Mechanisms of physiological and toxic effects of lithium salts on the body (literature review)

Cover Page

Cite item

Full Text

Abstract

The study of the influence of various chemical elements on the human body is an important direction because it allows determining the patterns of the distribution and migration of these elements in tissues, as well as their role in the development of specific diseases. Among inorganic chemical compounds, a special place is occupied by lithium salts, which are widely used in industry, agriculture, and medicine. The search and selection of literature sources to identify the physiological effects and characteristics of the toxic effects of lithium salts on the human body and experimental animals was carried out using the bibliographic databases: Scopus, MedLine, Web of Science, PubMed, The Cochrane Library, RSCI, Cyberleninka. Data analysis has showed lithium salts to be classified as moderately hazardous substances (hazard class 3) and in high concentrations have a damaging effect on the functions of the nervous system, kidneys, thyroid and parathyroid glands.

Contribution:
Gorokhova L.G. — the concept of the study, collection of material, writing the text;
Zhukova A.G. — collection of material, writing the text;
Mikhailova N.N. — editing;
Korsakova T.G. — collection of material.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: February 15, 2024 / Revised: March 11, 2024 / Accepted: April 9, 2024 / Published: May 8, 2024

About the authors

Larisa G. Gorokhova

Research Institute for Complex Problems of Hygiene and Occupational Diseases; Kuzbass Humanitarian and Pedagogical Institute of the “Kemerovo State University”

Author for correspondence.
Email: ponomarikova@mail.ru
ORCID iD: 0000-0002-0545-631X

MD, PhD, DSci., Leading researcher, Lab. molecular genetic and experimental research of the Research Institute of Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation; Associate Professor of the department of natural science disciplines of the Kuzbass Humanitarian-Pedagogical Institute of the Kemerovo State University, 654041, Novokuznetsk, Russian Federation

e-mail: ponomarikova@mail.ru

Russian Federation

Anna G. Zhukova

Research Institute for Complex Problems of Hygiene and Occupational Diseases; Kuzbass Humanitarian and Pedagogical Institute of the “Kemerovo State University”

Email: noemail@neicon.ru
ORCID iD: 0000-0002-4797-7842

MD, PhD, DSci., Associate Professor, Head of the Lab. of molecular genetics and experimental research of Research Institute of Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation, Head of the Department of natural science disciplines of the Kuzbass Humanitarian-Pedagogical Institute of the Kemerovo State University, 654041, Novokuznetsk, Russian Federation

Russian Federation

Nadezhda N. Mikhailova

Research Institute for Complex Problems of Hygiene and Occupational Diseases

Email: noemail@neicon.ru
ORCID iD: 0000-0002-1127-6980

MD, PhD, DSci., Professor, Chief researcher of the Lab. of molecular genetics and experimental research of the Research Institute of Complex Problems of Hygiene and Occupational Diseases, 654041, Novokuznetsk, Russian Federation

Russian Federation

Tatyana G. Korsakova

Research Institute for Complex Problems of Hygiene and Occupational Diseases

Email: noemail@neicon.ru
ORCID iD: 0000-0003-2512-2541

MD, PhD, leading researcher of the Lab. of Human Ecology and Environmental Hygiene of the Research Institute of Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: ecologia_nie@mail.ru

Russian Federation

References

  1. Zaichik V.E., Agadzhanyan I.A. Some methodological issues of medical elementology. Vestnik vosstanovitel’noi meditsiny. 2004; (3): 19–23. https://elibrary.ru/sfqqsb (in Russian)
  2. Rikhvanov L.P., Baranovskaya N.V., Ignatova T.N., Sudyko A.F., Sandimirova G.P., Pakhomova N.N. Trace elements in human organs and tissues and their significance for environmental monitoring. Geokhimiya. 2011; 49(7): 738–42. https://doi.org/10.1134/S001670291107007X https://elibrary.ru/ohtqfd
  3. Rikhvanov L.P., Baranovskaya N.V., Sudyko A.F. Chemical elements in the human body as a basis for the implementation of the ideas of medical geology. Gornyi zhurnal. 2013; (3): 37–42. https://elibrary.ru/qajqcl (in Russian)
  4. Kadyrova R.G., Kabirov G.F., Mullakhmetov R.R. Lithium salts biogenic properties. Uchenye zapiski Kazanskoi gosudarstvennoi akademii veterinarnoi meditsiny imeni N.E. Baumana. 2012; 209: 151–6. https://elibrary.ru/oxzjkx (in Russian)
  5. Lyubimov B.I., Yavorskii A.N., Goryanov O.A. On the pathogenesis of lithium induced polyuria (Russian). Farmakologiya i toksikologiya. 1977; 40(1): 76–9. https://elibrary.ru/zykpaf (in Russian)
  6. Lyubimov B.I., Pentyuk A.A., Samoilov N.N. Comparative study of the effect of lithium chloride and lithium oxybutyrate on carbohydrate metabolism in rabbits and rats. Farmakologiya i toksikologiya. 1981; 44(5): 531–3. (in Russian)
  7. Galenko-Yaroshevskii P.A., Stolyarchuk A.A., Lyubimov B.I., Sheikh-Zade Yu.R., Tikhonov A.V., Lampika T.G. The influence of lithium salts on the activity of the heart. Farmakologiya i toksikologiya. 1986; 49(5): 115–7. (in Russian)
  8. Kryzhanovskii G.N., Zavodskaya I.S., Moreva E.V. Effects of lithium salts on experimental neurogenic lesions of the stomach and heart. Byulleten’ eksperimental’noi biologii i meditsiny. 1984; 97(6): 713–5. https://doi.org/10.1007/BF00804150 https://elibrary.ru/xutzzm
  9. Won E., Kim Y.K. An oldie but goodie: lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int. J. Mol. Sci. 2017; 18(12): 2679. https://doi.org/10.3390/ijms18122679
  10. Machado-Vieira R., Manji H.K., Zarate C.A. Jr. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009; 11(Suppl. 2): 92–109. https://doi.org/10.1111/j.1399-5618.2009.00714.x
  11. Machado-Vieira R. Lithium, stress, and resilience in bipolar disorder: deciphering this key homeostatic synaptic plasticity regulator. J. Affect. Disord. 2018; 233: 92–9. https://doi.org/10.1016/j.jad.2017.12.026
  12. Wood G.E., Young L.T., Reagan L.P., Chen B., McEwen B.S. Stress-induced structural remodeling in hippocampus: prevention by lithium treatment. Proc. Natl Acad. Sci. USA. 2004; 101(11): 3973–8. https://doi.org/10.1073/pnas.0400208101
  13. Gray J.D., McEwen B.S. Lithium’s role in neural plasticity and its implications for mood disorders. Acta Psychiatr. Scand. 2013; 128(5): 347–61. https://doi.org/10.1111/acps.12139
  14. Plotnikov E.Yu., Silachev D.N., Zorova L.D., Pevzner I.B., Yankauskas S.S., Zorov S.D., et al. Lithium salts – simple but magic. Biokhimiya. 2014; 79(8): 740–9. https://doi.org/10.1134/S0006297914080021 https://elibrary.ru/uevqnp
  15. Hashimoto R., Fujimaki K., Jeong M.R., Senatorov V.V., Christ L., Leeds P., et al. Neuroprotective actions of lithium. Seishin Shinkeigaku Zasshi. 2003; 105(1): 81–6. (in Japanese)
  16. Zorrilla Zubilete M. Mechanism of action of lithium: intracellular signaling pathways. Vertex. 2003; 14(51): 45–52. (in Spanish)
  17. Silverstone P.H., McGrath B.M., Kim H. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord. 2005; 7(1): 1–10. https://doi.org/10.1111/j.1399-5618.2004.00174.x
  18. Haimovich A., Eliav U., Goldbourt A. Determination of the lithium binding site in inositol monophosphatase, the putative target for lithium therapy, by magic-angle-spinning solid-state NMR. J. Am. Chem. Soc. 2012; 134(12): 5647–51. https://doi.org/10.1021/ja211794x
  19. Albayrak A., Halici Z., Polat B., Karakus E., Cadirci E., Bayir Y., et al. Protective effects of lithium: a new look at an old drug with potential antioxidative and anti-inflammatory effects in an animal model of sepsis. Int. Immunopharmacol. 2013; 16(1): 35–40. https://doi.org/10.1016/j.intimp.2013.03.018
  20. Quiroz J.A., Gould T.D., Manji H.K. Molecular effects of lithium. Mol. Interv. 2004; 4(5): 259–72. https://doi.org/10.1124/mi.4.5.6
  21. Singh N., Halliday A.C., Thomas J.M., Kuznetsova O.V., Baldwin R., Woon E.C., et al. A safe lithium mimetic for bipolar disorder. Nat. Commun. 2013; 4: 1332. https://doi.org/10.1038/ncomms2320
  22. McKnight R.F., Adida M., Budge K., Stockton S., Goodwin G.M., Geddes J.R. Lithium toxicity profile: a systematic review and meta-analysis. Lancet. 2012; 379(9817): 721–8. https://doi.org/10.1016/S0140-6736(11)61516-X
  23. Bschor T., Bauer M. Side effects and risk profile of lithium: critical assessment of a systematic review and meta-analysis. Nervenarzt. 2013; 84(7): 860–3. https://doi.org/10.1007/s00115-013-3766-z (in German)
  24. Nokhbatolfoghahai M., Parivar K. Teratogenic effect of lithium carbonate in early development of BALB/c mouse. Anat. Rec. (Hoboken). 2008; 291(9): 1088–96. https://doi.org/10.1002/ar.20730
  25. Bachinskaya V.M., Preobrazhenskii S.M. Study of the acute toxicity of lithium carbonate to broilers and rats. Veterinarnaya meditsina. 2009; (3): 32–4. https://elibrary.ru/ncprbl (in Russian)
  26. Ferron G., Debray M., Buneaux F., Baud F.J., Scherrmann J.M. Pharmacokinetics of lithium in plasma and red blood cells in acute and chronic intoxicated patients. Int. J. Clin. Pharmacol. Ther. 1995; 33(6): 351–5.
  27. Eyer F., Pfab R., Felgenhauer N., Lutz J., Heemann U., Steimer W., et al. Lithium poisoning: pharmacokinetics and clearance during different therapeutic measures. J. Clin. Psychopharmacol. 2006; 26(3): 325–30. https://doi.org/10.1097/01.jcp.0000218405.02738.b3
  28. Barbosa F. Jr. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. J. Toxicol. Environ. Health A. 2017; 80(3): 137–44. https://doi.org/10.1080/15287394.2016.1259475
  29. Tredget J., Kirov A., Kirov G. Effects of chronic lithium treatment on renal function. J. Affect. Disord. 2010; 126(3): 436–40. https://doi.org/10.1016/j.jad.2010.04.018
  30. Simard M., Gumbiner B., Lee A., Lewis H., Norman D. Lithium carbonate intoxication. A case report and review of the literature. Arch. Intern. Med. 1989; 149(1): 36–46. https://doi.org/10.1001/archinte.149.1.36
  31. Kishore B.K., Ecelbarger C.M. Lithium: a versatile tool for understanding renal physiology. Am. J. Physiol. Renal Physiol. 2013; 304(9): F1139–49. https://doi.org/10.1152/ajprenal.00718.2012
  32. Aral H., Vecchio-Sadus A. Toxicity of lithium to humans and the environment – a literature review. Ecotoxicol. Environ. Saf. 2008; 70(3): 349–56. https://doi.org/10.1016/j.ecoenv.2008.02.026
  33. Shakoor N., Adeel M., Ahmad M.A., Zain M., Waheed U., Javaid R.A., et al. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. Environ. Sci. Ecotechnol. 2023; 15: 100252. https://doi.org/10.1016/j.ese.2023.100252
  34. Hanak A.S., Chevillard L., Lebeau R., Risède P., Laplanche J.L., Benturquia N., et al. Neurobehavioral effects of lithium in the rat: Investigation of the effect/concentration relationships and the contribution of the poisoning pattern. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017; 76: 124–33. https://doi.org/10.1016/j.pnpbp.2017.03.005
  35. Zarnescu O., Zamfirescu G. Effects of lithium carbonate on rat seminiferous tubules: an ultrastructural study. Int. J. Androl. 2006; 29(6): 576–82. https://doi.org/10.1111/j.1365-2605.2006.00697.x
  36. Ida S., Yokota M., Ueoka M., Kiyoi K., Takiguchi Y. Mild to severe lithium-induced nephropathy models and urine N-acetyl-beta-D-glucosaminidase in rats. Methods Find. Exp. Clin. Pharmacol. 2001; 23(8): 445–8. https://doi.org/10.1358/mf.2001.23.8.662132
  37. Allagui M.S., Hfaiedh N., Vincent C., Guermazi F., Murat J.C., Croute F., et al. Changes in growth rate and thyroid- and sex-hormones blood levels in rats under sub-chronic lithium treatment. Hum. Exp. Toxicol. 2006; 25(5): 243–50. https://doi.org/10.1191/0960327106ht620oa
  38. Tandon A., Bhalla P., Nagpaul J.P., Dhawan D.K. Effect of lithium on rat cerebrum under different dietary protein regimens. Drug Chem. Toxicol. 2006; 29(4): 333–44. https://doi.org/10.1080/01480540600820122
  39. Marathe M.R., Thomas G.P. Embryotoxicity and teratogenicity of lithium carbonate in Wistar rat. Toxicol. Lett. 1986; 34(1): 115–20. https://doi.org/10.1016/0378-4274(86)90153-0
  40. Thakur S.C., Thakur S.S., Chaube S.K., Singh S.P. Subchronic supplementation of lithium carbonate induces reproductive system toxicity in male rat. Reprod. Toxicol. 2003; 17(6): 683–90. https://doi.org/10.1016/s0890-6238(03)00107-2
  41. Rapaport M.H., Manji H.K. The effects of lithium on ex vivo cytokine production. Biol. Psychiatry. 2001; 50(3): 217–24. https://doi.org/10.1016/s0006-3223(01)01144-1
  42. Waller D.G., Edwards J.G. Investigation of renal tubular function during treatment with lithium. Neuropharmacology. 1984; 23(2B): 277–9. https://doi.org/10.1016/0028-3908(84)90071-6
  43. Sidiropoulou-Skokou S.A., Issidorides M.R. Lithium carbonate and the problem of kidney damage. Intracellular effects in rat kidney slices. Arch. Pathol. Lab. Med. 1983; 107(5): 270–3.
  44. Walker R.G., Escott M., Birchall I., Dowling J.P., Kincaid-Smith P. Chronic progressive renal lesions induced by lithium. Kidney Int. 1986; 29(4): 875–81. https://doi.org/10.1038/ki.1986.80
  45. Harvey B.M., Eschbach M., Glynn E.A., Kotha S., Darre M., Adams D.J., et al. Effect of daily lithium chloride administration on bone mass and strength in growing broiler chickens. Poult. Sci. 2015; 94(2): 296–301. https://doi.org/10.3382/ps/peu079
  46. Fleming R.H. Nutritional factors affecting poultry bone health. Proc. Nutr. Soc. 2008; 67(2): 177–83. https://doi.org/10.1017/S0029665108007015
  47. Anke M., Arnhold W., Schäfer U., Müller R. Recent progress in exploring the essentiality of the ultratrace element lithium to the nutrition of animals and man. Biomed Res Trace Elem. 2005; 16(3): 169–76. https://doi.org/10.11299/brte.16.169
  48. Ott M., Stegmayr B., Salander Renberg E., Werneke U. Lithium intoxication: Incidence, clinical course and renal function – a population-based retrospective cohort study. J. Psychopharmacol. 2016; 30(10): 1008–19. https://doi.org/10.1177/0269881116652577
  49. O’Brien W.T., Klein P.S. Validating GSK3 as an in vivo target of lithium action. Biochem. Soc. Trans. 2009; 37(Pt. 5): 1133–8. https://doi.org/10.1042/BST0371133
  50. Li Q., Li H., Roughton K., Wang X., Kroemer G., Blomgren K., et al. Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis. 2010; 1(7): e56. https://doi.org/10.1038/cddis.2010.33
  51. Snitow M.E., Bhansali R.S., Klein P.S. Lithium and therapeutic targeting of GSK-3. Cells. 2021; 10(2): 255. https://doi.org/10.3390/cells10020255
  52. Xu J., Culman J., Blume A., Brecht S., Gohlke P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke. 2003; 34(5): 1287–92. https://doi.org/10.1161/01.STR.0000066308.25088.64
  53. Wang Z.F., Fessler E.B., Chuang D.M. Beneficial effects of mood stabilizers lithium, valproate and lamotrigine in experimental stroke models. Acta Pharmacol. Sin. 2011; 32(12): 1433–45. https://doi.org/10.1038/aps.2011.140
  54. Malhi G.S., Tanious M., Das P., Coulston C.M., Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. 2013; 27(2): 135–53. https://doi.org/10.1007/s40263-013-0039-0
  55. Chiu C.T., Wang Z., Hunsberger J.G., Chuang D.M. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol. Rev. 2013; 65(1): 105–42. https://doi.org/10.1124/pr.111.005512
  56. Nicolay J.P., Gatz S., Lang F., Lang U.E. Lithium-induced suicidal erythrocyte death. J. Psychopharmacol. 2010; 24(10): 1533–9. https://doi.org/10.1177/0269881109102631
  57. Menshanov P.N., Bannova A.V., Dygalo N.N. Toxic Effects of Lithium Chloride during Early Neonatal Period of Rat Development. Bull. Exp. Biol. Med. 2016; 160(4): 459–61. https://doi.org/10.1007/s10517-016-3196-6
  58. Grebenchikov O.A., Kuzovlev A.N., Baeva A.A. Lithium chloride for the novel coronavirus infection COVID-19. Anesteziologiya i reanimatologiya (Media Sfera). 2020; (6-2): 40–4. https://doi.org/10.17116/anaesthesiology202006240 https://elibrary.ru/rygnek (in Russian)
  59. National Center for Biotechnology Information. Lithium Chloride. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-Chloride
  60. Johansson A., Camner P., Curstedt T., Jarstrand C., Robertson B., Urban T. Rabbit lung after inhalation of lithium chloride. J. Appl. Toxicol. 1988; 8(5): 373–5. https://doi.org/10.1002/jat.2550080507
  61. Christensson T.A. Letter: Lithium, hypercalcaemia, and hyperparathyroidism. Lancet. 1976; 2(7977): 144. https://doi.org/10.1016/s0140-6736(76)92867-1
  62. Mroczka D.L., Hoff K.M., Goodrich C.A., Baker P.C. Effect of lithium on reproduction and postnatal growth of mice. Biol. Neonate. 1983; 43(5-6): 287–96. https://doi.org/10.1159/000241657
  63. Messiha F.S. Maternally-mediated developmental lithium toxicity in the mouse. Gen. Pharmacol. 1993; 24(1): 9–15. https://doi.org/10.1016/0306-3623(93)90004-h
  64. Leeds P.R., Yu F., Wang Z., Chiu C.T., Zhang Y., Leng Y., et al. A new avenue for lithium: intervention in traumatic brain injury. ACS Chem. Neurosci. 2014; 5(6): 422–33. https://doi.org/10.1021/cn500040g
  65. Chuang D.M., Wang Z., Chiu C.T. GSK-3 as a target for lithium-induced neuroprotection against excitotoxicity in neuronal cultures and animal models of ischemic stroke. Front. Mol. Neurosci. 2011; 4: 15. https://doi.org/10.3389/fnmol.2011.00015
  66. Munteanu C., Rotariu M., Turnea M., Tătăranu L.G., Dogaru G., Popescu C., et al. Lithium biological action mechanisms after ischemic stroke. Life (Basel). 2022; 12(11): 1680. https://doi.org/10.3390/life12111680
  67. Liu A., Fang H., Dahmen U., Dirsch O. Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats. Liver Transpl. 2013; 19(7): 762–72. https://doi.org/10.1002/lt.23666
  68. González Arbeláez L.F., Pérez Núñez I.A., Mosca S.M. Gsk-3β inhibitors mimic the cardioprotection mediated by ischemic pre- and postconditioning in hypertensive rats. Biomed. Res. Int. 2013; 2013: 317456. https://doi.org/10.1155/2013/317456

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Gorokhova L.G., Zhukova A.G., Mikhailova N.N., Korsakova T.G.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.