Selenium Nanoparticles as Multifunctional Supplement to Provide Growth and Development of Agricultural Crops: Mechanisms, Effectiveness, Prospects and Limitations
- 作者: Sarimov R.M.1, Astashev M.E.1, Yanykin D.V.1, Martinovich G.G.2, Semenova N.A.1, Stepanova E.V.1, Glinushkin A.P.1
-
隶属关系:
- A.M. Prokhorov General Physics Institute of the RAS
- Belarusian State University
- 期: 编号 6 (2025)
- 页面: 92-104
- 栏目: Reviews
- URL: https://rjsocmed.com/0002-1881/article/view/685969
- DOI: https://doi.org/10.31857/S0002188125060124
- EDN: https://elibrary.ru/tfvbpj
- ID: 685969
如何引用文章
详细
The review discussed the effectiveness of using selenium nanoparticles (Se NP) in agricultural technologies. Based on the analysis of literature data, the proposed methods of applying Se NP were reviewed, the key mechanisms of action of Se NP on plants were summarized in the context of various activities of these nanoparticles (biostimulating, stress-protective, biofortification, nutraceutical, antioxidant) and the effectiveness of applying Se NP using “traditional” forms of mineral selenium fertilizers – selenate and selenite.
全文:

作者简介
R. Sarimov
A.M. Prokhorov General Physics Institute of the RAS
编辑信件的主要联系方式.
Email: rusa@kapella.gpi.ru
俄罗斯联邦, ul. Vavilova 38, Moscow 119991
M. Astashev
A.M. Prokhorov General Physics Institute of the RAS
Email: rusa@kapella.gpi.ru
俄罗斯联邦, ul. Vavilova 38, Moscow 119991
D. Yanykin
A.M. Prokhorov General Physics Institute of the RAS
Email: rusa@kapella.gpi.ru
俄罗斯联邦, ul. Vavilova 38, Moscow 119991
G. Martinovich
Belarusian State University
Email: rusa@kapella.gpi.ru
Faculty of Physics
白俄罗斯, ul. Bobruiskaya, Minsk 220006N. Semenova
A.M. Prokhorov General Physics Institute of the RAS
Email: rusa@kapella.gpi.ru
俄罗斯联邦, ul. Vavilova 38, Moscow 119991
E. Stepanova
A.M. Prokhorov General Physics Institute of the RAS
Email: rusa@kapella.gpi.ru
俄罗斯联邦, ul. Vavilova 38, Moscow 119991
A. Glinushkin
A.M. Prokhorov General Physics Institute of the RAS
Email: rusa@kapella.gpi.ru
俄罗斯联邦, ul. Vavilova 38, Moscow 119991
参考
- Гудков С.В., Саримов Р.М., Асташев М.Е., Пищальников Р.Ю., Яныкин Д.В., Симакин А.В., Шкирин А.В., Серов Д.А., Кончеков Е.М., Гусейн-заде Намик Гусейнага оглы, Леднев В.Н., Гришин М.Я., Сдвиженский П.А., Першин С.М., Бункин А.Ф., Ашуров М.Х., Аксенов А.Г., Чилингарян Н.О., Смирнов И.Г., Павкин Д.Ю., Хорт Д.О., Московский М.Н., Сибирев А.В., Лобачевский Я.П., Дорохов А.С., Измайлов А.Ю. Современные физические методы и технологии в сельском хозяйстве // УФН. 2024. Т. 194. С. 208–226.
- Bano I., Skalickova S., Sajjad H., Skladanka J., Horky P. Uses of selenium nanoparticles in the plant production // Agronomy. 2021. V. 11. № 11. Р. 2229.
- Zahedi S.M., Hosseini M.S., Daneshvar Hakimi Meybodi N., Teixeira da Silva J.A. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality // South Afric. J. Bot. 2019. V. 124. Р. 350–358.
- Xu H., Yan J., Qin Y., Xu J., Shohag M.J.I., Wei Y., Gu M. Effect of different forms of selenium on the physiological response and the cadmium uptake by rice under cadmium stress // Inter. J. Environ. Res. Public Health. 2020. V. 17. № 19. Р. 6991.
- Genchi G., Lauria G., Catalano A., Sinicropi M.S., Carocci A. Biological activity of selenium and its impact on human health // Inter. J. Mol. Sci. 2023. V. 24. № 3. Р. 2633.
- Titov A.F., Kaznina N.M., Karapetyan T.A., Dorshakova N.V., Tarasova V.N. Role of selenium in plants, animals, and humans // Biol. Bul. Rev. 2022. V. 12. № 2. Р. 189–200.
- Skrypnik L., Feduraev P., Golubkina N., Maslennikov P., Antipina M., Katserov D., Murariu O.C., Tallarita A.V., Caruso G. Foliar spraying of selenium in inorganic and organic forms stimulates plant growth and secondary metabolism of sage (Salvia officinalis L.) through alterations in photosynthesis and primary metabolism // Sci. Horticult. 2024. V. 338. Р. 113633.
- Ameen M., Zia M.A., Najeeb Alawadi H.F., Naqve M., Mahmood A., Shahzad A.N., Khan B.A., Alhammad B.A., Aljabri M., Seleiman M.F. Exogenous application of selenium on sunflower (Helianthus annuus L.) to enhance drought stress tolerance by morpho-physiological and biochemical adaptations // Front. Plant Sci. 2024. V. 15. Р. 1427420.
- Hasanuzzaman M., Bhuyan M.H.M.B., Raza A., Hawrylak-Nowak B., Matraszek-Gawron R., Mahmud J.A., Nahar K., Fujita M. Selenium in plants: Boon or bane? // Environ. Exp. Bot. 2020. V. 178. № 3. Р. 104170.
- Dhillon K.S., Dhillon S.K. Genesis of seleniferous soils and associated animal and human health problems // Adv. Аgron. 2019. V. 154. Р. 1–80.
- Bodnar M., Konieczka P., Namiesnik J. The Properties, functions, and use of selenium compounds in living organisms // J. Environ. Sci. Health. P. C. 2012. V. 30. № 3. Р. 225–252.
- Ullah H., Liu G., Yousaf B., Ali M.U., Irshad S., Abbas Q., Ahmad R. A comprehensive review on environmental transformation of selenium: recent advances and research perspectives // Environ. Geochem. Health. 2018. V. 41. № 2. Р. 1003–1035.
- Nie X., Luo D., Ma H., Wang L., Yang C., Tian X., Nie Y. Different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism in garlic // Food Chem. 2024. V. 443. Р. 138460.
- Díaz-Zarco S., Montes de Oca-Jiménez R., Rodríguez-Domínguez M.C. Niveles de Selenio en suelo, pasto y en ovejas: Influencia del suplemento de Selenio en la concentración de IgG en ovejas gestantes y corderos // Terra Latinoamericana. 2022. V. 40. Р. 950. (in Spanish).
- Liu X., Cheng H., Cheng S., Xu F., Rao S. Advances in research on influencing factors of selenium enrichment in plants // Plant Growth Regul. 2023. V. 103. № 2. Р. 243–255.
- da Cruz Ferreira R.L., de Mello Prado R., de Souza Junior J.P., Gratão P.L., Tezotto T., Cruz F.J.R. Oxidative stress, nutritional disorders, and gas exchange in lettuce plants subjected to two selenium sources // J. Soil Sci. Plant Nutr. 2020. V. 20. № 3. Р. 1215–1228.
- Molnár Á., Kolbert Z., Kéri K., Feigl G., Ördög A., Szőllősi R., Erdei L. Selenite-induced nitro-oxidative stress processes in Arabidopsis thaliana and Brassica juncea // Ecotoxicol. Environ. Saf. 2018. V. 148. Р. 664–674.
- Gupta M., Gupta S. An Overview of selenium uptake, metabolism, and toxicity in plants // Front. Plant Sci. 2017. V. 7. Р. 2074.
- Gudkov S.V., Shafeev G.A., Glinushkin A.P., Shkirin A.V., Barmina E.V., Rakov I.I., Simakin A.V., Kislov A.V., Astashev M.E., Vodeneev V.A., Kalinitchenko V.P. Production and use of selenium nanoparticles as fertilizers // ACS Omega. 2020. V. 5. № 28. Р. 17767–17774.
- Medrano-Macías J., Narvaéz-Ortiz W.A. Selenium and nano-selenium as a new frontier of plant biostimulant // Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement. 2022. Р. 41–54.
- Khai H.D., Hiep P.P.M., Tung H.T., Phong T.H., Mai N.T.N., Luan V.Q., Cuong D.M., Vinh B.V.T., Nhut D.T. Selenium nanoparticles promote adventitious rooting without callus formation at the base of passion fruit cuttings via hormonal homeostasis changes // Sci. Horticult. 2024. V. 323. Р. 112485.
- Wang M., Wang Y., Ge C., Wu H., Jing F., Wu S., Li H., Zhou D. Foliar selenium nanoparticles application promotes the growth of maize (Zea mays L.) seedlings by regulating carbon, nitrogen and oxidative stress metabolism // Sci. Horticult. 2023. V. 311. Р. 111816.
- Li W., Ma L., Ye Y., Tang Q., Shen Y., Zou Z., Zhou H., Liang C., Wang G. Selenium absorption, translocation and biotransformation in pak choi (Brassica chinensis L.) after foliar application of selenium nanoparticles // Food Chem. 2025. V. 463. Р. 141439.
- Khan Z., Thounaojam T.C., Chowdhury D., Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review // Plant Growth Regul. 2023. V. 100. № 2. Р. 409–433.
- Liu A., Xiao W., Lai W., Wang J., Li X., Yu H., Zha Y. Potential application of selenium and copper nanoparticles in improving growth, quality, and physiological characteristics of strawberry under drought stress // Agriculture. 2024. V. 14. № 7. Р. 1172.
- Юркова И., Омельченко А. Влияние наночастиц селена и селенита натрия на рост и развитие растений пшеницы // Уч. зап. Крым. фед. ун-та им. В.И. Вернадского. Биология. Химия. 2015. Т. 1(67). № 3. С. 99–106.
- de los Ángeles Sariñana-Navarrete M., Benavides-Mendoza A., González-Morales S., Juárez-Maldonado A., Preciado-Rangel P., Sánchez-Chávez E., Cadenas-Pliego G., Antonio-Bautista A., Morelos-Moreno Á. Selenium seed priming and biostimulation influence the seed germination and seedling morphology of jalapeño (Capsicum annuum L.) // Horticulturae. 2024. V. 10. № 2. Р. 119
- Garza-García J.J.O., Hernández-Díaz J.A., León-Morales J.M., Velázquez-Juárez G., Zamudio-Ojeda A., Arratia-Quijada J., Reyes-Maldonado O.K., López-Velázquez J.C., García-Morales S. Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties // J. Nanobiotechnol. 2023. V. 21. № 1. Р. 252.
- Garza-García J.J.O., Hernández-Díaz J.A., Zamudio-Ojeda A., León-Morales J.M., Guerrero-Guzmán A., Sánchez-Chiprés D.R., López-Velázquez J.C., García-Morales S. The Role of selenium nanoparticles in agriculture and food technology // Biol. Trace Element Res. 2021. V. 200. № 5. Р. 2528–2548.
- Sotoodehnia-Korani S., Iranbakhsh A., Ebadi M., Majd A., Oraghi Ardebili Z. Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study // Environ. Рollut. 2020. V. 265(Pt B). Р. 114727.
- Sarkar R.D., Kalita M.C. Se nanoparticles stabilized with Allamanda cathartica L. flower extract inhibited phytopathogens and promoted mustard growth under salt stress // Heliyon. 2022. V. 8. № 3. Р. e09076.
- Qi W.-Y., Li Q., Chen H., Liu J., Xing S.-F., Xu M., Yan Z., Song C., Wang S.-G. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species // J. Hazard. Mater. 2021. V. 417. Р. 125900.
- El-Badri A.M., Hashem A.M., Batool M., Sherif A., Nishawy E., Ayaad M., Hassan H.M., Elrewainy I.M., Wang J., Kuai J., Wang B., Zheng S., Zhou G. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. // J. Nanobiotechnol. 2022. V. 20. № 1. Р. 163.
- Ghazi A.A., El-Nahrawy S., El-Ramady H., Ling W. Biosynthesis of nano-selenium and its impact on germination of wheat under salt stress for sustainable production // Sustainability. 2022. V. 14. № 3. Р. 1784.
- Abdelsalam A., El-Sayed H., Hamama H.M., Morad M.Y., Aloufi A.S., Abd El-Hameed R.M. Biogenic selenium nanoparticles: Anticancer, antimicrobial, insecticidal properties and their impact on soybean (Glycine max L.) seed germination and seedling growth // Biology. 2023. V. 12. № 11. Р. 1361.
- Evstatiev B.I., García-Locascio E., Valenzuela E.I., Cervantes-Avilés P., Mihailov N.P. Effects of seed priming and foliar application of Se nanoparticles in the germination, seedling growth, and reproductive stage of tomato and maize // BIO Web Conf. 2024. V. 122. Р. 01014.
- El-Ramady H., Abdalla N., Taha H.S., Alshaal T., El-Henawy A., Faizy S.E.D.A., Shams M.S., Youssef S.M., Shalaby T., Bayoumi Y., Elhawat N., Shehata S., Sztrik A., Prokisch J., Fári M., Domokos-Szabolcsy É., Pilon-Smits E.A., Selmar D., Haneklaus S., Schnug E. Selenium and nano-selenium in plant nutrition // Environ. Сhem. Lett. 2015. V. 14. № 1. Р. 123–147.
- Singh A. Soil salinity: A global threat to sustainable development // Soil Use Manag. 2021. V. 38. № 1. Р. 39–67.
- Nedjimi B. Selenium as a powerful trace element for mitigation of plant salt stress: A review // J. Trace Element. Mineral. 2024. V. 8. Р. 100123.
- Morales-Espinoza M.C., Cadenas-Pliego G., Pérez-Alvarez M., Hernández-Fuentes A.D., Cabrera de la Fuente M., Benavides-Mendoza A., Valdés-Reyna J., Juárez-Maldonado A. Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress // Molecules. 2019. V. 24. № 17. Р. 3030.
- Sheikhalipour M., Esmaielpour B., Behnamian M., Gohari G., Giglou M.T., Vachova P., Rastogi A., Brestic M., Skalicky M. Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon // Nanomaterials. 2021. V. 11. № 3. Р. 684.
- Zahedi S.M., Abdelrahman M., Hosseini M.S., Hoveizeh N.F., Tran L.-S.P. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles // Environ. Рollut. 2019. V. 253. Р. 246–258.
- Zafar S., Hasnain Z., Danish S., Battaglia M.L., Fahad S., Ansari M.J., Alharbi S.A. Modulations of wheat growth by selenium nanoparticles under salinity stress // BMC Plant Biol. 2024. V. 24. Р. 35.
- Saeedi R., Seyedi A., Esmaeilizadeh M., Seyedi N., Morteza Zahedi S., Malekzadeh M.R. Improving the performance of the photosynthetic apparatus of Citrus sinensis with the use of chitosan–selenium nanocomposite (CS + Se NPs) under salinity stress // BMC Plant Biol. 2024. V. 24. Р. 745.
- Sattar A., Cheema M.A., Sher A., Ijaz M., Ul-Allah S., Nawaz A., Abbas T., Ali Q. Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit // Acta Physiol. Plantarum. 2019. V. 41. № 8. Р. 146.
- Samanta S., Seth C.S., Roychoudhury A. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants // Plant Рhysiol. Biochem. 2024. V. 206. Р. 108259.
- Юркова И., Омельченко А., Панов Д. Влияние наноселена на активность компонентов антиоксидантной системы пшеницы в условиях комбинированного действия засоления и засухи // Уч. зап. Крым. фед. ун-та им. В.И. Вернадского. Биология. Химия. 2019. Т. 5(71). № 3. С. 216–225.
- Sieprawska A., Kornaś A., Filek M. Involvement of selenium in protective mechanisms of plants under environmental stress conditions – Review // Acta Biol. Cracoviensia. Ser. Bot. 2015. V. 57. № 1. Р. 9–20.
- Rady M.M., Belal H.E.E., Gadallah F.M., Semida W.M. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system // Sci. Hortic. 2020. V. 266. № 6. Р. 118.
- Omar A.A., Heikal Y.M., Zayed E.M., Shamseldin S.A.M., Salama Y.E., Amer K.E., Basuoni M.M., Abd Ellatif S., Mohamed A.H. Conferring of drought and heat stress tolerance in wheat (Triticum aestivum L.) genotypes and their response to selenium nanoparticles application // Nanomaterials. 2023. V. 13. Р. 998.
- Ikram M., Raja N.I., Javed B., Mashwani Z.-u.-R., Hussain M., Hussain M., Ehsan M., Rafique N., Malik K., Sultana T., Akram A. Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress // Green Process. Synth. 2020. V. 9. № 1. Р. 706–714.
- Sardar R., Ahmed S., Shah A.A., Yasin N.A. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions // Chemosphere. 2022. V. 287. Р. 132332.
- Hussain B., Ashraf M.N., Shafeeq ur R., Abbas A., Li J., Farooq M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies // Sci. Total Еnviron. 2021. V. 754. Р. 142188.
- Yuan Z., Cai S., Yan C., Rao S., Cheng S., Xu F., Liu X. Research progress on the physiological mechanism by which selenium alleviates heavy metal stress in plants: A Review // Agronomy. 2024. V. 14. № 8. Р. 1787.
- Wang M., Mu C., Lin X., Ma W., Wu H., Si D., Ge C., Cheng C., Zhao L., Li H., Zhou D. Foliar application of nanoparticles reduced cadmium content in wheat (Triticum aestivum L.) grains via long-distance “Leaf–Root–Microorganism” regulation // Environ. Sci. Technol. 2024. V. 58. № 16. Р. 6900–6912.
- Ahmad A., Javad S., Iqbal S., Shahzadi K., Gatasheh M.K., Javed T. Alleviation potential of green-synthesized selenium nanoparticles for cadmium stress in Solanum lycopersicum L: modulation of secondary metabolites and physiochemical attributes // Plant Сell Rep. 2024. V. 43. № 4. Р. 113.
- Di X., Jing R., Xie S., Sun Y., Huang Q. Biofortification of bok choy with selenium nanoparticles and its inhibitory effects on cadmium accumulation // Plant Soil. 2023. V. 494. № 1–2. Р. 701–716.
- Farooq M.A., Islam F., Ayyaz A., Chen W., Noor Y., Hu W., Hannan F., Zhou W. Mitigation effects of exogenous melatonin–selenium nanoparticles on arsenic-induced stress in Brassica napus // Environ. Рollut. 2022. V. 292(Pt. B). Р. 118473.
- Ran M., Wu J., Jiao Y., Li J. Biosynthetic selenium nanoparticles (Bio-SeNPs) mitigate the toxicity of antimony (Sb) in rice (Oryza sativa L.) by limiting Sb uptake, improving antioxidant defense system and regulating stress-related gene expression // J. Hazard. Mater. 2024. V. 470. Р. 134263.
- Serov D.A., Khabatova V.V., Vodeneev V., Li R., Gudkov S.V. A Review of the antibacterial, fungicidal and antiviral properties of selenium nanoparticles // Materials. 2023. V. 16. № 15. Р. 5363.
- Hernández-Díaz J.A., Garza-García J.J. O., León-Morales J.M., Zamudio-Ojeda A., Arratia-Quijada J., Velázquez-Juárez G., López-Velázquez J.C., García-Morales S. Antibacterial activity of biosynthesized selenium nanoparticles using extracts of Calendula officinalis against potentially clinical bacterial strains // Molecules. 2021. V. 26. № 19. Р. 5929.
- Joshi S.M., De Britto S., Jogaiah S. Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes // J. Biotechnol. 2021. V. 325. Р. 196–206.
- Ge Y.-M., Xue Y., Zhao X.-F., Liu J.-Z., Xing W.-C., Hu S.-W., Gao H.-M. Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms // Inter. J. biological Macromol. 2024. V. 254(Pt. 3). Р. 127971.
- Alghuthaymi M.A., Diab A.M., Elzahy A.F., Mazrou K.E., Tayel A.A., Moussa S.H., Arru L. Green biosynthesized selenium nanoparticles by cinnamon extract and their antimicrobial activity and application as edible coatings with nano-chitosan // J. Food Qual. 2021. V. 2021. Р. 1–10.
- Salem M.F., Tayel A.A., Alzuaibr F.M., Bakr R.A. Innovative approach for controlling black rot of persimmon fruits by means of nanobiotechnology from nanochitosan and rosmarinic acid-mediated selenium nanoparticles // Polymers. 2022. V. 14. № 10. Р. 2116.
- Tayel A.A., Ebaid A.M., Otian A.M., Mahrous H., El Rabey H.A., Salem M.F. Application of edible nanocomposites from chitosan/fenugreek seed mucilage/selenium nanoparticles for protecting lemon from green mold // Inter. J. Biol. Macromolecul. 2024. V. 273(pt.1). Р. 133109.
- Hashem A.H., Abdelaziz A.M., Askar A.A., Fouda H.M., Khalil A.M.A., Abd-Elsalam K.A., Khaleil M.M. Bacillus megaterium-Mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in faba bean plants // J. Fungu. 2021. V. 7. № 3. Р. 195.
- Attia M.S., Salem S.S., Elakraa A.A., Abdel-Maksoud M.A., Malik A., Kiani B.H., Malash M.N., El-Sayyad G.S. Promising antagonistic effect of bimetallic silver-selenium nanoparticles against Ralstonia solanacearum-causing wilt disease in eggplant (Solanum melongena L.) // Physiol. Mol. Plant Pathol. 2024. V. 133. Р. 102369.
- Liu J., Zhu X., Chen X., Liu Y., Gong Y., Yuan G., Liu J., Chen L. Defense and inhibition integrated mesoporous nanoselenium delivery system against tomato gray mold // Environ. Sci. Nano. 2020. V. 7. № 1. Р. 210–227.
- Semenova N.A., Nikulina E.A., Tsirulnikova N.V., Godya- eva M.M., Uyutova N.I., Baimler I.V., Simakin A.V., Stepanova E.V., Gudkov S.V. Application of 2-Iminoselenazolidin-4-Ones (ISeA) for Beta vulgaris L. and Brassica rapa L. Plants Se-biofortification // Agronomy. 2024. V. 14. № 7. Р. 1407.
- Liu Y., Liu R., Li F., Yu S., Nie Y., Li J.-Q., Pan C., Zhu W., Zhou Z., Diao J. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors // Pestic. Biochem. Physiol. 2024. V. 198. Р. 105753.
- Shiriaev A., Brizzolara S., Sorce C., Meoni G., Vergata C., Martinelli F., Maza E., Djari A., Pirrello J., Pezzarossa B., Malorgio F., Tonutti P. Selenium biofortification impacts the tomato fruit metabolome and transcriptional profile at ripening // J. Agricult. Food Chem. 2023. V. 71. № 36. Р. 13554–13565.
- Hernández-Fuentes A.D., Montaño-Herrera A., Pinedo-Espinoza J.M., Pinedo-Guerrero Z.H., López-Palestina C.U. Changes of the antioxidant system in pear (Pyrus communis L.) fruits by foliar application of copper, selenium, iron, and zinc nanoparticles // J. Agric. Food Res. 2023. V. 14. Р. 100885.
- do Carmo Santos M.L., Santos T.A., dos Santos Lopes N., Macedo Ferreira M., Martins Alves A.M., Pirovani C.P., Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death // Plant Physiol. Biochem. 2024. V. 207. Р. 108332.
- Li D., An Q., Wu Y., Li J.-Q., Pan C. Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway // ACS Sustain Chem. Eng. 2020. V. 8. № 28. Р. 10502–10510.
- Freire B.M., Lange C.N., Cavalcanti Y.T., Monteiro L.R., Pieretti J.C., Seabra A.B., Batista B.L. The dual effect of selenium nanoparticles in rice seedlings: From increasing antioxidant activity to inducing oxidative stress // Plant Stress. 2024. V. 11. Р. 100372.
- Hussein H.-A.A., Darwesh O.M., Mekki B.B. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions // Biocatal. Agricult. Biotechnol. 2019. V. 18. Р. 101080.
- Anthonymuthu T.S., Neysanian M., Iranbakhsh A., Ahmadvand R., Oraghi Ardebili Z., Ebadi M. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment // PLoS ONE. 2020. V. 15. № 12. Р. e0244207.
补充文件
