Intragenomic Polymorphism and Pseudogenization of the OCA2 Gene in Far Eastern Owls (Strigidae, Aves)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The intragenomic polymorphism of the OCA2 gene fragment (approximately 4800 bp), encoding the transmembrane P-protein associated with feather coloration in birds, was studied for the first time in seven Far Eastern owl species: Eurasian eagle-owl (Bubo bubo), Blakiston's fish owl (Bubo (Ketupa) blakistoni), snowy owl (Bubo (Nyctea) scandiacus), long-eared owl (Asio otus), Ural owl (Strix uralensis), oriental scops owl (Otus sunia), and Japanese scops owl (Otus semitorques). The intragenomic variability of OCA2 within this diverse group of Strigiformes ranged from 0.005 in B. bubo to 0.014 in O. sunia, exceeding interspecific values for this gene in the genera Falco and Cygnus (0.000–0.006). Genetic distances between genera within the family Strigidae varied widely (0.022–0.048) but were comparable to those observed in the family Accipitridae (0.015–0.040). For the first time, pseudogenization of the OCA2 gene was detected in some of the studied species, based on comparisons of exon regions of the coding gene and various copies of its pseudogenes. Two pseudogene variants were identified in O. semitorques, three in B. (N.) scandiacus, and eight in B. bubo. High levels of intragenomic polymorphism were observed for OCA2 pseudogenes, driven by numerous single mutations, insertions, and deletions of varying lengths. Deep genetic differentiation was found for certain species pairs controversially assigned to the same genus, corresponding to intergeneric levels of genetic distances for OCA2 in other avian orders. This provides additional arguments in favor of their generic independence at the genus level: O. sunia – O. semitorques (0.031), B. bubo – B. (K.) blakistoni (0.024), and B. (K.) blakistoni – B. (N.) scandiacus (0.022). The phylogenetic reconstruction of Strigiformes and other taxa based on the OCA2 gene largely aligns with findings derived from other molecular markers.

About the authors

L. N. Spiridonova

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: spiridonova@biosoil.ru
Vladivostok, 690022 Russia

S. G. Surmach

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences

Email: spiridonova@biosoil.ru
Vladivostok, 690022 Russia

References

  1. Galvan I., Garcia-Campa J., Negro J.J. Complex plumage patterns can be produced only with the contribution of melanins // Physiol. Biochem. Zool. 2017. V. 90. № 5. P. 600–604. https://doi.org/10.1086/693962
  2. Galván I., Rodríguez-Martínez S. A negative association between melanin-based plumage color heterogeneity and intensity in birds // Physiol. Biochem. Zool. 2019. V. 92. № 3. P. 266–273. https://doi.org/10.1086/702720.
  3. Hirobe T., Kawa Y., Mizoguchi M. et al. Effects of ge-nic substitution at the pink-eyed dilution locus on the proliferation and differentiation of mouse epidermal melanocytes in vivo and in vitro // J. Exp. Zool. 2002. V. 292. P. 351–366.
  4. Rosemblat S., Sviderskaya E.V., Easty D.J. et al. Melanosomal defects in melanocytes from mice lacking expression of the pink-eyed dilution gene: Correction by culture in the presence of excess tyrosine // Exp. Cell Res. 1998. V. 239 (2). P. 344–352. https://doi.org/10.1006/excr.1997.3901.
  5. Liu X., Zhou R., Peng Y. et al. Feather follicles trans- criptome profiles in Bashang long-tailed chickens with different plumage colors // Genes & Genomics. 2019. V. 41. № 11. P. 1357–1367. https://doi.org/10.1007/s13258-018-0740-y
  6. Abolins-Abols M., Kornobis E., Ribeca P. et al. Diffe- rential gene regulation underlies variation in melanic plumage coloration in the dark-eyed junco (Junco hyemalis) // Mol. Ecol. 2018. V. 27. № 22. P. 4501–4515. https://doi.org/10.1111/mec.14878
  7. Poelstra J.W., Vijay N., Hoeppner M.P., Wolf J.B. Transcriptomics of colour patterning and colo- ration shifts in crows // Mol. Ecol. 2015. V. 24. № 18. P. 4617–4628. https://doi.org/10.1111/mec.13353
  8. Bellono N.W., Escobar I.E., Lefkovith A.J. et al. An intracellular anion channel critical for pigmentation // Elife. 2014. V. 3. P. e04543. https://doi.org/10.7554/eLife.04543
  9. Puri N., Gardner J.M., Brilliant M.H. Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes // J. Invest. Dermatol. 2000. V. 115 (4). P. 607–13. https://doi.org/10.1046/j.1523-1747.2000.00108.x.
  10. Sturm R.A., Frudakis T.N. Eye colour: Portals into pigmentation genes and ancestry // Trends Genet. 2004. V. 20 (8). P. 327–332. http://dx.doi.org/10.1016/j.tig.2004.06.010
  11. Walsh S., Liu F., Wollstein A. et al. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA // Forensic Sci. Int.: Genetics. 2013. V. 7 (1). P. 98–115. http://dx.doi.org/10.1016/j.fsigen.2012.07.005
  12. Zhu G., Evans D.M., Duffy D.L. et al. A genome scan for eye color in 502 twin families: Most variation is due to a QTL on chromosome 15q // Twin Research. 2004. V. 2. P. 197–210.
  13. Duffy D.L., Montgomery G.W., Chen W. et al. A Three–single–nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye- color variation // Am. J. Hum. Genet. 2007. V. 80. P. 241–252. https://doi.org/10.1086/510885
  14. Orlow S.J., Brilliant M.H. The pinkeyed dilution locus controls the biogenesis of melanosomes and levels of melanosomal proteins in the eye // Exp. Eye Res. 1999. V. 68. P. 147–154. https://doi.org/10.1006/exer.1998.0599
  15. Caduff M., Bauer A., Jagannathan V., Leeb T. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism // PLoS One. 2017. V. 12 (10). https://doi.org/10.1371/journal.pone.0185944
  16. Brilliant M.H. The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism type 2 (OCA2), and melanosomal pH // Pigment. Cell Res. 2001. V. 14. P. 86–93.
  17. Lopes R.J., Johnson J.D., Toomey M.B. et al. Genetic basis for red coloration in birds // Curr. Biol. 2016. V. 26 (11). P. 1427–1434. https://doi.org/10.1016/j.cub.2016.03.076
  18. Toews D.P., Taylor S.A., Vallender R. et al. Plumage genes and little else distinguish the genomes of hybridizing warblers // Curr. Biol. 2016. V. 26 (17). P. 2313–2318. https://doi.org/10.1016/j.cub.2016.06.034
  19. Corbett E.C., Brumfield R.T., Faircloth B.C. The me- chanistic, genetic and evolutionary causes of bird eye colour variation // Ibis. 2024. V. 166. V. 560–589. https://doi.org/10.1111/ibi.13276
  20. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984.
  21. Bonfield J.K., Smith K.F., Staden R. A new DNA sequence assembly program // Nucl. Ac. Res. 1995. V. 23. P. 4992–4999.
  22. Kumar S., Stecher G., and Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets // Mol. Biol. and Evol. 2016. V. 33. P. 1870–1874. https://doi.org/10.1093/molbev/msw054
  23. Nei M. Molecular Evolutionary Genetics. N.Y.: Columbia Univ. Press, 1987.
  24. Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data // Bioinformatics. 2009. V. 25. P. 1451–1452.
  25. Posada D., Crandall K.A. Modeltest: Testing the model of DNA substitution // Bioinformatics. 1998. V. 14. P. 817–818.
  26. Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method // Proc. Natl Acad. Sci. USA. 2004. V. 101. P. 11030–11035. https://doi.org/10.1073/pnas.0404206101
  27. Waterhouse A., Bertoni M., Bienert S. et al. SWISS-MODEL: Homology modelling of protein structures and complexes // Nucl. Acids Res. 2018. V. 46. W296–W303. https://doi.org/10.1093/nar/gky427
  28. Ronquist F., Teslenko M., van der Mark P. et al. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space // Syst. Biol. 2012. V. 61. P. 539–542. https://doi.org/10.1093/sysbio/sys029
  29. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap // Evolution. 1985. V. 39. P. 783–791.
  30. Rambaut A., Drummond A.J., Xie D. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7 // Syst. Biol. 2018. V. 67. № 5. P. 901–904. https://doi.org/10.1093/sysbio/syy032
  31. Nei M., Kumar S. Molecular Evolution and Phylogenetics. Oxford: Univ. Press, 2000.
  32. Prum R., Berv J., Dornburg A. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing // Nature. 2015. V. 526. P. 569–573. https://doi.org/10.1038/nature15697
  33. Stiller J., Feng S., Chowdhury A.A. et al. Complexity of avian evolution revealed by family-level genomes // Nature. 2024. V. 629. P. 851–860. https://doi.org/10.1038/s41586-024-07323-1.
  34. Rose A.B. Introns as gene regulators: A brick on the accelerator // Front. Genet. 2019. V. 9. Article 672. https://doi.org/10.3389/fgene.2018.00672.
  35. Neff B.D., Gross M.R. Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats // Evolution. 2001. V. 55 (9). P. 1717–1733. https://doi.org/10.1111/j.0014-3820.2001.tb00822.x.
  36. Шаповал Н.А., Лухтанов В.А. Рибосомная ДНК в кариосистематике и молекулярной филогенетике бабочек-голубянок рода Polyommatus (Lepido- ptera, Lycaenidae) // Бюл. мед. интернет-конф., Т. 6. № 9. 2016. С. 1509–1509.
  37. Freeman J.L., Perry G.H., Feuk L. et al. Copy number variation: new insights in genome diversity // Genome Res. 2006. V. 16 (8). P. 949–961. https://doi.org/10.1101/gr.3677206.
  38. Vickrey A.I., Bruders R., Kronenberg Z. et al. Introgression of regulatory alleles and a missense coding mutation drive plumage pattern diversity in the rock pigeon // Elife. 2018. V. 7. P. e34803. https://doi.org/10.7554/eLife.34803
  39. Kehrer-Sawatzki H. What a difference copy number variation makes // Bioessays. 2007. V. 29 (4). P. 311–313. https://doi.org/10.1002/bies.20554.
  40. Спиридонова Л.Н., Сурмач С.Г. Полный митохондриальный геном рыбного филина Bubo (Ketupa) blakistoni (Strigiformes, Strigidae) свидетельствует в пользу его возвращения в род Ketupa // Генетика. 2018. Т. 54. № 3. C. 373–378. https://doi.org/10.7868/S0016675818030128
  41. Van den Burg M.P., Vieites D.R. Bird genetic databases need improved curation and error reporting to NCBI // Ibis. 2022. V. 165. P. 472–481. https://doi.org/10.1111/ibi.13143

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences