Achievements and prospects for the application of artificial intelligence technologies in medicine: an overview. Part 1

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

On a global scale, a radical transformation of the healthcare sector is taking place right before our eyes. Health care systems in many countries are changing at an incredible pace under the pressure of innovative digital platforms that have gained popularity under the names of artificial intelligence (AI) and machine learning (ML). AI systems, powered by massive amounts of data collected from everywhere, are able to guarantee optimal decision making for key players in the healthcare industry, from the pharmaceutical industry to the smallest healthcare providers. This article presents the results of the analysis of achievements and prospects for the use of innovative digital technologies and platforms in modern health care. According to international experts in medicine, it is possible to automate 36% of functions, primarily at the levels of data collection and analysis, and the use of AI technologies can significantly increase the gross profit of firms and organizations in relation to medical activities. There is no doubt about this since information has already become the main driver of management across all sectors of the global economy in general and in the health care sector in particular. The main motivations for the penetration of AI into health care are the escalating costs and the urgent need to limit them, the problem of poor-quality diagnostics (up to 30% of ongoing studies turn out to be unreliable or are misinterpreted) and the desire for standardization and automation of routine functions up to the creation of self-managed diagnostic models. However, the biggest challenge for AI in healthcare is not whether these technologies will be useful enough, but how to ensure that they are quickly and efficiently implemented in everyday clinical practice.

Full Text

Restricted Access

About the authors

Vitaly A. Berdutin

Volga District Medical Center

Email: vberdt@gmail.com
ORCID iD: 0000-0003-3211-0899
SPIN-code: 8316-7111

MD, Cand. Sci. (Med.)

Russian Federation, Nizhny Novgorod

Olga P. Abaeva

Sechenov First Moscow State Medical University (Sechenov University),

Author for correspondence.
Email: abaevaop@inbox.ru
ORCID iD: 0000-0001-7403-7744
SPIN-code: 5602-2435

MD, Dr. Sci. (Med.), associate professor

Russian Federation, Moscow

Tatyana E. Romanova

Sechenov First Moscow State Medical University (Sechenov University)

Email: romanova_te@mail.ru
ORCID iD: 0000-0001-6328-079X
SPIN-code: 4943-6121

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Sergey V. Romanov

Volga District Medical Center

Email: pomcdpo@mail.ru
ORCID iD: 0000-0002-1815-5436
SPIN-code: 9014-6344

MD, Dr. Sci. (Med.), associate professor

Russian Federation, Nizhny Novgorod

References

  1. Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3:118. doi: 10.1038/s41746-020-00324-0
  2. Clarke R. Regulatory alternatives for AI. Computer Law & Security Review. 2019;35:398–409. doi: 10.1016/j.clsr.2019.04.008
  3. Coeckelbergh M. Health care, capabilities, and AI assistive technologies. Ethical Theory Moral Pract. 2010;13:181–190.
  4. Greco L, Percannella G, Ritrovato P, et al. Trends in IoT based solutions for health care: moving AI to the edge. Pattern Recognit Lett. 2020;135:346–353. doi: 10.1016/j.patrec.2020.05.016
  5. Mauro AD, Greco M, Grimaldi M. A formal definition of big data based on its essential features. Library Review. 2016;65(3):122–135. doi: 10.1108/LR-06-2015-0061
  6. Ardan M, Ferry F, Rahman GBG. The influence of physical distance to student anxiety on COVID-19, Indonesia. Journal of Critical Reviews. 2020;7:1126–1132.
  7. Doyle-Lindrud S. The evolution of the electronic health record. Clin J Oncol Nurs. 2015;19(2):153–154. doi: 10.1188/15.CJON.153-154
  8. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020;27(3):491–497. doi: 10.1093/jamia/ocz192
  9. Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020;26(9):1351–1363. doi: 10.1038/s41591-020-1037-7
  10. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems. 2013;29(7):1645–1660. doi: 10.1016/j.future.2013.01.010
  11. Gopal G, Suter-Crazzolara C, Toldo L, Eberhardt W. Digital transformation in healthcare — architectures of present and future information technologies. Clin Chem Lab Med. 2019;57(3):328–335. doi: 10.1515/cclm-2018-0658
  12. Guan J. Artificial intelligence in healthcare and medicine: promises, ethical challenges and governance. Chin Med Sci J. 2019;34(2):76–83. doi: 10.24920/003611
  13. Beede E, Baylor E, Hersch F, et al. A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems; 2020 Apr 25–30; Honolulu, HI, USA. P. 1–12. doi: 10.1145/3313831.3376718
  14. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–2410. doi: 10.1001/jama.2016.17216
  15. Koushik CSN, Choubey SB, Choubey A. Chapter 7 — Application of virtual reality systems to psychology and cognitive neuroscience research. Sinha GR, Suri JS, editors. Cognitive informatics, computer modelling, and cognitive science. JSBT-CI: Academic Press; 2020. P. 133–147. doi: 10.1016/C2018-0-05313-X
  16. Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262–e273. doi: 10.1016/S1470-2045(19)30149-4
  17. Yin Y, Zeng Y, Chen X, Fan Y. The internet of things in healthcare: an overview. Journal of Industrial Information Integration. 2016;1:3–13. doi: 10.1016/j.jii.2016.03.004
  18. Zaharia M, Xin RS, Wendell P, et al. Apache Spark: a unified engine for big data processing. Communications of the ACM. 2016;59(11):56–65. doi: 10.1145/2934664
  19. Saouabi M., Ezzati A. A comparative between hadoop mapreduce and apache Spark on HDFS. Proceedings of the 1st international conference on internet of things and machine learning; 2017 Oct 17; Liverpool: ACM; 2017. P. 1–4. doi: 10.1145/3109761.3109775
  20. Wiens J, Saria S, Sendak M, et al. Do no harm: a roadmap for responsible machine learning for health care. Nat Med. 2019;25(9):1337–1340. doi: 10.1038/s41591-019-0548-6
  21. Pee LG, Pan SL, Cui L. Artificial intelligence in healthcare robots: a social informatics study of knowledge embodiment. Journal of the Association for Information Science and Technology. 2019;70:351–369. doi: 10.1002/asi.24145
  22. Akmal A, Greatbanks R, Foote J. Lean thinking in healthcare — findings from a systematic literature network and bibliometric analysis. Health Policy. 2020;124(6):615–627. doi: 10.1016/j.healthpol.2020.04.008
  23. Centers for Medicare & Medicaid Services (CMS), HHS. Medicare Program; Hospital Inpatient Prospective Payment Systems for Acute Care Hospitals and the Long-Term Care Hospital Prospective Payment System and Policy Changes and Fiscal Year 2019 Rates; Quality Reporting Requirements for Specific Providers; Medicare and Medicaid Electronic Health Record (EHR) Incentive Programs (Promoting Interoperability Programs) Requirements for Eligible Hospitals, Critical Access Hospitals, and Eligible Professionals; Medicare Cost Reporting Requirements; and Physician Certification and Recertification of Claims. Final rule. Fed Regist. 2018;83(160):41144–41784.
  24. Triantafyllidis AK, Tsanas A. Applications of machine learning in real-life digital health interventions: review of the literature. J Med Internet Res. 2019;21(4):e12286. doi: 10.2196/12286
  25. Nimri R, Battelino T, Laffel LM, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med. 2020;26(9):1380–1384. doi: 10.1038/s41591-020-1045-7
  26. Kanagasingam Y, Xiao D, Vignarajan J, et al. Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. JAMA Netw Open. 2018;1(5):e182665. doi: 10.1001/jamanetworkopen.2018.2665
  27. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65–69. doi: 10.1038/s41591-018-0268-3
  28. Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine. 2019;9:52–59. doi: 10.1016/j.eclinm.2019.03.001
  29. Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. BMJ. 2020;370:m3164. doi: 10.1136/bmj.m3164
  30. Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol Hepatol. 2020;5(4):352–361. doi: 10.1016/S2468-1253(19)30413-3
  31. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. doi: 10.1038/nature21056
  32. Chen KC, Calzone L, Csikasz-Nagy A, et al. Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell. 2004;15(8):3841–3862. doi: 10.1091/mbc.e03-11-0794
  33. Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digit Med. 2020;3:23. doi: 10.1038/s41746-020-0232-8
  34. Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018;15(11):e1002686. doi: 10.1371/journal.pmed.1002686
  35. Le Douarin Y, Traversino Y, Graciet A, et al. Telemonitoring and experimentation in telemedicine for the improvement of healthcare pathways (ETAPES program). Sustainability beyond 2021: what type of organisational model and funding should be used? Therapie. 2020;75(1):43–56. doi: 10.1016/j.therap.2019.12.009
  36. Hollon TC, Pandian B, Adapa AR, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 2020;26(1):52–58. doi: 10.1038/s41591-019-0715-9
  37. Wang P, Liu X, Berzin TM, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol. 2020;5(5):343–351. doi: 10.1016/S2468-1253(19)30411-X
  38. Tobore I, Li J, Yuhang L, et al. Deep learning intervention for health care challenges: some biomedical domain considerations. JMIR mHealth uHealth. 2019;7(8):e11966. doi: 10.2196/11966
  39. Wijnberge M, Geerts BF, Hol L, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs. standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery. JAMA. 2020;323(11):1052–1060. doi: 10.1001/jama.2020.0592
  40. Moher D, Liberati A, Tetzlaff J, et al. Reprint — Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009;89(9):873–880.
  41. Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys Rev Lett. 2014;113(13):130503. doi: 10.1103/PhysRevLett.113.130503
  42. Teiten M, Eifes S, Reuter S, et al. Gene expression proling related to anti-inammatory properties of curcumin in k562 leukemia cells. Ann N Y Acad Sci. 2009;1171(1):391–398. doi: 10.1111/j.1749-6632.2009.04890.x
  43. Shameer K, Badgeley MA, Miotto R, et al. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform. 2017;18(1):105–124. doi: 10.1093/bib/bbv118
  44. Reardon S. Quantum microscope offers MRI for molecules. Nature. 2017;543(7644):162. doi: 10.1038/nature.2017.21573
  45. Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare: management, analysis and future prospects. Journal of Big Data. 2019;6:54. doi: 10.1186/s40537-019-0217-0
  46. Sun TQ, Medaglia R. Mapping the challenges of Artificial Intelligence in the public sector: evidence from public healthcare. Government Information Quarterly. 2019;36(2):368–383. doi: 10.1016/j.giq.2018.09.008
  47. Reshetnikov A, Fedorova J, Prisyazhnaya N, et al. Health Management for Sustainable Development. 2nd World Conference on Smart Trends in Systems. Security and Sustainability (WorldS4); 2018 Oct 30–31; London, UK. New York: Institute of Electrical and Electronics Engineers; 2019. P. 51–56.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86498 от 11.12.2023 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия
ЭЛ № ФС 77 - 80649 от 15.03.2021 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies