bmc-2013-0027
  29. Ellinger-Ziegelbauer H., Stuart B., Wahle B., Bomann W., Ahr H.J. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat. Res. 2005; 575(1–2): 61–84. https://doi.org/10.1016/j.mrfmmm.2005.02.004
  30. Deng H., Ikeda A., Cui H., Bartlett J.D., Suzuki M. MDM2-mediated p21 proteasomal degradation promotes fluoride toxicity in ameloblasts. Cells. 2019; 8(5): 436. https://doi.org/10.3390/cells8050436
  31. Liu H., Deng H., Jian Z., Cui H., Guo H., Fang J., et al. Copper exposure induces hepatic G0/G1 cell-cycle arrest through suppressing the Ras/PI3K/Akt signaling pathway in mice. Ecotoxicol. Environ. Saf. 2021; 222: 112518. https://doi.org/10.1016/j.ecoenv.2021.112518
  32. Lee J.Y., Tokumoto M., Fujiwara Y., Hasegawa T., Seko Y., Shimada A., et al. Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmium-induced renal toxicity. Sci. Rep. 2016; 6: 21968. https://doi.org/10.1038/srep21968
  33. Alkharashi N.A.O., Periasamy V.S., Athinarayanan J., Alshatwi A.A. Sulforaphane alleviates cadmium-induced toxicity in human mesenchymal stem cells through POR and TNFSF10 genes expression. Biomed. Pharmacother. 2019; 115: 108896. https://doi.org/10.1016/j.biopha.2019.108896
  34. Strauch B.M., Niemand R.K., Winkelbeiner N.L., Hartwig A. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells. Part. Fibre Toxicol. 2017; 14(1): 28. https://doi.org/10.1186/s12989-017-0209-1
  35. Petković J., Zegura B., Stevanović M., Drnovšek N., Uskoković D., Novak S., et al. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011; 5(3): 341–53. https://doi.org/10.3109/17435390.2010.507316
  36. Chen F.C., Huang C.M., Yu X.W., Chen Y.Y. Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Hum. Exp. Toxicol. 2022; 41: 9603271221080236. https://doi.org/10.1177/09603271221080237
  37. Kim M.H., Jeong H.J. Zinc oxide nanoparticles demoted MDM2 expression to suppress TSLP-induced mast cell proliferation. J. Nanosci. Nanotechnol. 2016; 16(3): 2492–8. https://doi.org/10.1166/jnn.2016.10785
  38. Uziel T., Savitsky K., Platzer M., Ziv Y., Helbitz T., Nehls M., et al. Genomic organization of the ATM gene. Genomics. 1996; 33(2): 317–20. https://doi.org/10.1006/geno.1996.0201
  39. Khanna K.K., Jackson S.P. DNA double-strand breaks: signalling, repair and the cancer connection. Nat. Genet. 2001; 27(3): 247–54. https://doi.org/10.1038/85798
  40. Kim S.T., Lim D.S., Canman C.E., Kastan M.B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 1999; 274(53): 37538–43. https://doi.org/10.1074/jbc.274.53.37538
  41. O’Neill T., Dwyer A.J., Ziv Y., Chan D.W., Lees-Miller S.P., Abraham R.H., et al. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J. Biol. Chem. 2000; 275(30): 22719–27. https://doi.org/10.1074/jbc.m001002200
  42. Kastan M.B., Lim D.S. The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 2000; 1(3): 179–86. https://doi.org/10.1038/35043058
  43. Jin M.H., Oh D.Y. ATM in DNA repair in cancer. Pharmacol. Ther. 2019; 203: 107391. https://doi.org/10.1016/j.pharmthera.2019.07.002
  44. Barlow C., Hirotsune S., Paylor R., Liyanage M., Eckhaus M., Collins F., et al. Atm-deficient mice: a paradigm of ataxia-telangiectasia. Cell. 1996; 86(1): 159–71. https://doi.org/10.1016/s0092-8674(00)80086-0
  45. Xu Y., Ashley T., Brainerd E.E., Bronson R.T., Meyn S.M., Baltimore D. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects and thymic lymphoma. Genes Dev. 1996; 10(19): 2411–22. https://doi.org/10.1101/gad.10.19.2411
  46. Taylor A.M., Metcalfe J.A., Thick J., Mak Y.F. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996; 87(2): 423–38.
  47. Alves M.G.O., Carta C.F.L., de Barros P.P., Issa J.S., Nunes F.D., Almeida J.D. Repair genes expression profile of MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers. Arch. Oral Biol. 2017; 73: 60–5. https://doi.org/10.1016/j.archoralbio.2016.09.006
  48. Morimoto H., Tsukada J., Kominato Y., Tanaka Y. Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am. J. Hematol. 2005; 78(2): 100–7. https://doi.org/10.1002/ajh.20259
  49. Asare N., Duale N., Slagsvold H.H., Lindeman B., Olsen A.K., Gromadzka-Ostrowska J., et al. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology. 2015; 10(3): 312–21. https://doi.org/10.3109/17435390.2015.1071443
  50. Muenyi C.S., Ljungman M., States J.C. Arsenic disruption of DNA damage responses-potential role in carcinogenesis and chemotherapy. Biomolecules. 2015; 5(4): 2184–93. https://doi.org/10.3390/biom5042184

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Shaikhova D.R., Amromina A.M., Bereza I.A.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.